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INVERSION OF REGULAR AND SINGULAR PERTURBED
MATRICES
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Abstract. In this paper, for matrices A,B ∈ Rn×n such that A is singular,
we first assume that R(A,B;x) = (A + xB)−1 exist in a deleted neighborhood of
x = 0 and discuss in the behavior of the R(A,B;x). Finally by considering x = 1,
we compute the inverse of R also.
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1. Introduction

In this paper, we study the inversion of regularly and singularly perturbed matrix
A(x) = A + xB. In the singularly case, we are mainly interested in the case A is
singular but A(x) has an inverse in some punctured disc around x = 0. It is know
that R(A,B;x) can be expanded as a Laurent series at the origin. The main purpose
of this paper is provided efficient computational procedures for the coefficients of
this series. Let A,B ∈ Rn×n, we are interested here in the invertibility of the matrix
A + xB, for real number x > 0. Since det(A + xB) is not identically zero(the
regularity condition), if A is nonsingular then

R(A,B;x) = (A + xB)−1, (1)

exists in a deleted neighborhood of the origin. Then we shall be show the resolvent
is holomorphic with a pole at the origin of degree at most n. Thee effect of per-
turbations (for small values of x) can be either small or large. The mathematical
reasons for this difference underlie the classification of problems into either regular
or singular perturbation problems. More precisely, we have the following definition

Definition 1.1. Let A(x) = A + xB be n × n matrix. In all cases it will be
assumed that rank[A(x)] = n for x > 0 and sufficiently small. There are now two
cases:
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(i) Regular Perturbation: A−1 exists whenever (A + xB)−1 exists for x > 0 and
sufficiently small.
(ii) Singular Perturbation: rank[A] < n. That is when the matrix A does not have
an inverse butt he perturbed matrix A + xB dos for sufficiently small x but distinct
from zero.

We know that if A is nonsingular, then R(A,B;x) has Taylor expansion because
we may write:

R(A,B;x) = (A + xB)−1 = ((I + xBA−1)A)−1 = A−1(I + xBA−1)−1.

Now if we define K = xBA−1 then we have:

R(A,B;x) = (A + xB)−1 = A−1(I + xBA−1)−1

= A−1
∞∑
i=0

(I + K)−1 = A−1
∞∑
i=0

(−K)i

= A−1(I − xBA−1 + x2(BA−1)2 − x3(BA−1)3 + · · ·),

in a neighborhood of x = 0 (‖K‖ < 1 or |x| < 1
‖BA−1‖). The interesting case then

is when A is singular (detA = 0), so that the expansion of R(A,B;x) has pole, and
in this case when x is near 0, (A + xB)−1 is ”nearly singular” when x is near zero.
But if A is nonsingular, we may also write:

(A + xB)−1 = x−1A−1(x−1I + BA−1)−1 ,

so in this case the expansion of (A + xB)−1 in a deleted neighborhood of x = 0
is related to the expansion of the resolvent operator (ξI − K)−1 of K = −BA−1

about ξ = ∞. The inversion of nearly singular perturbed matrices was probably first
studied in the paper by Keldysh [10]. In particular, he showed that the principal part
of the Laurent series expansion for the inverse of R(A,B;x) can be given in terms of
generalized Jordan chains. The generalized Jordan chains were initially developed
in the context of matrix and operator polynomials. Some authors [6,7,8] studied the
linear perturbation A(x) = A + xB and showed that one can express R(A,B;x) as
a Laurent series as long as A(x) is invertible in some punctured neighborhood of
the origin. Langenhop in [5] showed that the coefficients of the regular part of the
Laurent series for the inverse of a linear perturbation from a geometric sequence.
Shokri [1] and Howlett [9] provided a computational procedure for the Laurent series
coefficients based on a sequence of row and column matrices on the coefficients of the
original power series. Howlett used the rank test of Sain and Massey to determine
s, the order of the pole. He also showed that the coefficients of the Laurent series
satisfy a finite linear recurrence relation in the case of a polynomial perturbation.
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2. Inversion Of Singularly Perturbed Matrix

Assume that A,B ∈ Rn×n, and rank(A) < n. Then for all sufficiently small x we
define A(x) = A + xB. In this section we will discuss in invertibility of A(x). We
have,

R(A,B;x) =
adj(A + xB)
det(A + xB)

.

But we know det(A+xB) is a polynomial of x of at most of degree n. (To derivation
this claim we can use induction rule). Then it has at most n zero also, and we know
that the adj(A + xB) is a n × n matrix of polynomials of degree at most n − 1
(because they are determinate of matrixes be (n− 1)× (n− 1)).
Then R(A,B;x) is a n× n matrix by components of rational function Rij(x), such
that, Rij(x) = pij(x)

q(x) where pij(x) = [adj(A + xB)]ij , q(x) = det(A + xB). Then we
have

R(A,B;x) =

 R11(x) . . . R1n(x)
...

...
Rn1(x) . . . Rnn(x)

 , (2)

Lemma 2.1. suppose c(x) = a(x)
b(x) is a rational function with the degrees of the

polynomial a(x) and b(x) being p and q , respectively . Then the function c(x) can be
expanded as a laurent series in some punctured neighborhood of zero with the order
of pole s that is at most q. Moreover, if c(−s) = . . . = c(p) = 0 then c(x) = 0

Proof. see [1].
We will know that the division of two analytic function with poles with finite

orders is also an analytic function with a pole of finite order. Then c(x) can be
expanded as a Laurent series near x = 0 that converges in a punctured disc of the
origin with nonzero radius. Then for 1 ≤ i and j ≤ n we can write

Rij(x) =
∞∑

t=−k

xt(pij)t, (3)

where k ≤ n and the quantities pij are independent of x. Now if we replace Rij(x)
by (3) in (2) then we can write

R(A,B;x) =


∑∞

t=−k xt(p11)t . . .
∑∞

t=−k xt(p1n)t
...

...∑∞
t=−k xt(pn1)t . . .

∑∞
t=−k xt(pnn)t

 . (4)
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So we have

R(A,B;x) =
∞∑

t=−k

xt

 p11 . . . p1n
...

...
pn1 . . . pnn


t

. (5)

Then

R(A,B;x) =
∞∑

t=−k

xtQt, (6)

where

Qt =

 p11 . . . p1n
...

...
pn1 . . . pnn


t

.

And k ≤ n and the matrices Qt are independent of x. If A(x) becomes singular
at x = 0, then above series will have pole of order k at x = 0 and will contain a
nontrivial singular part, defined by

AS(x) =
1
xk

Q(−k) + · · ·+ 1
x

Q(−1). (7)

Similarly, a regular part of (2.5) is defined by

AR(x) = Q(0) + xQ(1) + · · · (8)

In recent years Shokri [1], Langenhop [5], Lamond [2], Huang [4], in some papers
have investigated the resolvent (1), giving necessary and sufficient conditions for the
Laurent expansion (6) to exist. Moreover, he has shown that the matrices Qt in the
Laurent expansion are uniquely determined by Q−1 and Q0 as is summarized in the
following theorem.
Theorem 2.2. If R(A,B;x) exists in a deleted neighborhood of the origin, then it
has a Laurent expansion of the form (6) where

Qi = (−Q0B)iQ0, 0 ≤ i, (9)

Q−i = (−Q−1A)i−1Q−1, 1 ≤ i ≤ k, (10)

and
0 = (−Q−1A)kQ−1 (11)

Moreover, if we separate R(A,B;x) into its regular and singular parts by writing

R(A,B;x) = R(A,B;x)R + R(A,B;x)S ,

102



A. A. Shokri and A. Shokri - Inversion Of Regular And Singular Perturbed...

where

R(A,B;x)R =
∞∑
i=0

Qix
i and R(A,B;x)S =

−k∑
i=−1

Qix
i , (12)

and set P = BQ−1 and P̃ = Q−1B then P and P̃ are idempotent matrices satisfying:

R(A,B;x)R = R(A,B;x)(I − P ) and R(A,B;x)S = R(A,B;x)P (13)

and

R(A,B;x)R = (I − P̃ )R(A,B;x) and R(A,B;x)S = P̃R(A,B;x) (14)

Proof. We begin this proof whit the identity

(A + xB)R(A,B;x) = I. (15)

Then the regular part of (15) is

(A + xB)R(A,B;x)R + BQ−1 = I,

which on premultiplication by (A + xB)−1 yields the left part of (13)

R(A,B;x)R = R(A,B;x)(I −BQ−1) = R(A,B;x)(I − P )

It then follow that

R(A,B;x)S = R(A,B;x)−R(A,B;x)R = R(A,B;x)P (16)

which is the right part of (13). The coefficient of x−1 in (16) is

Q−1 = Q−1P (17)

Premultiplication of (17) by B gives P 2 = P , which establishes the idempotency
of P . The corresponding result for P̃ are obtained in a similar manner from the
identity R(A,B;x)(A+xB) = I For later use note that the coefficient of x−1 in (15)
is

AQ−1 + BQ−2 = 0 (18)

The remaining derivations employ the resolvent equation

R(A,B;x2)−R(A,B;x1) = (x1 − x2)R(A,B;x2)BR(A,B;x1) (19)
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which may by derived by observing that both sides of (19) are expressions for

R(A,B;x2)[(A + x1B)− (A + x2B)]R(A,B;x1)

By projection of (19) we obtain separate resolvent equations for the regular and
singular parts:

R(A,B;x2)R −R(A,B;x1)R = (x1 − x2)R(A,B;x2)RBR(A,B;x1)R (20)

and
R(A,B;x2)s −R(A,B;x1)s = (x1 − x2)R(A,B;x2)sBR(A,B;x1)s (21)

To derive (2.8), set x2 = 0 in (19) to get

(I + x1Q0B)R(A,B;x1)R = Q0.

Then

R(A,B;x)R = (I + xQ0B)−1Q0 =
∞∑
i=0

(−xQ0B)iQ0

from which (9) follows immediately. To derive (10) and (11) note first that the
coefficient of x−1

1 in (21) is

−Q−1 = R(A,B;x2)sBQ−2 − x2R(A,B;x2)sBQ−1 (22)

On the right side of (22) replace BQ−2 by the value obtained from (18) and replace
R(A,B;x2)sBQ−1 by

R(A,B;x2)sBQ−1 = R(A,B;x2)sP = R(A,B;x2)s

to get R(A,B;x2)s(x2I + AQ−1) = Q−1 Hence for all sufficiently large x

R(A,B;x)s = x−1Q−1(I + AQ−1)−1 =
∞∑
i=0

x−i−1Q−1(−AQ−1)i (23)

Equating coefficients of powers of x in the sides of (23) yields (11) and (12).

3. The Inversion Of Regularly Perturbed Matrix

For a given n×n non-singular matrix A, its inverse matrix A−1 is first evaluated.
If the original matrix A is perturbed by an n× n diverting matrix B, the inverse of
this perturbed matrix (A + B) may be found from [1-3]

(A + B)−1 = A−1 −A−1(A−1 + B−1)−1A−1. (24)
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Obviously, (24) is not a feasible formula for computing (A + B)−1, even though
A−1 is already known beforehand. Besides, it requires B and (A−1 + B−1) to be
non-singular. For convenience, let

A−1 = D; (25)

then

(A + B)−1 = D −D(I + BD)−1BD

= D −DB(I + DB)−1D. (26)

The non-singularity requirement for B in (24) is thus removed.
Let the matrices B and D be partitioned as

[B] =
[

B 0
0 0

]
, [D] =

[
D D2

D1 D3

]
(27)

and

D =
[

D
D1

]
, D =

[
D D2

]
(28)

where the element positions of D are the transport element positions of B. That is,
the partitioned matrices D, D, D and D are of order of m1×m2, m2×m1, n×m2,
and m1 × n, respectively. Then (26) may be rewritten as

(A + B)−1 = D + H (29)

where

H = −D(I + B D)−1B D

= D B(I + D B)−1D. (30)

It is noted that (I + B D)−1 and (I + D B)−1 are respectively the inverses of
square matrices of order m1 and m2, where m1, m2 ≤ n. In particular, if m1 = 1 or
m2 = 1, one of these inversion factors becomes a scalar quantity (a single element
matrix), that can be easily evaluated directly without going through the usual ma-
trix inversion procedure. It is noted also that B does not necessary have to be a solid
matrix located at the upper left corner of [B]. If non-zero elements are scattering
within [B], then B is formed through the selected rows and columns that must cover
these elements entirely. It follows that D as well as D and D are determined from
[D] accordingly.
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4. Example

For a given matrix A, and its inverse A−1 which has been computed:

[A] =


1.5 −0.5 −1.5 2.5 −3.0
−3.0 1.5 2.0 −3.0 4.0
−1.0 0.5 1.0 −1.0 1.0
2.0 −0.5 −1.0 2.0 −2.0
−1.0 0.5 0.0 −0.5 0.5



[D] = [A]−1 =


4.0 4.0 −3.0 −1.0 −6.0
4.0 4.0 −2.0 0.0 −4.0
−2.0 −2.0 3.0 1.0 2.0
−6.0 −5.0 4.0 3.0 8.0
−2.0 −1.0 0.0 1.0 2.0


we want to find the inverse matrix [A + B]−1, where A is perturbed by various
matrices B.

(1) For

[B] =


0. 0. 0. 0. 0.
0. −1.5 0. −1.0 +2.0
0. 0. 0. 0. 0.
0. +1.5 0. 0. +1.0
0. 0. 0. 0. 0.


Then we have

B =
[
−1.5 −1.0 +2.0
+1.5 0.0 +1.0

]
, D =

 4.0 0.0
−5.0 3.0
−1.0 1.0



D =


4.0 −1.0
4.0 0.0
−2.0 1.0
−5.0 3.0
−1.0 1.0

 , D =

 4.0 4.0 −2.0 0.0 −4.0
−6.0 −5.0 4.0 3.0 8.0
−2.0 −1.0 0.0 1.0 2.0


and

[I + B D]−1 =
[
−2.0 −1.0
5.0 2.0

]−1

=
[

2.0 1.0
−5.0 −2.0

]

[I + D B]−1 =

 −5.0 −4.0 8.0
12.0 6.0 −7.0
3.0 1.0 0.0

−1

=

 7.0 8.0 −20.0
−21.0 −24.0 61.0
−6.0 −7.0 18.0
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Then

H =


28.0 9.0 31.0 7.0 −2.0
16.0 4.0 20.0 4.0 0.0

−20.0 −7.0 −21.0 −5.0 2.0
−56.0 −20.0 −58.0 −14.0 6.0
−16.0 −6.0 −16.0 −4.0 2.0


Thus

[A + B]−1 = [D + H] =


32.0 13.0 28.0 6.0 −8.0
20.0 8.0 18.0 4.0 −4.0

−22.0 −9.0 −18.0 −4.0 4.0
−62.0 −25.0 −54.0 −11.0 14.0
−18.0 −7.0 −16.0 −3.0 4.0
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