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GROWTH OF SOLUTIONS OF COMPLEX LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF

FINITE ITERATED ORDER
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Abstract. In the present paper, we investigate the iterated order of solutions
of higher order homogeneous linear differential equations with entire coefficients. We
improve and extend some results of Beläıdi and Hamouda by using the concept of the
iterated order. We also consider the non-homogeneous linear differential equations.

2010 Mathematics Subject Classification: 34M10, 30D35.

1.Introduction and main results

In this paper, we shall use the fundamental results and the standard notation of
the Nevanlinna value distribution theory of meromophic functions (see [10]). We
also use the notations σ(f) and µ (f) to denote respectively the order and the lower
order of growth of a meromophic function f(z).
We define the linear measure of a set E ⊂ [0,+∞) by m(E) =

∫ +∞
0 χE(t)dt and

the logarithmic measure of a set H ⊂ [1,+∞) by lm(H) =
∫ +∞
1

χH(t)
t dt, where χF

denote the characteristic function of a set F .
For the definition of the iterated order of a meromorphic function, we use the same
definition as in [11] , [4, p. 317] , [12, p. 129] . For all r ∈ R, we define exp1 r := er

and expp+1 r := exp
(
expp r

)
, p ∈ N. We also define for all r sufficiently large

log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N. Moreover, we denote by exp0 r :=

r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.
Definition 1.1 Let p > 1 be an integer. Then the iterated p−order σp(f) of a
meromorphic function f (z) is defined by

σp(f) = lim sup
r→+∞

logp T (r, f)
log r

, (1.1)
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where T (r, f) is the characteristic function of Nevanlinna. For p = 1, this nota-
tion is called order and for p = 2, hyper-order.
Remark 1.1 The iterated p−order σp(f) of an entire function f (z) is defined by

σp(f) = lim sup
r→+∞

logp T (r, f)
log r

= lim sup
r→+∞

logp+1 M (r, f)
log r

, (1.2)

where M (r, f) = max
|z|=r

|f (z)| .

Definition 1.2 The finiteness degree of the order of a meromorphic function f is
defined by

i (f) =


0, if f is rational,

min {j ∈ N : σj (f) < ∞} , if f is transcendental
with σj (f) < ∞ for some j ∈ N,
∞, if σj (f) = ∞ for all j ∈ N.

(1.3)

Remark 1.2 Similarly, we can define the iterated lower p−order µp (f) of a mero-
morphic function f (z) and the finiteness degree iµ (f) of µp (f).
Definition 1.3 The iterated convergence exponent of the sequence of zeros of a
meromorphic function f (z) is defined by

λp(f) = lim sup
r→+∞

logp N(r, 1/f)
log r

(p > 1 is an integer) , (1.4)

where N
(
r, 1

f

)
is the counting function of zeros of f (z) in {z : |z| < r}, and the

iterated convergence exponent of the sequence of distinct zeros of f (z) is defined by

λp(f) = lim sup
r→+∞

logp N(r, 1/f)
log r

(p > 1 is an integer) , (1.5)

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {z : |z| < r}.

Definition 1.4 The finiteness degree of the iterated convergence exponent of the
sequence of zeros of a meromorphic function f (z) is defined by

iλ (f) =


0, if n(r, 1/f) = O (log r) ,

min {j ∈ N : λj (f) < ∞} , if λj(f) < ∞
for some j ∈ N,

∞, if λj(f) = ∞ for all j ∈ N.

(1.6)

Remark 1.3 Similarly, we can define the finiteness degree iλ (f) of λp(f).
Let n > 2 be an integer and let A0 (z) , ..., An−1 (z) , An (z) with A0 (z) 6≡ 0 and
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An (z) 6≡ 0 be entire functions. It is well-known that if An ≡ 1, then all solutions of
the linear differential equation

An (z) f (n) + An−1 (z) f (n−1) + ... + A1 (z) f ′ + A0 (z) f = 0 (1.7)

are entire functions but when An is a nonconstant entire function, equation (1.7) can
possess meromorphic solutions. For instance the equation z2f

′′′
+6zf

′′
+6f

′−z2f = 0
has a meromorphic solution f (z) = ez

z2 . We also know that if some of coefficients
A0 (z) , ..., An−1 (z) are transcendental and An ≡ 1, then equation (1.7) has at least
one solution of infinite order. Thus the question which arises is: What conditions on
A0 (z) , ..., An−1 (z) , An (z) will guarantee that every solution f 6≡ 0 of (1.7) has an
infinite order? For the above question and when An ≡ 1, there are many results for
the second and higher order linear differential equations see for example ([1] , [2] ,
[3] , [5] , [6] , [7] , [9] , [11] , [12] , [13]). In 2002, Beläıdi and Hamouda have considered
the higher order linear differential equations with entire coefficients and obtained
the following result.
Theorem A [2] Let A0 (z) , ..., An−1 (z) with A0 (z) 6≡ 0 be entire functions. Suppose
that there exist a sequence of complex numbers (zk)k∈N with lim

k→+∞
zk = ∞ and three

real numbers α, β and µ satisfying 0 6 β < α and µ > 0 such that

|A0 (zk)| > exp {α |zk|µ} (1.8)

and

|Aj (zk)| 6 exp {β |zk|µ} (j = 1, 2, ..., n− 1) (1.9)

as k → +∞. Then every solution f 6≡ 0 of the equation

f (n) + An−1 (z) f (n−1) + ... + A1 (z) f ′ + A0 (z) f = 0 (1.10)

has an infinite order.
The main purpose of this paper is to extend Theorem A for equations of the form
(1.7) by using the concept of the iterated order and considering some coefficient
As (s = 0, 1, ..., n− 1). We also consider the non-homogeneous linear differential
equations. We shall obtain the following results.
Theorem 1.1 Let p > 1 be an integer and let A0 (z) , ..., An−1 (z) , An (z) be entire
functions with A0 (z) 6≡ 0, An (z) 6≡ 0, iλ (An) 6 1 and i (Aj) = p (j = 0, 1, ..., n)
such that there exists some integer s (s = 0, 1, ..., n− 1) satisfying

max {σp (Aj) (j 6= s)} < µp (As) 6 σp (As) = σ. (1.11)
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Suppose that there exist a sequence of complex numbers (zk)k∈N with lim
k→+∞

zk = ∞
and two real numbers α and β satisfying 0 6 β < α such that

|As (zk)| > expp

{
α |zk|σ−ε} (1.12)

and

|Aj (zk)| 6 expp

{
β |zk|σ−ε} (j 6= s) (1.13)

as k → +∞. Then every transcendental meromorphic solution f 6≡ 0 whose poles are
of uniformly bounded multiplicity of equation (1.7) has an infinite iterated p−order
and satisfies i (f) = p + 1, σp+1 (f) = σ.
Let A0 (z) , ..., An−1 (z) , An (z) with A0 (z) 6≡ 0, An (z) 6≡ 0 and F 6≡ 0 be entire
functions. Considering the non-homogeneous linear differential equation

An (z) f (n) + An−1 (z) f (n−1) + ... + A1 (z) f ′ + A0 (z) f = F, (1.14)

we obtain the following result.
Theorem 1.2 Let A0 (z) , ..., An−1 (z),An (z) with A0 (z) 6≡ 0 and An (z) 6≡ 0 be
entire functions satisfying hypotheses of Theorem 1.1 and let F 6≡ 0 be an entire
function of iterated order with i (F ) = q.
(i) If q < p+1 or q = p+1 and σp+1 (F ) < σp (As), then every transcendental mero-
morphic solution f whose poles are of uniformly bounded multiplicity of equation
(1.14) satisfies iλ (f) = iλ (f) = i (f) = p + 1 and λp+1 (f) = λp+1 (f) = σp+1 (f) =
σ, with at most one exceptional solution f0 with i (f0) < p + 1 or σp+1 (f0) < σ.
(ii) If q > p + 1 or q = p + 1 and σp (As) < σp+1 (F ), then every transcenden-
tal meromorphic solution f whose poles are of uniformly bounded multiplicity of
equation (1.14) satisfies i (f) = q and σq (f) = σq (F ).

2.Preliminary lemmas

Lemma 2.1 [8] Let f (z) be a transcendental meromorphic function. Let α > 1
and Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a set of distinct pairs of integers
satisfying ki > ji > 0. Then there exist a set E1 ⊂ (1,+∞) having finite logarithmic
measure and a constant B > 0 that depends only on α and Γ such that for all z
satisfying |z| = r /∈ [0, 1] ∪ E1 and all (k, j) ∈ Γ, we have∣∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣∣ 6 B

[
T (αr, f)

r
(logα r) log T (αr, f)

]k−j

. (2.1)

Lemma 2.2 [5, 6] Let p, q > 1 be integers and let f (z) be an entire function with
i (f) = p+1, σp+1 (f) = σ, iµ (f) = q +1 and µq+1 (f) = µ. Let νf (r) be the central
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index of f (z) . Then

lim sup
r→+∞

logp+1 νf (r)
log r

= σ (2.2)

and

lim inf
r→+∞

logq+1 νf (r)
log r

= µ. (2.3)

Lemma 2.3 [8] Let f (z) be a meromorphic function, let j be a positive integer, and
let α > 1 be a real constant. Then there exists a constant R > 0 such that for all
r > R, we have

T
(
r, f (j)

)
6 (j + 2) T (αr, f) . (2.4)

Lemma 2.4 [13] Let p > 1 be an integer and let f (z) = g(z)
d(z) be a meromorphic

function, where g (z) and d (z) are entire function satisfying µp (g) = µp (f) = µ 6
σp (g) = σp (f) = +∞, i (d) < p or i (d) = p and σp (d) = ρ < µ. Let νg (r) be the
central index of g. Then there exists a set E2 of finite logarithmic measure such
that the estimation

f (n)(z)
f(z)

=
(

νg (r)
z

)n

(1 + o (1)) (n ∈ N) (2.5)

holds for all |z| = r /∈ E2 and |g (z)| = M (r, g) .

Lemma 2.5 Let p > 1 be an integer and let f (z) = g(z)
d(z) be a meromorphic function,

where g (z) and d (z) are entire function satisfying µp (g) = µp (f) = µ 6 σp (g) =
σp (f) 6 +∞, i (d) < p or i (d) = p and σp (d) = ρ < µ. Then there exists a set
E3 of finite logarithmic measure such that |z| = r /∈ E3, |g (z)| = M (r, g) and for r
sufficiently large, we have∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ 6 r2s (s > 1 is an integer) . (2.6)

Proof. By Lemma 2.4, there exists a set E2 of finite logarithmic measure such that
the estimation

f (s)(z)
f(z)

=
(

νg (r)
z

)s

(1 + o (1)) (s > 1 is an integer) (2.7)

holds for all |z| = r /∈ E2 and |g (z)| = M (r, g), where νg (r) is the central index of
g. On the other hand, for any given ε (0 < ε < 1), there exists R > 1 such that for
all r > R, we have

νg (r) > expp−1

{
rµ−ε

}
. (2.8)
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If µ = +∞, then µ − ε can be replaced by a large enough real number M . Set
E3 = [1, R] ∪ E2, lm (E3) < +∞. Hence from (2.7) and (2.8), we obtain∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ = ∣∣∣∣ z

νg (r)

∣∣∣∣s 1
|1 + o (1)|

6
rs(

expp−1 {rµ−ε}
)s 6 r2s, (2.9)

where |z| = r /∈ E3, r → +∞ and |g (z)| = M (r, g) .
Lemma 2.6 [5, 6] Let p > 1 be an integer. Suppose that f (z) is a meromorphic
function such that i (f) = p, σp (f) = σ and iλ

(
1
f

)
6 1. Then for any given ε > 0,

there exists a set E4 ⊂ (1,+∞) that has finite linear measure and finite logarithmic
measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, r → +∞, we have

|f (z)| 6 expp

{
rσ+ε

}
. (2.10)

Lemma 2.7 [11] Let p > 1 be an integer and let f (z) be a meromorphic function
with i (f) = p. Then σp (f) = σp (f ′).
Lemma 2.8 [5, 6] Let p > 1 be an integer and let f (z) be a meromorphic solution
of the differential equation

f (n) + Bn−1 (z) f (n−1) + ... + B1 (z) f ′ + B0 (z) f = F, (2.11)

where B0 (z) , ..., Bn−1 (z) and F 6≡ 0 are meromorphic functions such that
(i) max {i (F ) , i (Bj) (j = 0, ..., n− 1)} < i (f) = p + 1 or
(ii) max {σp+1 (F ) , σp+1 (Bj) (j = 0, ..., n− 1)} < σp+1 (f).
Then iλ (f) = iλ (f) = i (f) = p + 1 and λp+1 (f) = λp+1 (f) = σp+1 (f).
To avoid some problems caused by the exceptional set, we recall the following lemma.
Lemma 2.9 [9] Let g : [0,+∞) → R and h : [0,+∞) → R be monotone non-
decreasing functions such that g (r) 6 h (r) for all r /∈ E5 ∪ [0, 1], where E5 ⊂
(1,+∞) is a set of finite logarithmic measure. Let α > 1 be a given constant. Then
there exists an r0 = r0 (α) > 0 such that g (r) 6 h (αr) for all r > r0.

3.Proof of Theorem 1.1

Set

max {σp (Aj) (j 6= s)} = λ < µp (As) 6 σp (As) = σ < +∞. (3.1)

Let f (6≡ 0) be a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of (1.7). Since the poles of f (z) can only occur at the zeros
of An (z), it follows that iλ

(
1
f

)
6 p and λp

(
1
f

)
6 λ < µp (As) . By Hadamard

factorization theorem, we can write f as f (z) = g (z) /d (z), where g (z) and d (z)
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are entire functions satisfying i (f) = i (g) = t > p + 1, σt (f) = σt (g) and that
i (d) 6 p, σp (d) = λp (1/f) 6 λ < µp (As) . For j = 0, ..., n− 1, since

T
(
r, f (j+1)

)
6 2T

(
r, f (j)

)
+ m

(
r,

f (j+1)

f (j)

)
, (3.2)

m

(
r,

f (j+1)

f (j)

)
= O

{
log rT

(
r, f (j)

)}
, (3.3)

we can obtain by using Lemma 2.3,

T
(
r, f (j+1)

)
6 2T

(
r, f (j)

)
+ O

{
log rT

(
r, f (j)

)}
6 2 (j + 2) T (2r, f) + O

{
log rT

(
r, f (j)

)}
. (3.4)

We have also

O
{

log rT
(
r, f (j)

)}
= o

{
T
(
r, f (j)

)}
(3.5)

which yields

O
{

log rT
(
r, f (j)

)}
6

1
2
T
(
r, f (j)

)
. (3.6)

We can rewrite (1.7) as

−As (z) = An (z)
f (n)

f (s)
+ An−1 (z)

f (n−1)

f (s)
+ ... + As+1 (z)

f (s+1)

f (s)

+As−1 (z)
f (s−1)

f (s)
+ ... + A1 (z)

f ′

f (s)
+ A0 (z)

f

f (s)
. (3.7)

By (3.4) , (3.6) , (3.7) and Lemma 2.3, we obtain

T (r, As) 6 cT (2r, f) +
∑
j 6=s

T (r, Aj) , (3.8)

where c (> 0) is a constant. By (3.1) and (3.8) , we conclude that µp (f) > µp (As) .

By the fact that σp (d) = λp (d) = λp

(
1
f

)
6 λ < µp (As) and the inequality

T (r, f) 6 T (r, g) + T (r, d) + O (1) , it follows that σp (d) 6 λ < µp (g) = µp (f)
and σp (g) = σp (f) 6 +∞. Hence by Lemma 2.5, there exists a set E3 ⊂ (1,+∞)
that has finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1]∪E3

and |g (z)| = M (r, g), we have
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∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ 6 r2s. (3.9)

From (3.7), it follows that

|As (z)| 6 |An (z)|

∣∣∣∣∣f (n)

f (s)

∣∣∣∣∣+ |An−1 (z)|

∣∣∣∣∣f (n−1)

f (s)

∣∣∣∣∣+ ... + |As+1 (z)|

∣∣∣∣∣f (s+1)

f (s)

∣∣∣∣∣
+ |As−1 (z)|

∣∣∣∣∣f (s−1)

f

∣∣∣∣∣
∣∣∣∣ f

f (s)

∣∣∣∣+ ... + |A1 (z)|
∣∣∣∣f ′f
∣∣∣∣ ∣∣∣∣ f

f (s)

∣∣∣∣+ |A0 (z)|
∣∣∣∣ f

f (s)

∣∣∣∣ . (3.10)

By Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ (1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ E1 ∪ [0, 1], we have∣∣∣∣∣f (j)(z)

f (s)(z)

∣∣∣∣∣ 6 Br [T (2r, f)]j−s+1 (j = s + 1, ..., n) (3.11)

and ∣∣∣∣∣f (j)(z)
f(z)

∣∣∣∣∣ 6 Br [T (2r, f)]j+1 (j = 1, ..., s− 1) . (3.12)

Hence from (1.12), (1.13), (3.10)− (3.12), we have

expp

{
α |zk|σ−ε} 6 Bnr2s+1

k [T (2rk, f)]n+1 expp

{
β |zk|σ−ε} (3.13)

as k → +∞, |zk| = rk /∈ [0, 1] ∪E1 ∪E3 and |g (zk)| = M (rk, g) . Hence from (3.13)
and Lemma 2.9, we obtain that i (f) > p + 1 and σp+1 (f) > σ − ε. Since ε > 0 is
arbitrary, we get σp+1 (f) > σ.

Now we prove that σp+1 (f) 6 σ. We can rewrite (1.7) as

−An (z)
f (n)

f
= An−1 (z)

f (n−1)

f
+ ... + As+1 (z)

f (s+1)

f

+As (z)
f (s)

f
+ As−1 (z)

f (s−1)

f
+ ... + A1 (z)

f ′

f
+ A0 (z) . (3.14)

By Lemma 2.4, there exist a set E2 ⊂ (1,+∞) of finite logarithmic measure such
that for all z satisfying |z| = r /∈ E2 and |g (z)| = M (r, g), we have
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f (k)(z)
f(z)

=
(

νg (r)
z

)k

(1 + o (1)) (k = 1, 2, ..., n) . (3.15)

From Remark 1.1, we have for a sufficiently large r

|Aj (z)| 6 expp

{
rσ+ε

}
(j = 0, 1, ..., n− 1) . (3.16)

By Lemma 2.6, there exists a set E4 ⊂ (1,+∞) that has finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, r → +∞, we have

1
|An (z)|

6 expp

{
rσ+ε

}
. (3.17)

Substituting (3.15) into (3.14), for all z satisfying |z| = r /∈ E2 and |g (z)| = M (r, g),
we have

−An (z)
(

νg (r)
z

)n

(1 + o (1)) = An−1 (z)
(

νg (r)
z

)n−1

(1 + o (1))

+... + As+1 (z)
(

νg (r)
z

)s+1

(1 + o (1)) + As (z)
(

νg (r)
z

)s

(1 + o (1))

+As−1 (z)
(

νg (r)
z

)s−1

(1 + o (1))+ ...+A1 (z)
(

νg (r)
z

)
(1 + o (1))+A0 (z) . (3.18)

Hence from (3.16) − (3.18), for all z satisfying |z| = r /∈ [0, 1] ∪ E2 ∪ E4, r → +∞
and |g (z)| = M (r, g), we have

(
1/ expp

{
rσ+ε

}) ∣∣∣∣νg (r)
z

∣∣∣∣n |1 + o (1)| 6 expp

{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣n−1

|1 + o (1)|

+... + expp

{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣ |1 + o (1)|+ expp

{
rσ+ε

}
6 n expp

{
rσ+ε

} ∣∣∣∣νg (r)
z

∣∣∣∣n−1

|1 + o (1)| . (3.19)

By (3.19) and Lemma 2.9, we get

lim sup
r→+∞

logp+1 νg(r)
log r

6 σ + ε. (3.20)

Since ε > 0 is arbitrary, by (3.20) and Lemma 2.2, we obtain σp+1 (g) 6 σ. Hence
σp+1 (f) 6 σ. This and the fact that σp+1 (f) > σ yield σp+1 (f) = σ.
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4.Proof of Theorem 1.2

Assume that f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.14) and f1, f2, ..., fn is a solution base of the
corresponding homogeneous equation (1.7) of (1.14). Then f can be expressed in
the form

f (z) = B1 (z) f1 (z) + B2 (z) f2 (z) + ... + Bn (z) fn (z) , (4.1)

where B1 (z) , ..., Bn (z) are suitable meromorphic functions determined by

B′
1 (z) f1 (z) + B′

2 (z) f2 (z) + ... + B′
n (z) fn (z) = 0

B′
1 (z) f ′1 (z) + B′

2 (z) f ′2 (z) + ... + B′
n (z) f ′n (z) = 0

...............................

B′
1 (z) f

(n−1)
1 (z) + B′

2 (z) f
(n−1)
2 (z) + ... + B′

n (z) f
(n−1)
n (z) = F (z) .

(4.2)

Since the Wronskian W (f1, f2, ..., fn) is a differential polynomial in f1, f2, ..., fn with
constant coefficients, it is easy by using Theorem 1.1 to deduce that

σp+1 (W ) 6 max {σp+1 (fj) : j = 1, ..., n} = σp (As) = σ. (4.3)

From (4.2), we get

B′
j = F.Gj (f1, f2, ..., fn) .W (f1, f2, ..., fn)−1 (j = 1, 2, ..., n) , (4.4)

where Gj (f1, f2, ..., fn) are differential polynomials in f1, f2, ..., fn with constant
coefficients. Thus

σp+1 (Gj) 6 max {σp+1 (fj) : j = 1, 2, ..., n}

= σp (As) = σ (j = 1, 2, ..., n) . (4.5)

(i) Suppose that q < p + 1 or q = p + 1 and σp+1 (F ) < σp (As) . First we show
that (1.14) can possess at most one exceptional meromorphic solution f0 satisfying
i (f0) < p + 1 or σp+1 (f0) < σ. In fact, if f∗ is another solution with i (f∗) < p + 1
or σp+1 (f∗) < σ of equation (1.14), then i (f0 − f∗) < p + 1 or σp+1 (f0 − f∗) < σ.
But f0− f∗ is a solution of the corresponding homogeneous equation (1.7) of (1.14).
This contradicts Theorem 1.1. We assume that f is a transcendental meromorphic
solution whose poles are of uniformly bounded multiplicity of equation (1.14) with
i (f) > p + 1. By Lemma 2.7, (4.3) , (4.4) and (4.5), for j = 1, 2, ..., n, we have
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σp+1 (Bj) = σp+1

(
B′

j

)
6 max {σp+1 (F ) , σp (As)} = σp (As) . (4.6)

Then from (4.1) and (4.6), we get

σp+1 (f) 6 max {σp+1 (fj) , σp+1 (Bj) : j = 1, 2, ..., n} = σp (As) = σ < +∞. (4.7)

Since i (f) > p + 1, it follows from (4.7) that i (f) = p + 1. Set

max {σp (Aj) (j 6= s) , σp (F )} = γ < µp (As) 6 σp (As) = σ < +∞. (4.8)

By the fact that the poles of f (z) can only occur at the zeros of An (z) , it follows
that iλ

(
1
f

)
6 p and λp

(
1
f

)
6 λ < µp (As) . By Hadamard factorization theorem,

we can write f as f (z) = g(z)
d(z) , where g (z) and d (z) are entire functions satisfying

i (f) = i (g) = t > p + 1, σt (f) = σt (g) and that i (d) 6 p, σp (d) = λp (1/f) 6 λ <
µp (As) . For j = 0, ..., n− 1, since

T
(
r, f (j+1)

)
6 2T

(
r, f (j)

)
+ m

(
r,

f (j+1)

f (j)

)
, (4.9)

m

(
r,

f (j+1)

f (j)

)
= O

{
log rT

(
r, f (j)

)}
, (4.10)

we can obtain by using Lemma 2.3,

T
(
r, f (j+1)

)
6 2T

(
r, f (j)

)
+ O

{
log rT

(
r, f (j)

)}
6 2 (j + 2) T (2r, f) + O

{
log rT

(
r, f (j)

)}
. (4.11)

We have also

O
{

log rT
(
r, f (j)

)}
= o

{
T
(
r, f (j)

)}
(4.12)

which yields

O
{

log rT
(
r, f (j)

)}
6

1
2
T
(
r, f (j)

)
. (4.13)

We can rewrite (1.14) as

−As (z) = An (z)
f (n)

f (s)
+ An−1 (z)

f (n−1)

f (s)
+ ... + As+1 (z)

f (s+1)

f (s)
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+As−1 (z)
f (s−1)

f (s)
+ ... + A1 (z)

f ′

f (s)
+ A0 (z)

f

f (s)
− F

f (s)
. (4.14)

By (4.11) , (4.13) and Lemma 2.3, we can obtain from (4.14) that

T (r, As) 6 T (r, F ) + cT (2r, f) +
∑
j 6=s

T (r, Aj) , (4.15)

where c (> 0) is a constant. By (4.8) and (4.15) , we conclude µp (f) > µp (As) . By

the fact that σp (d) = λp (d) = λp

(
1
f

)
6 γ < µp (As) and the inequality T (r, f) 6

T (r, g) + T (r, d) + O (1) , it follows that σ (d) < µp (f) = µp (g) and σp (g) =
σp (f) = +∞. Hence by Lemma 2.5, there exists a set E3 ⊂ (1,+∞) that has finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1]∪E3, r → +∞ and
|g (z)| = M (r, g), we have ∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ 6 r2s. (4.16)

By Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ (1,+∞) of finite
logarithmic measure such that for all z satisfying |z| = r /∈ E1 ∪ [0, 1], we have∣∣∣∣∣f (j)(z)

f (s)(z)

∣∣∣∣∣ 6 Br [T (2r, f)]j−s+1 (j = s + 1, ..., n) , (4.17)

∣∣∣∣∣f (j)(z)
f(z)

∣∣∣∣∣ 6 Br [T (2r, f)]j+1 (j = 1, ..., s− 1) . (4.18)

From (4.14), it follows that

|As (z)| 6 |An (z)|

∣∣∣∣∣f (n)

f (s)

∣∣∣∣∣+ |An−1 (z)|

∣∣∣∣∣f (n−1)

f (s)

∣∣∣∣∣+ ... + |As+1 (z)|

∣∣∣∣∣f (s+1)

f (s)

∣∣∣∣∣
+ |As−1 (z)|

∣∣∣∣∣f (s−1)

f

∣∣∣∣∣
∣∣∣∣ f

f (s)

∣∣∣∣+ ... + |A1 (z)|
∣∣∣∣f ′f
∣∣∣∣ ∣∣∣∣ f

f (s)

∣∣∣∣
+ |A0 (z)|

∣∣∣∣ f

f (s)

∣∣∣∣+ ∣∣∣∣Ff
∣∣∣∣ ∣∣∣∣ f

f (s)

∣∣∣∣ . (4.19)

On the other hand, for any given ε (0 < 2ε < σ − γ), we have for a sufficiently large
r

|F (z)| 6 expp−1

{
rγ+ε

}
and |d (z)| 6 expp−1

{
rγ+ε

}
. (4.20)
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Since M (r, g) > 1, it follows from (4.16) and (4.20) that

∣∣∣∣F (z)
f (z)

∣∣∣∣ ∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ = |F (z)| |d (z)|
|g (z)|

∣∣∣∣ f (z)
f (s) (z)

∣∣∣∣ 6 r2s
(
expp−1

{
rγ+ε

})2 (4.21)

as |z| = r → +∞ and |g (z)| = M (r, g). From (1.12) , (1.13), (4.16) − (4.19) and
(4.21), it follows that

expp

{
α |zk|σ−ε} 6 Bn |zk|2s+1 [T (2rk, f)]n+1 expp

{
β |zk|σ−ε}

+ |zk|2s (expp−1

{
|zk|γ+ε})2 (4.22)

as k → +∞, |zk| = rk /∈ [0, 1] ∪ E1 ∪ E3 and |g (zk)| = M (rk, g) . From (4.22)
and Lemma 2.9, we get σp+1 (f) > σ − ε. Since ε > 0 is arbitrary, it follows that
σp+1 (f) > σ. This and the fact that σp+1 (f) 6 σ yield σp+1 (f) = σ. Hence by
Lemma 2.8, we deduce that iλ (f) = iλ (f) = i (f) = p+1 and λp+1 (f) = λp+1 (f) =
σp+1 (f) = σ.
(ii) Suppose that q > p + 1 or q = p + 1 and σp (As) < σp+1 (F ) . If q = p + 1 and
σp (As) < σp+1 (F ) , then by Lemma 2.7, (4.3) , (4.4) and (4.5), for j = 1, 2, ..., n, we
have

σp+1 (Bj) = σp+1

(
B′

j

)
6 max {σp+1 (F ) , σp (As)} = σp+1 (F ) . (4.23)

Then from (4.1) and (4.23), we get

σp+1 (f) 6 max {σp+1 (fj) , σp+1 (Bj)} = σp+1 (F ) . (4.24)

If q > p + 1, we have

σq (Bj) = σq

(
B′

j

)
6 max {σq (F ) , σq (Gj)} = σq (F ) (j = 1, 2, ..., n) . (4.25)

Then from (4.1) and (4.25), we get

σq (f) 6 max {σq (fj) , σq (Bj)} = σq (F ) . (4.26)

On the other hand, if q > p + 1 or q = p + 1 and σp (As) < σp+1 (F ) , it follows
from (1.14) that a simple consideration of order implies σq (f) > σq (F ). Hence
σq (f) = σq (F ) .
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[2] B. Beläıdi and S. Hamouda, Growth of solutions of n-th order linear differ-
ential equation with entire coefficients, Kodai Math. J. 25 (2002), 240-245.
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