
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 26/2011
pp. 331-365

AN ELEMENTARY PROOF OF THE FERMAT COMPOSITE
CONJECTURE AND THE CONNECTION WITH THE GOLDBACH

CONJECTURE

Ikorong Anouk Gilbert Nemron

Abstract. The Goldbach conjecture (see [3] or [4] or [5] or [6] or [7]) states
that every even integer e ≥ 4 is of the for e = p + r, where (p, r) is a couple
of prime(s). In this paper, we use elementary arithmetic congruences, elementary
arithmetic calculus, elementary complex analysis; and we give an original proof of a
simple Theorem which immediately implies that: there are infinitely many Fermat
composite. Moreover, our simple Theorem, immediately implies that the Fermat
composite conjecture (that we solved) was only an elementary special case of the
famous Goldbach conjecture [[ we recall (see [1] or [2] or [3]) that a Fermat composite
is a non prime number of the form Fn = 22n

+ 1, where n is an integer ≥ 1. It is
known (see [1] or [2] or [3]) that F5 and F6 are composite, and it is conjectured
that there are infinitely many Fermat composite numbers]].
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1. Prologue

In Section.1 , we introduce some non-standard denotations and elementary properties.
In Section.2, using only simple definitions, elementary arithmetic congruences,
elementary arithmetic calculus, elementary complex analysis, reasoning by reduction
to absurd and two elementary properties of a simple Proposition of Section.1, we
prove a Theorem which implies that there are infinitely many Fermat composite
numbers; moreover, our Theorem clearly implies that the Fermat composite
conjecture that we solved, was only an elementary consequence of the Goldbach
conjecture. That being so, this manuscript is original, and therefore, is not related
to all strong investigations that have been done on the Fermat composite numbers
conjecture and the Goldbach conjecture in the past.
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2. Introduction, non-standard denotations, and simple properties

The prime numbers are well-known, and we say that e is goldbach, if e is an even
integer ≥ 4 and is of the form e = p + q, where (p, q) is a couple of prime(s). The
Goldbach conjecture (see Abstract and definitions) states that every even integer
e ≥ 4 is goldbach. Now, for every integer n ≥ 2, we define G(n), g′′n, X (FCO)(n),
FCO(n), on, and on,1 as follows: G(n) = {g′′; 1 < g′′ ≤ 2n, and g′′ is goldbach}; g′′n =
max

g′′∈G(n)
g′′ ; X (FCO)(n) = {F5}

⋃
{x; 1 < x < 2n, and x is a Fermat composite},

FCO(n) = {o; o ∈ X (FCO)(n)} [observing (by using Abstract and definitions) that
F5 = 225

+ 1 and F5 is a Fermat composite, then it becomes immediate to deduce
that for every integer n ≥ 2, F5 ∈ FCO(n)], on = max

o∈FCO(n)
o, and on,1 = 11+185oon

n .

Using the previous definitions and denotations, let us propose.
Proposition 1.1 Let n be an integer ≥ 2; consider X (FCO)(n) , FCO(n), on and
on,1. We have the following three properties.
(1.1.0.) F5 − 1 < on < on,1; on,1 = 11 + 185oon

n ; on,1 ≡ 11 mod[185];
on,1 > 10 + 185FF5

5 ; and on,1 ≡ 11 mod[37].
(1.1.1.) If on < n, then: n > 200 and on = on−1 and on,1 = on−1,1.
(1.1.2.) If there exists an integer y ≥ 0 such that on < n− y, then: n > y + 200 and
on = on−y−1 and on,1 = on−y−1,1 [it is clear that property (1.1.2) is a considerable
generalization of property (1.1.1)].
Proof. Property (1.1.0) is immediate [the first four assertions of property (1.1.0)
are immediate (it suffices to use the definition of on and on,1); the last assertion of
property (1.1.0) is also immediate (indeed, since on,1 ≡ 11 mod[185], observing that
185 ≡ 0 mod[37], then, using the previous two congruences, it becomes trivial to
deduce that on,1 ≡ 11 mod[37])].
(1.1.1.) If on < n, clearly n > 200 [use the definition of on] and so on < n < 2n− 2
[since n > 200 (by the previous) and on < n (by the hypothesis) ]; consequently

on < 2n− 2 (1 .1 .1 .0 ).

Inequality (1.1.1.0) immediately implies that X (FCO)(n) = X (FCO)(n − 1);
consequently FCO(n) = FCO(n− 1) and therefore

on = on−1 (1 .1 .1 .1 ).

Equality (1.1.1.1) immediately implies that on,1 = on−1,1. Property (1.1.1)
follows.
(1.1.2.) If there exists an integer y ≥ 0 such that on < n− y, clearly

n > y + 200 (1 .1 .2 .0 ),
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by using the definition of on. Now using inequality (1.1.2.0) and the fact that
on < n − y, then it becomes immediate to deduce that on < n − y < 2n − 2y − 2
[since n > y + 200 (by (1.1.2.0)) and since y is an integer ≥ 0 such that on < n− y
(by the hypothesis)]; consequently

on < 2n− 2y − 2 (1 .1 .2 .1 ).

Inequality (1.1.2.1) immediately implies that X (FCO)(n) = X (FCO)(n− y − 1);
consequently FCO(n) = FCO(n− y − 1) and therefore

on = on−y−1 (1 .1 .2 .2 ).

Equality (1.1.2.2) immediately implies that on,1 = on−y−1,1. Property (1.1.2)
follows and Proposition 1.1 immediately follows. �

Using the definition of goldbach and the definition of g′′n+1 (via the definition of
g′′n) and the definition of on,1 , then we have the following proposition.

Proposition 1.2. We have the following five simple properties.
(1.2.0) For every integer n ≥ 1, 2n + 2 is goldbach if and only if g′′n+1 = 2n + 2.
(1.2.1) The Goldbach conjecture holds if and only if for every integer n ≥ 1, we
have g′′n+1 = 2n + 2.
(1.2.2) If limn→+∞ 30on,1 = +∞, then there are infinitely many Fermat composite
numbers.
(1.2.3) If for every integer n of the form n = 37k (where k is an integer ≥ 3), we
have 30on,1 > n, then are infinitely many Fermat composite numbers.
(1.2.4) If for every integer n of the form n = 37k (where k is an integer ≥ 3), we
have 30on,1 ≥ g′′n+1, then the Fermat composite conjecture is a special case of the
Goldbach conjecture.
Proof. Property (1.2.0) is immediate (it suffices to use the definition of g′′n+1, via the
definiton of g′′n); property (1.2.1) is obvious (it suffices to use the definition of g′′n+1 (
via the definiton of g′′n ) and the meaning of the Goldbach conjecture), and property
(1.2.2) is immediate (indeed, it suffices to use the definition of on,1). Property (1.2.3)
is also immediate (indeed, if for every integer n of the form n = 37k (where k is an
integer ≥ 3), we have 30on,1 > n, clearly limn→+∞ 30on,1 = +∞, and therefore there
are infinitely many Fermat composite numbers (by using the previous equality and
property (1.2.2)); and Property (1.2.4) is easy (indeed, suppose that the Goldbach
conjecture holds, then (by using property (1.2.1) ) we have g′′n+1 = 2n+2 (for every
integer n ≥ 1); so for every integer n of the form n = 37k (where k is an integer
≥ 3), we have 30on,1 ≥ g′′n+1 > 2n > n, and clearly
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30on,1 > n, for every integer n of the formn = 37k, where k is an integer ≥ 3
(1 .2 .4 .0 ).

Consequently, there are infinitely many Fermat composite numbers (by using
(1.2.4.0) and property (1.2.3)). Proposition 1.2 follows.�

Properties (1.2.4) and (1.2.3) of Proposition 1.2 clearly say that: if for every
integer n of the form n = 37k (where k is an integer ≥ 3), we have 30on,1 ≥ g′′n+1

and 30on,1 > n, then the Fermat composite conjecture is an obvious special case of
the Goldbach conjecture and there are infinitely many Fermat composite numbers.
This is what we are going to do in Section 2.

3. The Fermat composite conjecture is an obvious special case of the
Goldbach conjecture, and there are infinitely many Fermat

composite numbers

Here, using only simple definitions, elementary arithmetic congruences, elementary
arithmetic calculus, elementary complex analysis, reasoning by reduction to absurd
and properties 1.2.3 and 1.2.4 of Proposition 1.2, we prove a Theorem which implies
that there are infinitely many Fermat composite numbers; and the Fermat composite
conjecture that we solved, was only an elementary consequence of the Goldbach
conjecture. In this Section, the definition of on and on,1 [see Section 1] are crucial.
Definitions 2.0 (Fundamental.1). We recall that θ is a complex number, if
θ = x + iy, where x and y are real, and where i is the complex entity satisfying
i2 = −1. Now let n be an integer ≥ 2 and let on,1; then φ(on,1) is defined by the
following simple equation:

φ(on,1) = in2( o3
n,1 − on,1 + 1 ) + 48877n.

That being so, let n′; we say that n′ is of type 37, if n′ = 37k, where k is an
integer ≥ 3. It is immediate that the previous definitions get sense; and it is also
immediate that for every integer n ≥ 2, φ(on,1) exists and is well defined. We will see
that the using of φ(on,1) will crucify and will make surrender the Fermat composite
conjecture.

Recall 2.1. We recall that r is a relative integer if r is an integer ≥ 0 or if r is an
integer ≤ 0
Example 1. −11, −13, −108, 0, 7 and 24 are all relative integers. 51

8 is not a
relative integer.
Now let (u, v, W ), where u and v are real, and W is an integer > 0; we recall that
u ≡ v mod(W ) if and only if there exists a relative integer k such that u−v = kW
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Example 2. Let n be of type 37 and let on,1. Then on,1 + 26 ≡ 0 mod(37).
Moreover, if on,1 < n + 11, then on,1 + 26 ≤ n.
Proof. Indeed consider the quantity on,1 + 26; observing (by using property
(1.1.0) of Proposition 1.1) that on,1 ≡ 11 mod(37), then the previous congruence
immediately implies that

on,1 + 26 ≡ 11 + 26 mod(37) (2 .1 .0 ).

Clearly 11 + 26 = 37 and congruence (2.1.0) clearly says that

on,1 + 26 ≡ 37 mod(37) (2 .1 .1 ).

Congruence (2.1.1) immediately implies that

on,1 + 26 ≡ 0 mod(37) (2 .1 .2 ).

Now, to prove Example.2, it suffices to prove that if on,1 < n+11, then on,1+26 ≤ n.
For that, let n + 11; recalling that n is of type 37, clearly (by using the definition
of type 37), n ≡ 0 mod(37) and using the pevious congruence, we immediately
deduce that

n + 11 ≡ 0 + 11 mod(37) (2 .1 .3 ).

Congruence (2.1.3) clearly says that

n + 11 ≡ 11 mod(37) (2 .1 .4 ).

Now look at on,1 and observe ( by using property (1.1.0) of Proposition 1.1 ) that

on,1 ≡ 11 mod(37) (2 .1 .5 ).

That being so, if on,1 < n + 11, then, using congruences (2.1.5) and (2.1.4), it
becomes trivial to deduce that the previous inequality immedialely implies that

on,1 ≤ n + 11 − 37 (2 .1 .6 ),

since n + 11 ≡ 11 mod(37) and on,1 ≡ 11 mod(37) and on,1 < n + 11. Inequality
(2.1.6) clearly says that on,1 ≤ n − 26 and consequently on,1 + 26 ≤ n. Example.2
follows]. That being so, let θ = x + iy be a complex number (see definitions 2.0);
we recall that x is called the real part of θ and y is called the imaginary part of θ.
The real part of a complex number θ is denoted by R[θ] and the imaginary part of
a complex number θ is denoted by I[θ].
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Example 3. Let n be an integer ≥ 2 and let on,1. Now put

Z(n) = 1369i(o3
n,1 − on,1 + 1)− 1808449.

Then R[Z(n)] + I[Z(n)] ≡ 0 mod(185).
Proof. Indeed, let Z(n) = 1369i(o3

n,1 − on,1 + 1)− 1808449 and look at R[Z(n)] and
I[Z(n)]; clearly

R[Z(n)] = −1808449 and I[Z(n)] = 1369(o3
n,1 − on,1 + 1) (2 .1 .7 ).

Now consider the quantity R[Z(n)] + I[Z(n)]; then, using (2.1.7), it becomes
immediate to deduce that

R[Z(n)] + I[Z(n)] = −1808449 + 1369(o3
n,1 − on,1 + 1) (2 .1 .8 ).

That being so, noticing [by using property (1.1.0) of Proposition 1.1] that
on,1 ≡ 11 mod(185), then the previous congruence immediately implies that

−1808449+1369(o3
n,1−on,1+1) ≡ −1808449+ 1369(11×11×11− 11 +1) mod(185)

(2 .1 .9 ).
Clearly −1808449 + 1369(11 × 11 × 11 − 11 + 1) = −1808449 +

1369(1331 − 11 + 1) = −1808449 + 1369(1321) = −1808449 + 1808449 = 0; so
−1808449+ 1369(11×11×11 − 11 +1) = 0 and congruence (2.1.9) clearly says that

−1808449 + 1369(o3
n,1 − on,1 + 1) ≡ 0 mod(185) (2 .1 .10 ).

Now using congruence (2.1.10) and equality (2.1.8), then it becomes trivial to
deduce that R[Z(n)] + I[Z(n)] ≡ 0 mod(185). Example.3 follows. �]

Now we are quasily ready to state a simple Theorem which implies that there are
infinitely many Fermat composite numbers and the Fermat composite conjecture is
an obvious special case of the Goldbach conjecture. But before, let us introduce.

Definition 2.2. (Fundamental.2). We recall (see definitions 2.0) that n is of type
37, if n is an integer of the form n = 37k, where k is integer ≥ 3. That being so, we
say that q(n) is n-conform, if q(n) is of the form q(n) = q0(n) + nq1(n) + in2q2(n),
where n is of type 37 and where for every j ∈ {0, 1, 2}, qj(n) is a complex number
satisfying qj(n) = qj(n−37). It is immediate that the previous definition gets sense.

Now using definition 2.2, let us remark.

Remark 2.3. We have the following two assertions (2.3.0) and (2.3.1).
(2.3.0). Let n be of type 37. Then 0 is n-conform.
(2.3.1). Let n be of type 37 and let on,1. Now look at equation φ(on,1) [see
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definitions 2.0 for the equation of φ(on,1)]. If on,1 = on−37,1, then φ(on,1) is n-
conform.
Proof. (2.3.0). Let n be of type 37 and look at 0; clearly 0 = q0(n)+nq1(n)+in2q2(n),
where for every j ∈ {0, 1, 2}, we have qj(n) = 0 ( clearly qj(n) = qj(n − 37) = 0,
for every j ∈ {0, 1, 2} ). Now using the previous , then it becomes trivial to deduce
that 0 is of the form 0 = q0(n) + nq1(n) + in2q2(n), where n is of type 37 and where
for every j ∈ {0, 1, 2}, qj(n) is a complex number satisfying qj(n) = qj(n− 37); so 0
is n-conform. Assertion (2.3.0) follows.
(2.3.1). Indeed, consider φ(on,1) and observe (by using definitions 2.0) that

φ(on,1) = in2(o3
n,1 − on,1 + 1) + 48877n (2 .3 .1 .0 ).

Now look at equation (2.3.1.0) and put

φ2(n) = o3
n,1 − on,1 + 1; φ1(n) = 48877; and φ0(n) = 0 (2 .3 .1 .1 );

then, using (2.3.1.1), it becomes trivial to deduce that equation (2.3.1.0) is of the
form

φ(on,1) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .3 .1 .2 ).

Using the three equalities of (2.3.1.1), we immediately deduce that

φ2(n− 37) = o3
n−37,1 − on−37,1 + 1; φ1(n− 37) = 48877; and φ0(n− 37) = 0

(2 .3 .1 .3 ).
Now noticing (via the hypotheses) that on,1 = on−37,1, then it becomes trivial to

deduce that (2.3.1.3) is of the form

φ2(n− 37) = o3
n,1 − on,1 + 1; φ1(n− 37) = 48877; and φ0(n− 37) = 0 (2 .3 .1 .4 )

Using (2.3.1.1) and (2.3.1.4), then we immediately deduce that

φ2(n) = φ2(n−37) = o3
n,1−on,1+1; φ1(n) = φ1(n−37) = 48877; and φ0(n) = φ0(n−37) = 0

(2 .3 .1 .5 ).
That being so look at equation (2.3.1.2), then, using (2.3.1.5), it becomes trivial

to deduce that equation (2.3.1.2) is of the form

φ(on,1) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .3 .1 .6 ),

where for j = 0, 1, 2, φj(n) is a complexnumber satisfying φj(n) = φj(n− 37)
(2 .3 .1 .7 ).

Recalling (by the hypotheses) that n is of type 37, then it becomes trivial that
(2.3.1.6) and (2.3.1.7) clearly say that
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φ(on,1) is n-conform. Assertion 2.3.1 follows and Remark 2.3 immediately follows.
�

The following Proposition characterizes those which are n-conform.

Proposition 2.4 (Fundamental.3: The unicity). Let n be of type 37 and let q(n)
be n-conform. We have the following two properties.
(2.4.0). q(n) = q0(n) + nq1(n) + in2q2(n) [ where for every j ∈ {0, 1, 2}, qj(n) is a
complex number satisfying qj(n) = qj(n− 37) ].
(2.4.1). If q(n) = x0(n)+nx1(n)+ in2x2(n) [ where for every j ∈ {0, 1, 2}, xj(n) is
a complex number satisfying xj(n) = xj(n − 37) ], then for every j ∈ {0, 1, 2}, we
have xj(n) = qj(n) [where q0(n), q1(n) and q2(n) are known, via property (2.4.0)].
Proof. (2.4.0). Immediate and follows by using definition 2.2.
(2.4.1). Indeed, look at property (2.4.0), and observe that

q(n) = q0(n) + nq1(n) + in2q2(n) (2 .4 .1 .0 ),

where for every j ∈ {0, 1, 2}, qj(n) is a complex number satisfying qj(n) =
qj(n− 37). Now, if q(n) is also of the form

q(n) = x0(n) + nx1(n) + in2x2(n) (2 .4 .1 .1 ),

where for every j ∈ {0, 1, 2}, xj(n) is a complex number satisfying xj(n) =
xj(n − 37), then, using equations (2.4.1.0) and (2.4.1.1), it becomes immediate to
deduce that 0 = q0(n)−x0(n)+n( q1(n)−x1(n) )+in2( q2(n)−x2(n) ); consequently

x0(n)− q0(n) = n( q1(n)− x1(n) ) + in2( q2(n)− x2(n) ) (2 .4 .1 .2 ).

That being so, it becomes clear that:
to show property (2.4.1) it suffices to show that for every j ∈ {0, 1, 2}, we have

xj(n) = qj(n) (0.).

For that, observing [by using property (2.4.0)] that q0(n) = q0(n−37), and noticing
[by using the hypotheses on property (2.4.1)] that x0(n) = x0(n − 37), then using
the previous two equalities, it becomes trivial to deduce that

x0(n)− q0(n) = x0(n− 37)− q0(n− 37) (2 .4 .1 .3 ).

Now consider n − 37 and look at x0(n − 37) − q0(n − 37); then, using equation
(2.4.1.2), it becomes trivial to deduce that

x0(n−37)−q0(n−37) = (n−37)(q1(n−37)−x1(n−37))+i(n−37)2(q2(n−37)−x2(n−37))
(1.).
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Using equality (2.4.1.3) and using equation (1.), then it becomes trivial to deduce
that

x0(n)− q0(n) = x0(n− 37)− q0(n− 37) =

= (n−37)(q1(n−37)−x1(n−37))+ i(n−37)2(q2(n−37)−x2(n−37)) (2 .4 .1 .4 ).

Now observing [by using again property (2.4.0)] that for every j ∈ {1, 2}, we have
qj(n) = qj(n− 37) , and noticing [by using the hypotheses on property (2.4.1)] that
for every j ∈ {1, 2}, we have xj(n) = xj(n−37), then, using the previous, it becomes
immediate to see that we can write that
for every j ∈ {1, 2}, we have

qj(n) = qj(n− 37)andxj(n) = xj(n− 37) (2 .4 .1 .5 ).

Look at (2.4.1.4); then using (2.4.1.5), it becomes trivial to deduce that (2.4.1.4)
clearly implies that
x0(n)−q0(n) = x0(n−37)−q0(n−37) = (n−37)(q1(n)−x1(n))+ i(n−37)2(q2(n)−
x2(n)), and consequently

x0(n)− q0(n) = (n− 37)(q1(n)− x1(n)) + i(n− 37)2(q2(n)− x2(n)) (2 .4 .1 .6 ).

Now using equation (2.4.1.2), then it becomes trivial to deduce that equation
(2.4.1.6) clearly says that

n(q1(n)−x1(n))+in2(q2(n)−x2(n)) = (n−37)(q1(n)−x1(n))+i(n−37)2(q2(n)−x2(n))
(2 .4 .1 .7 ).

It is immediate to see that equation (2.4.1.7) implies that

i( n2 − (n− 37)2 )( q2(n)− x2(n) ) = −37( q1(n)− x1(n) ) (2 .4 .1 .8 ).

Clearly i( n2− (n− 37)2 ) = i(74n− 1369) and equation (2.4.1.8) clearly says that

i(74n− 1369)( q2(n)− x2(n) ) = −37( q1(n)− x1(n) ) (2 .4 .1 .9 ).

Consider the quantity −37( q1(n−37)−x1(n−37) ), then using equation (2.4.1.9),
it becomes trivial to deduce that

−37( q1(n− 37)− x1(n− 37) ) = i( 74(n− 37)− 1369 )( q2(n− 37)− x2(n− 37) )
(2 .4 .1 .10 ).

That being so, observing [by using property (2.4.0)] that q1(n) = q1(n − 37), and
noticing [ by using the hypotheses on property (2.4.1)] that x1(n) = x1(n−37), then
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the previous two equalities imply that

q1(n)− x1(n) = q1(n− 37)− x1(n− 37) (2 .4 .1 .11 ).

Using equality (2.4.1.11), then it becomes immediate to deduce that equation
(2.4.1.10) clearly says that

−37( q1(n)−x1(n) ) = i( 74(n−37)−1369 )( q2(n−37)−x2(n−37) ) (2 .4 .1 .12 ).

Now using equations (2.4.1.9) and (2.4.1.12), then it becomes trivial to deduce that

i(74n− 1369)( q2(n)− x2(n) ) = i( 74(n− 37)− 1369 )( q2(n− 37)− x2(n− 37) )
(2 .4 .1 .13 ).

That being so, observing [by using property (2.4.0)] that q2(n) = q2(n− 37), and
noticing [ by using the hypotheses on property (2.4.1)] that x2(n) = x2(n−37), then
the previous two equalities imply that

q2(n)− x2(n) = q2(n− 37)− x2(n− 37) (2 .4 .1 .14 ).

Using equality (2.4.1.14), then it becomes trivial to deduce that equation (2.4.1.13)
clearly says that

i(74n−1369)( q2(n)−x2(n) ) = i( 74(n−37)−1369 )( q2(n)−x2(n) ) (2 .4 .1 .15 ).

It is immediate to check that equation (2.4.1.15) clearly says that

i( 74n− 1369− 74(n− 37) + 1369 )( q2(n)− x2(n) ) = 0 (2 .4 .1 .16 ).

Clearly i( 74n− 1369− 74(n− 37)+1369 ) = 2738i and equation (2.4.1.16) clearly
says that

2738i( q2(n)− x2(n) ) = 0 (2 .4 .1 .17 ).

Using equation (2.4.1.17), it becomes trivial to deduce that

q2(n) = x2(n) (2 .4 .1 .18 ).

Having proved that q2(n) = x2(n) (use equality (2.4.1.18)), we are going now to
show that q1(n) = x1(n). For that, look at equation (2.4.1.2); then using equality
(2.4.1.18), then it becomes immediate to deduce that equation (2.4.1.2) clearly say
that

x0(n)− q0(n) = n( q1(n)− x1(n) ) + 0 (2 .4 .1 .19 ).
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Now look at x0(n − 37) − q0(n − 37), then, using equation (2.4.1.19), it becomes
trivial to deduce that

x0(n− 37)− q0(n− 37) = (n− 37)( q1(n− 37)− x1(n− 37) ) + 0 (2 .4 .1 .20 ).

Observing [by using property (2.4.0)] that q0(n) = q0(n − 37), and noticing [ by
using the hypotheses on property (2.4.1)] that x0(n) = x0(n−37), then, the previous
two equalities immediately imply that

x0(n)− q0(n) = x0(n− 37)− q0(n− 37) (2 .4 .1 .21 ).

Using equality (2.4.1.21), then it becomes trivial to deduce that equation (2.4.1.20)
clearly says that

x0(n)− q0(n) = (n− 37)( q1(n− 37)− x1(n− 37) ) + 0 (2 .4 .1 .22 ).

Observing [by using property (2.4.0)] that q1(n) = q1(n − 37), and noticing [ by
using the hypotheses on property (2.4.1)] that x1(n) = x1(n−37), then, the previous
two equalities immediately imply that

q1(n)− x1(n) = q1(n− 37)− x1(n− 37) (2 .4 .1 .23 ).

Using equality (2.4.1.23), then it becomes trivial to deduce that equation (2.4.1.22)
clearly says that

x0(n)− q0(n) = (n− 37)( q1(n)− x1(n) ) + 0 (2 .4 .1 .24 ).

Now using equations (2.4.1.19) and (2.4.1.24), then it becomes trivial to deduce
that

n( q1(n)− x1(n) ) + 0 = (n− 37)( q1(n)− x1(n) ) + 0 (2 .4 .1 .25 ).

It is immediate to check that equation (2.4.1.25) clearly says that

(n− n + 37)( q1(n)− x1(n) ) = 0 (2 .4 .1 .26 ).

Clearl n−n+37 = 37 and equation (2.4.1.26) clearly says that 37( q1(n)−x1(n) ) =
0; consequently q1(n)− x1(n) = 0 and therefore

q1(n) = x1(n) (2 .4 .1 .27 ).

Now using equalities (2.4.1.18) and (2.4.1.27), then it becomes trivial to deduce
that

q2(n) = x2(n) and q1(n) = x1(n) (2 .4 .1 .28 ).
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That being so, noticing (by (2.4.1.28)) that q2(n) = x2(n) and q1(n) = x1(n),
then using (0.) [ (0.) is situated above equality (2.4.1.3) ], it becomes trivial to
see that to show property (2.4.1), it suffices to show that q0(n) = x0(n). For that,
look at equation (2.4.1.2); then using the two equalities of (2.4.1.28), it becomes
trivial to deduce that q0(n) = x0(n). Property (2.4.1) follows, and Proposition 2.4
immediately follows. �

Using Proposition 2.4, then the following remark becomes trivial.

Remark 2.5 Let n be of type 37 and let q(n) be n-conform. Then q(n) =
q0(n) + nq1(n) + in2q2(n) ( where for every j ∈ {0, 1, 2}, qj(n) is a complex number
satisfying qj(n) = qj(n− 37)), and the previous writing is unique, once n is fixed.
Proof. Immediate (indeed, it is a trivial consequence of the two properties of
Proposition 2.4). �

Using Remark 2.5, let us define.
Definitions 2.6 (Fundamental.4). Let n be of type 37 and let q(n) be n-conform;
clearly (by Remark 2.5), we know that

q(n) = q0(n) + nq1(n) + in2q2(n),

where for every j ∈ {0, 1, 2}, qj(n) is a complex number satisfying qj(n) =
qj(n− 37). Then q0(n) is called the fixed part of q(n) and is denoted by Fix[q(n)] ;
and nq1(n) + in2q2(n) is called the complex part of q(n) and is denoted by C[q(n)].
Using Remark 2.5, then it becomes trivial to see that the previous definitions and
denotations get sense, since q(n) is unique, once n is fixed.

We will only use Fix[q(n)], where n is of type 37, and where q(n) is n-conform
[using Remark 2.5, then it becomes trivial to see that Fix[q(n)] is unique, once n is
fixed]. That being so, using definitions 2.6, let us remark.

Remark 2.7. Let n be of type 37 and let y(n) be n-conform. Now let z(n) be
n-conform. We have the following two elementary properties.
(2.7.0). y(n) = y0(n) + ny1(n) + in2y2(n) [where for every j ∈ {0, 1, 2}, yj(n)
is a complex number satisfying yj(n) = yj(n − 37)] and Fix[y(n)] = y0(n)
;z(n) = z0(n) + nz1(n) + in2z2(n) [where for every j ∈ {0, 1, 2}, zj(n) is a complex
number satisfying zj(n) = zj(n− 37)] and Fix[z(n)] = z0(n).
(2.7.1). y(n)+ z(n) is n-conform and Fix[y(n)+ z(n)] = Fix[y(n)]+Fix[z(n)].
Proof. (2.7.0). Immediate, by observing that y(n) is n-conform and z(n) is n-
conform, and by using Remark 2.5 and definitions 2.6.
(2.7.1). Immediate. Indeed let y(n) + z(n), then, using property (2.7.0), it becomes
trivial to deduce that

342



I. A. G. Nemron - An Elementary Proof Of The Fermat Composite Conjecture...

y(n) + z(n) = y0(n) + z0(n) + n( y1(n) + z1(n) ) + in2( y2(n) + z2(n) ) (2 .7 .1 .0 ),

where for every j = 0, 1, 2, yj(n) + zj(n) is a complex number satisfying

yj(n) + zj(n) = yj(n− 37) + zj(n− 37) (2 .7 .1 .1 ).

Recalling (via the hypotheses) that n is of type 37, then it becomes trivial to see
that (2.7.1.0) and (2.7.1.1) clearly say that y(n) + z(n) is n-conform and

Fix[y(n) + z(n)] = y0(n) + z0(n) (2 .7 .1 .2 ).

Looking at y(n) and z(n), then using property (2.7.0), it becomes trivial to
see that Fix[y(n)] = y0(n) and Fix[z(n)] = z0(n); now, using the previous
two equalities, then (2.7.1.2) clearly says that y(n) + z(n) is n-conform and
Fix[y(n) + z(n)] = Fix[y(n)] + Fix[z(n)]. Property (2.7.1) follows and Proposition
2.7 immediately follows. �

Before stating Theorem which implies that there are infinitely many Fermat
composite numbers, let us give two simple remarks which are only elementary using
of the parameter Fix[.] introduced in definitions 2.6.
Remark 2.8. (The first elementary using of the parameter Fix[.]). Let n be of type
37 and let on,1; now put

Q(n) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26).

If on,1 = on−37,1, then Q(n) is n-conform and Fix[Q(n)] = Q(n).
Proof. Indeed, observe (by using the definition of Q(n) given above) that

Q(n) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26) (2 .8 .0 ).

Now look at equation (2.8.0) and put

φ2(n) = 0; φ1(n) = 0; and φ0(n) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26)

(2 .8 .1 );
then, using (2.8.1), it becomes trivial to deduce that equation (2.8.0) is of the form

Q(n) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .8 .2 ).

Using the three equalities of (2.8.1), we immediately deduce that

φ2(n− 37) = 0; φ1(n− 37) = 0;

and

φ0(n− 37) = i(on−37,1 + 26)2(o3
n−37,1− on−37,1 + 1) + 48877(on−37,1 + 26) (2 .8 .3 ).
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Now noticing (via the hypotheses) that on,1 = on−37,1, then it becomes trivial to
deduce that (2.8.3) clearly says that

φ2(n− 37) = 0; φ1(n− 37) = 0;

and

φ0(n− 37) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26) (2 .8 .4 )

Using (2.8.1) and (2.8.4), then we immediately deduce that

φ2(n) = φ2(n− 37); φ1(n) = φ1(n− 37); and φ0(n) = φ0(n− 37) (2 .8 .5 ).

That being so look at equation (2.8.2), then, using (2.8.5), it becomes trivial to
deduce that equation (2.8.2) is of the form

Q(n) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .8 .6 ),

where for j = 0, 1, 2, φj(n) is a complex number satisfying

φj(n) = φj(n− 37) (2 .8 .7 ).

Recalling (by the hypotheses) that n is of type 37, then it becomes trivial that
(2.8.6) and (2.8.7) clearly say that

Q(n) is n− conformand Fix[Q(n)] = φ0(n) (2 .8 .8 ).

Now recalling (by using (2.8.1)) that φ0(n) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) +

48877(on,1 + 26) and remarking [by using equation (2.8.0)] that Q(n) = i(on,1 +
26)2(o3

n,1 − on,1 + 1) + 48877(on,1 + 26) , then using the previous two equations,
it becomes trivial to deduce that (2.8.8) clearly says that Q(n) is n-conform and
Fix[Q(n)] = Q(n). Remark 2.8 follows. �
Remark 2.9 (The second elementary using of the parameter Fix[.]). Let n be of
type 37 and let on,1. Now define q(n) as follows.

q(n) = i(9on,1 − 25)2( o3
n,1 − on,1 + 1) + 48877(9on,1 − 25).

If on,1 = on−37,1, then q(n) is n-conform and Fix[q(n)] = q(n).
Proof.Simple and rigorously analogous to the proof of Remark 2.8. �

The previous simple remarks made, now the following Theorem immediately
implies that there are infinitely many Fermat composite numbers and the Fermat
composite conjecture is only an obvious special case of the Goldbach conjecture.
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Theorem 2.10. Let n be of type 37 and let on,1. Then, at least one of the
following two properties (2.10.0) and (2.10.1) is satisfied by n.
(2.10.0.) on,1 ≥ n + 11.
(2.10.1) R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185) and n < 12 + 9on,1

and φ(on,1) is n-conform (see definitions 2.0 for the equation of φ(on,1), and
we recall (see Recall 2.1) that R[Fix[φ(on,1)]] is the real part of Fix[φ(on,1)] and
I[Fix[φ(on,1)]] is the imaginary part of Fix[φ(on,1)]).

That being so, to prove simply Theorem 2.10, we use the following fundamental
proposition.

Proposition 2.11. (Fundamental.5). Let n be of type 37 and let on,1; look at
φ(on,1) [see definitions 2.0 for the equation of φ(on,1)], and put

Z ′(n) = i(−74n + 1369)(o3
n,1 − on,1 + 1)− 1808449.

Now via φ(on,1), consider φ(on−37,1) [this consideration gets sense, since n is
of type 37; in particular n − 37 > 2 and therefore on−37,1 clearly exists]. If
on,1 = on−37,1, then we have the following two properties.
(2.11.0). φ(on−37,1) = φ(on,1) + Z ′(n).
(2.11.1). Z ′(n) is n-conform and Fix[Z ′(n)] = 1369i(o3

n,1 − on,1 + 1)− 1808449.
Proof. (2.11.0). Indeed, by the equation of φ(on,1) (see definitions 2.0), we clearly
have

φ(on,1) = in2(o3
n,1 − on,1 + 1) + 48877n (2 .11 .0 .0 ).

Now consider φ(on−37,1); then using equation (2.11.0.0) , we immediately deduce
that

φ(on−37,1) = i(n− 37)2(o3
n−37,1 − on−37,1 + 1) + 48877(n− 37) (2 .11 .0 .1 ).

Noticing [via the hypotheses] that on,1 = on−37,1, then it becomes immediate to
deduce that equation (2.11.0.1) is of the form

φ(on−37,1) = i(n− 37)2(o3
n,1 − on,1 + 1) + 48877(n− 37) (2 .11 .0 .2 ).

Now look at i(n − 37)2(o3
n,1 − on,1 + 1) + 48877(n − 37); it is trivial to check (by

elementary calculation) that

i(n− 37)2(o3
n,1 − on,1 + 1) + 48877(n− 37) = in2(o3

n,1 − on,1 + 1) + 48877n + Z ′(n)
(2 .11 .0 .3 ),

where Z ′(n) = i(−74n + 1369)(o3
n,1 − on,1 + 1) − 1808449. That being so, look

at φ(on−37,1); then, using (2.11.0.3) and (2.11.0.2), it becomes trivial to deduce that
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φ(on−37,1) = in2(o3
n,1 − on,1 + 1) + 48877n + Z ′(n) (2 .11 .0 .4 ).

Now using equations (2.11.0.0) and (2.11.0.4), then it becomes immediate to
deduce that φ(on−37,1) = φ(on,1) + Z ′(n). Property (2.11.0) follows.
(2.11.1). Indeed, recall [by using the definition of Z ′(n)] that

Z ′(n) = i(−74n + 1369)(o3
n,1 − on,1 + 1)− 1808449 (2 .11 .1 .0 ).

It is trivial to see that equation (2.11.1.0) is of the form

Z ′(n) = −74in(o3
n,1 − on,1 + 1) + 1369i(o3

n,1 − on,1 + 1)− 1808449 (2 .11 .1 .1 ).

Now put

φ2(n) = 0; φ1(n) = −74i(o3
n,1−on,1+1); and φ0(n) = 1369i(o3

n,1−on,1+1)−1808449
(2 .11 .1 .2 );

then, using (2.11.1.2), it becomes trivial to deduce that equation (2.11.1.1) is of
the form

Z ′(n) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .11 .1 .3 ).

Consider n − 37; then, using the three equalities of (2.11.1.2), we immediately
deduce that

φ2(n− 37) = 0; φ1(n− 37) = −74i(o3
n−37,1 − on−37,1 + 1)

and
φ0(n− 37) = 1369i(o3

n−37,1 − on−37,1 + 1)− 1808449 (2 .11 .1 .4 ).

Now observe (via the hypotheses) that

on,1 = on−37,1 (2 .11 .1 .5 ).

Look at the three equalities of (2.11.1.4), then using equality (2.11.1.5), it becomes
trivial to deduce that (2.11.1.4) is of the form

φ2(n− 37) = 0; φ1(n− 37) = −74i(o3
n,1 − on,1 + 1)

and
φ0(n− 37) = 1369i(o3

n,1 − on,1 + 1)− 1808449 (2 .11 .1 .6 ).

Now using (2.11.1.2) and (2.11.1.6), then we immediately deduce that

φ2(n) = φ2(n− 37); φ1(n) = φ1(n− 37); and φ0(n) = φ0(n− 37) (2 .11 .1 .7 ).
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That being so look at equation (2.11.1.3), then, using (2.11.1.7), it becomes trivial
to deduce that equation (2.11.1.3) is of the form

Z ′(n) = in2 φ2(n) + n φ1(n) + φ0(n) (2 .11 .1 .8 ),

where for j = 0, 1, 2, φj(n) is a complex number satisfying

φj(n) = φj(n− 37) (2 .11 .1 .9 ).

Recalling (by using the hypotheses) that n is of type 37, then it becomes trivial
that (2.11.1.8) and (2.11.1.9) clearly say that

Z ′(n)is n-conform andFix[Z ′(n)] = φ0(n) (2 .11 .1 .10 ).

Now recalling (by using (2.11.1.2)) that φ0(n) = 1369i(o3
n,1 − on,1 + 1)− 1808449,

then it becomes trivial to deduce that (2.11.1.10) clearly says that Z ′(n) is n-
conform and Fix[Z ′(n)] = 1369i(o3

n,1 − on,1 + 1) − 1808449. Property (2.11.1)
follows and Proposition 2.11 immediately follows. �

That being so, we will also use the following four elementary Propositions.

Proposition 2.12. Let n be an integer ≥ 3 and let on,1. Define Q(n) and q(n) as
follows.

Q(n) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26);

and
q(n) = i(9on,1 − 25)2( o3

n,1 − on,1 + 1) + 48877(9on,1 − 25).

Then we have the following two properties.
(2.12.0.) R[Q(n)] + I[Q(n)] 6≡ 74 mod(185).
(2.12.1.) R[q(n)] + I[q(n)] ≡ 74 mod(185).
Proof. Property (2.12.0) is simple [indeed, look at R[Q(n)] and I[Q(n)] (we recall
that R[Q(n)] is the real part of Q(n) and I[Q(n)] is the imaginary part of Q(n));
recalling that Q(n) = i(on,1 + 26)2(o3

n,1 − on,1 + 1) + 48877(on,1 + 26) and using the
previous equation, then it becomes trivial to deduce that

R[Q(n)] = 48877(on,1+26) and I[Q(n)] = (on,1+26)2(o3
n,1−on,1+1) (2 .12 .0 .0 ).

Using (2.12.0.0), then it becomes immediate to deduce that

R[Q(n)] + I[Q(n)] = 48877(on,1 + 26) + (on,1 + 26)2(o3
n,1 − on,1 + 1) (2 .12 .0 .1 ).

Now look at the quantity 48877(on,1 + 26) + (on,1 + 26)2(o3
n,1 − on,1 + 1); noticing

[by using property (1.1.0) of Proposition 1.1] that on,1 ≡ 11 mod(185), then the
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previous congruence immediately implies that

48877(on,1 + 26) + (on,1 + 26)2(o3
n,1 − on,1 + 1)

≡ 48877(11 + 26) + (11 + 26)2(11× 11× 11− 11 + 1)mod(185) (2 .12 .0 .2 ).

Clearly 48877(11 + 26) + (11 + 26)2(11× 11× 11 − 11 + 1) = 48877(11 + 26) +
(11 + 26)2(1321) = 1808449 + 1808449 = 3616898; so 48877(11 + 26) + (11 +
26)2(11× 11× 11 − 11 + 1) = 3616898 and congruence (2.12.0.2) clearly says that

48877(on,1 + 26) + (on,1 + 26)2(o3
n,1− on,1 + 1) ≡ 3616898 mod(185) (2 .12 .0 .3 ).

Clearly

3616898 ≡ 148 mod(185) (2 .12 .0 .4 ),

since 3616898 − 148 = 19550 × 185. Now using congruences (2.12.0.3) and
(2.12.0.4), then it becomes trivial to deduce that

48877(on,1 + 26) + (on,1 + 26)2(o3
n,1 − on,1 + 1) ≡ 148 mod(185) (2 .12 .0 .5 ).

It is trivial to deduce that congruence (2.12.0.5) implies that

48877(on,1 + 26) + (on,1 + 26)2(o3
n,1 − on,1 + 1) 6≡ 74 mod(185) (2 .12 .0 .6 ).

That being so, using (2.12.0.6) and (2.12.0.1), then it becomes trivial to deduce
that R[Q(n)] + I[Q(n)] 6≡ 74 mod(185). Property (2.12.0) follows. ]. Property
(2.12.1) is also simple [indeed look at R[q(n)] and I[q(n)] (we recall that R[q(n)]
is the real part of q(n) and I[q(n)] is the imaginary part of q(n)); recalling that
q(n) = i(9on,1 − 25)2( o3

n,1 − on,1 + 1) + 48877(9on,1 − 25) and using the previous
equation, then it becomes trivial to deduce that

R[q(n)] = 48877(9on,1−25) and I[q(n)] = (9on,1−25)2( o3
n,1−on,1+1) (2 .12 .1 .0 ).

Using (2.12.1.0), then it becomes immediate to deduce that

R[q(n)] + I[q(n)] = 48877(9on,1 − 25) + (9on,1 − 25)2( o3
n,1 − on,1 + 1) (2 .12 .1 .1 ).

Now look at the quantity 48877(9on,1−25)+(9on,1−25)2( o3
n,1−on,1 +1 ); noticing

[by using property (1.1.0) of Proposition 1.1] that on,1 ≡ 11 mod(185), then the
previous congruence immediately implies that

48877(9on,1 − 25) + (9on,1 − 25)2(o3
n,1 − on,1 + 1)

≡ 48877(99− 25) + (99− 25)2(1331 − 11 + 1) mod(185) (2 .12 .1 .2 ).
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Clearly 48877( 99 − 25 ) + ( 99 − 25 )2(1331,− 11 + 1) = 48877(99 − 25) + (99 −
25)2(1321) = 3616898 + 7233796 = 10850694; so 48877( 99 − 25 ) + ( 99 −
25 )2(1331 − 11 + 1) = 10850694 and congruence (2.12.1.2) clearly says that

48877(9on,1−25)+(9on,1−25)2( o3
n,1−on,1+1) ≡ 10850694 mod(185) (2 .12 .1 .3 ).

Clearly

10850694 ≡ 74 mod(185) (2 .12 .1 .4 ),

since 10850694 − 74 = 58652 × 185. Now using congruences (2.12.1.3) and
(2.12.1.4), then it becomes trivial to deduce that

48877(9on,1 − 25) + (9on,1 − 25)2( o3
n,1 − on,1 + 1) ≡ 74 mod(185) (2 .12 .1 .5 ).

That being so, using (2.12.1.5) and (2.12.1.1), then it becomes trivial to deduce
that R[q(n)] + I[q(n)] ≡ 74 mod(185). Property (2.12.1) follows and Proposition
2.12 immediatelly follows.]. �
Proposition 2.13. Let n be of type 37 and let on,1; we have the following five
properties.
(2.13.0.)If on,1 ≥ n + 11, then Theorem 2.10 is satisfied by n.
(2.13.1.)If n ≤ 185× FF5

5 , then Theorem 2.10 is satisfied by n.
(2.13.2.) If on ≥ n − 74 [see section.1 for the meaning of on] then Theorem 2.10 is
satisfied by n.
(2.13.3.)If n = on,1 + 26 and if on,1 = on−37,1, then φ(on,1) is n-conform and
n < 12 + 9on,1 and R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185).
(2.13.4.) If n = on,1 + 26 and on,1 = on−37,1, then Theorem 2.10 is satisfied by n.
Proof. Property (2.13.0) is immediate [indeed, let n be an integer of type 37; if
on,1 ≥ n + 11, then property (2.10.0) of Theorem 2.10 is clearly satisfied by n;
therefore Theorem 2.10 is satisfied by n]. Property (2.13.1) is also immediate [indeed
observing (by using property (1.1.0) of Proposition 1.1) that

on,1 > 10 + 185FF5
5 (2 .13 .1 .0 ),

if n ≤ 185FF5
5 , then, using (2.13.1.0), we immediately deduce that

on,1 ≥ n + 11 (2 .13 .1 .1 ).

Therefore Theorem 2.10 is satisfied by n , by using (2.13.1.1) and property (2.13.0).
Property (2.13.1) follows]. Property (2.13.2) is easy [indeed, observe (by using
property (1.1.0) of Proposition 1.1) that

F5 − 1 < on < on,1 and on,1 = 11 + 185oon
n (2 .13 .2 .0 ).
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That being so, if on ≥ n− 74 (recall that n is of type 37; so n = 37k where k is an
integer ≥ 3 and therefore n ≥ 111), then, using (2.13.2.0), it becomes immediate to
deduce that on,1 > 10 + 185oon

n ≥ 10 + 185(n− 74)n−74 > n + 11; consequently

on,1 > n + 11 (2 .13 .2 .1 ).

Therefore Theorem 2.10 is satisfied by n , by using (2.13.2.1) and property (2.13.0).
Property (2.13.2) follows]. Property (2.13.3) is trivial [indeed, let φ(on,1); then (by
using definitions 2.0 ), we clearly have

φ(on,1) = in2(o3
n,1 − on,1 + 1) + 48877n (2 .13 .3 .0 ).

Since n = on,1 +26, then it becomes immediate to deduce that equation (2.13.3.0)
is of the form

φ(on,1) = i(on,1 + 26)2(o3
n,1 − on,1 + 1) + 48877(on,1 + 26) (2 .13 .3 .1 ).

Look at equation (2.13.3.1); observing (by the hypotheses) that n = on,1 + 26 and
on,1 = on−37,1, then using Remark 2.8, it becomes trivial to deduce that

φ(on,1) is n− conform and Fix[φ(on,1)] = φ(on,1) (2 .13 .3 .2 ),

since Q(n) = φ(on,1), by using equation (2.13.3.1) and the equation of Q(n) given
in Remark 2.8. Now using equation (2.13.3.1) and property (2.12.0) of Proposition
2.12, then it becomes trivial to deduce that

R[φ(on,1)] + I[φ(on,1)] 6≡ 74 mod(185) (2 .13 .3 .3 ),

since Q(n) = φ(on,1), by using equation (2.13.3.1) and the equation of Q(n) given
in Proposition 2.12. Observing (by using (2.13.3.2)) that Fix[φ(on,1)] = φ(on,1),
then it becomes trivial to deduce that (2.13.3.3) clearly says that

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185) (2 .13 .3 .4 ).

Now noticing (by using again (2.13.3.2)) that φ(on,1) is n-conform , then, using
(2.13.3.4) and the previous, we immediately deduce that

φ(on,1)is n-conform andR[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185)
(2 .13 .3 .5 ).

That being so, noticing (by using property (1.1.0) of Proposition 1.1) that
on,1 > 10 + 185FF5

5 and recalling (via the hypotheses) that n = on,1 + 26,
clearly n < 12 + 9on,1; now using the previous inequality and using (2.13.3.5),
then we immedialetly deduce that φ(on,1) is n-conform and R[Fix[φ(on,1)]] +
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I[Fix[φ(on,1)]] 6≡ 74 mod(185) and n < 12 + 9on,1. Property (2.13.3) follows].
Property (2.13.4) is immediate [indeed, if n = on,1 + 26 and on,1 = on−37,1,
then, using property (2.13.3), we easily deduce that φ(on,1) is n-conform and
R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185) and n < 12 + 9on,1; the previous
clearly implies that property (2.10.1) of Theorem 2.10 is satisfied by n; therefore
Theorem 2.10 is satisfied by n. Property (2.13.4) follows and Proposition 2.13
immediately follows]. �

From Proposition 2.13, it comes:

Proposition 2.14. We have the following two assertions (2.14.0) and (2.14.1).
(2.14.0).
Suppose that Theorem 2.10 is false. Then there exists an integer n of type 37 such
that n is a minimum counter-example to Theorem 2.10.
(2.14.1).Suppose that Theorem 2.10 is false, and let n be an integer of type 37 such
that n is a minimum counter-example to Theorem 2.10 [such a n exists, by assertion
(2.14.0)]; look at on,1. Then, the following two properties (2.14.1.0) and (2.14.1.1)
are simultaneously satisfied by on,1.

(2.14.1.0). on,1 < n + 11.
(2.14.1.1). φ(on,1) is not n-conform or R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] ≡

74 mod(185) or n ≥ 12 + 9on,1.
Proof. Assertion (2.14.0) is immediate and assertion (2.14.1) immediately results
from assertion (2.14.0).�

Using Proposition 2.14, then the following fundamental definition immediately
comes:

Definition 2.15 (Fundamental.6). Let n be an integer ≥ 3 and let on,1. We say
that on,1 is a remarkable element , if the following three assertions (2.15.0), (2.15.1)
and (2.15.2) are simultaneously satisfied.
(2.15.0). n is of type 37 and is a minimum counter-example to Theorem 2.10.
(2.15.1). on,1 < n + 11.
(2.15.2). φ(on,1) is not n-conform or R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] ≡
74 mod(185) or n ≥ 12 + 9on,1.�

It is immediate to see that if Theorem 2.10 is false, then there exists n and there
exists a remarkable element on,1 , by using Proposition 2.14.

Proposition 2.16 (Application of Proposition 2.14 and definition 2.15). Suppose
that Theorem 2.10 is false; and let on,1 be a remarkable element [such a on,1 exists,
by using Proposition 2.14 and definition 2.15]. Fix once and for all on,1, and look at
on [see Section.1 for the meaning of on]. Then we have the following four properties.
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(2.16.0.) on,1 ≤ n + 10 and n ≥ 11 + 185FF5
5 and on−37,1 exists and n − 37 is of

type 37.
(2.16.1.) on < n− 74.
(2.16.2.) on,1 = on−37,1.
(2.16.3.) on,1 ≤ n− 63.
Proof. (2.16.0). on,1 ≤ n + 10. Otherwise [we reason by reduction to absurd]
on,1 > n+10; observing that on,1 and n+10 are integers, then the previous inequality
implies that on,1 ≥ n + 11, and we have a contradiction, since on,1 is a remarkable
element [see definition 2.15 for the meaning of a remarkable element]. Having proved
this fact, we have n ≥ 11 + 185FF5

5 . Otherwise [we reason by reduction to absurd]
clearly

n < 11 + 185FF5
5 (2 .16 .0 .0 ).

Now observing that n ≡ 0 mod(37) (since n is of type 37), and remarking that
11 + 185FF5

5 ≡ 11 mod(37); then, using the previous two congruences, it becomes
trivial to deduce that inequality (2.16.0.0) implies that

n ≤ 11 + 185FF5
5 − 11 (2 .16 .0 .1 ).

Clearly 11 + 185FF5
5 − 11 = 185FF5

5 and inequality (2.16.0.1) clearly says that

n ≤ 185FF5
5 (2 .16 .0 .2 ).

Now using the previous inequality and property (2.13.1) of Proposition 2.13, then we
immediately deduce that Theorem 2.10 is satisfied by n, and we have a contradiction,
since on,1 is a remarkable element, and in particular n is a minimum counter-example
to Theorem 2.10. So n ≥ 11 + 185FF5

5 . That being so, to prove property (2.16.0), it
suffices to prove that on−37,1 exists and n− 37 is of type 37. For that, observing (by
using the previous inequality) that n ≥ 11 + 185FF5

5 , then we immediately deduce
that on−37,1 clearly exists and n− 37 ≥ −26 + 185FF5

5 > FF5
5 > 111; consequently

n− 37 > 111 (2 .16 .0 .3 ).

Recalling that n is of type 37, then, using inequality (2.16.0.3), it becomes trivial
to deduce that n− 37 is of type 37. Property (2.16.0) follows.
(2.16.1). We have on < n − 74. Otherwise [ we reason by reduction to absurd],
clearly

on ≥ n− 74 (2 .16 .1 .0 ).

Now observing [by using property (1.1.0) of Proposition 1.1] that on,1 = 11+185oon
n

and noticing [by using property (2.16.0) ] that n ≥ 11 + 185FF5
5 , then using the
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previous and using inequality (2.16.1.0), it becomes immediate to deduce that

on,1 > 10 + 185oon
n > 9 + 185(n− 74)n−74 > n + 11 (2 .16 .1 .1 )

[since n ≥ 11 + 185FF5
5 ]. (2.16.1.1) clearly implies that on,1 > n + 11 and this

contradicts property (2.16.0). So on < n− 74. Property (2.16.1) follows.
(2.16.2). Indeed, observing [ by using property (2.16.1) ] that

on < n− 74 (2 .16 .2 .0 ),

then, using property (1.1.2) of Proposition 1.1 (where we replace y by 74), it
becomes immediate to deduce that inequality (2.16.2.0) clearly implies that

on,1 = on−75,1 (2 .16 .2 .1 ).

Using equality (2.16.2.1), then it becomes trivial to deduce that

on,1 = on−1,1 = on−2,1 = ... = on−37,1 = ... = on−74,1 = on−75,1 (2 .16 .2 .2 ).

(2.16.2.2) clearly implies that on,1 = on−37,1. Property (2.16.2) follows.
(2.16.3). Otherwise [ we reason by reduction to absurd]

on,1 > n− 63 (2 .16 .3 .0 ).

Now observing [by using property (1.1.0) of Proposition 1.1] that

on,1 ≡ 11 mod(37) (2 .16 .3 .1 ),

and remarking that

n− 63 ≡ 11 mod(37) (2 .16 .3 .2 )

[ since n is of type 37, clearly n ≡ 0 mod(37) and therefore n−63 ≡ 11 mod(37) ],
then, using congruences (2.16.3.1) and (2.16.3.2), inequality (2.16.3.0) immediately
implies that

on,1 ≥ n− 63 + 37 (2 .16 .3 .3 ),

[ since on,1 ≡ 11 mod(37) and n−63 ≡ 11 mod(37) and on,1 > n−63]. Inequality
(2.16.3.3) clearly says that on,1 ≥ n− 26 and consequently

on,1 + 26 ≥ n (2 .16 .3 .4 ).

That being so, we have this fact.
Fact: on,1 + 26 = n.
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Otherwise [ we reason by reduction to absurd], using inequality (2.16.3.4), we
immediately deduce that

on,1 + 26 > n (2 .16 .3 .5 ).

Now observing [ by using Example.2 of Recall 2.1] that on,1 + 26 ≡ 0 mod(37)
and noticing that n ≡ 0 mod(37) [ since n is of type 37], then, using the previous
two trivial congruences, inequality (2.16.3.5) immediately implies that

on,1 + 26 ≥ n + 37 (2 .16 .3 .6 )

[ since on,1 + 26 ≡ 0 mod(37) and n ≡ 0 mod(37) and on,1 + 26 > n]. Inequality
(2.16.3.6) clearly says that on,1 ≥ n+11 and this contradicts property (2.16.0). The
Fact follows.
This fact made, observing (by the previous Fact) that on,1 +26 = n and noticing [by
property (2.16.2)] that on,1 = on−37,1, then, using property (2.13.3) of Proposition
2.13, we immediately deduce thatφ(on,1) is n-conform and

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74mod(185)andn < 12 + 9on,1 (2 .16 .3 .7 ).

Clearly (2.16.3.7) does not satisfied property (2.15.2) of definition 2.15, and we
have a contradiction, since on,1 is a remarkable element [see definition 2.15 for the
meaning of a remarkable element]. Property (2.16.3) follows, and Proposition 2.16
immediately follows.�

Now, we are ready to give an elementary proof that there are infinitely many
Fermat composite numbers; but before, let us propose the following last two simple
propositions.
Proposition 2.17. (Fundamental.7: [The elementary using of the minimality of
n]). Suppose that Theorem 2.10 is false; and let on,1 be a remarkable element [such
a on,1 exists, by using Proposition 2.14 and definition 2.15]. Fix once and for all on,1

[on,1 is fixed once and for all; so on,1 does not move anymore]. Now consider φ(on,1)
[ see definitions 2.0 for the equation of φ(on,1) ], and via φ(on,1), look at φ(on−37,1).
Then R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74 mod(185) and n < 49 + 9on,1.
Proof. Indeed, look at n− 37; then we observe the following.
Observation.2.17.0. n is a minimun counter-example to Theorem 2.10.

Indeed, this Observation is immediate, by recalling that on,1 is a remarkable
element, and by using the definition of a remarkable element [see definition 2.15].
Observation.2.17.1. n − 37 < n and n − 37 is of type 37, and n − 37 ≥
−26 + 185FF5

5 .
Indeed, it is immediate that n − 37 < n; moreover, using property (2.16.0) of

Proposition 2.16, then it becomes trivial to deduce that n − 37 is of type 37, and
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n− 37 ≥ −26 + 185FF5
5 . Observation.2.17.1 follows.

Observation.2.17.2. Look at n − 37; then at least one of properties (2.10.0) and
(2.10.1) of Theorem 2.10 is satisfied by n− 37.

Indeed, remarking [by Observation.2.17.0] that n is a minimum counter-example
to Theorem 2.10, and noticing that n − 37 is of type 37 and n − 37 < n ( where
n − 37 ≥ −26 + 185FF5

5 ) [use Observation.2.17.1], then, by the minimality of n,
n−37 is not a counter-example to Theorem 2.10; therefore at least one of properties
(2.10.0) and (2.10.1) of Theorem 2.10 is satisfied by n − 37. Observation.2.17.2
follows.
Observation.2.17.3. Look at on,1 [recall that on,1 is a remarkable element]; then
on,1 ≤ n− 63.

This observation is immediate, by noticing that on,1 is a remarkable element,
and by using property (2.16.3) of Proposition 2.16.
Observation.2.17.4. Look at n − 37; then property (2.10.1) of Theorem 2.10 is
satisfied by n− 37.

Otherwise [we reason by reduction to absurd], using Observation.2.17.2, then we
immediately deduce that property (2.10.0) of Theorem 2.10 is satisfied by n − 37,
and in particular, we clearly have on−37,1 ≥ (n − 37) + 11 [since property (2.10.0)
of Theorem 2.10 is satisfied by n− 37 ]; the previous inequality clearly says that

on−37,1 ≥ n− 26 (2 .17 .4 .0 ).

Noticing [by recalling that on,1 is a remarkable element and by using property
(2.16.2) of Proposition 2.16] that
on,1 = on−37,1, then inequality (2.17.4.0) immediately becomes on,1 ≥ n − 26 and
this contradicts
Observation.2.17.3. Observation 2.17.4 follows.
Observation 2.17.5. Look at n − 37 and consider on−37,1 [recall that on,1 is a
remarkable element ]. Now let φ(on−37,1); then R[Fix[φ(on−37,1)]]+I[Fix[φ(on−37,1)]] 6≡
74mod(185) and n < 49 + 9on,1 .
Indeed, observing [by Observation.2.17.4] that property (2.10.1) of Theorem 2.10 is
satisfied by n− 37, then in particular, we clearly have φ(on−37,1) is n− 37 conform
and

R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74mod(185)

and
n− 37 < 12 + 9on−37,1 (a.),

because property (2.10.1) of Theorem 2.10 is satisfied by n− 37. (a.) clearly
says that φ(on−37,1) is n− 37 conform and

R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74mod(185)
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and
n < 49 + 9on−37,1 (2 .17 .5 .0 ).

(2.17.5.0) clearly implies that R[Fix[φ(on−37,1)]]+I[Fix[φ(on−37,1)]] 6≡ 74mod(185)
and
n < 49 + 9on−37,1. Observation.2.17.5 follows.

These observations made, look at on−37,1 and consider φ(on−37,1); observing [by
Observation.2.17.5] that

R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74mod(185)and n < 49 + 9on−37,1

(2 .17 .6 ),
and remarking [by recalling that on,1 is a remarkable element and by using property

(2.16.2) of Proposition 2.16] that on−37,1 = on,1, then it becomes immediate to
deduce that (2.17.6) clearly says that n < 49 + 9on,1 and R[Fix[φ(on−37,1)]] +
I[Fix[φ(on−37,1)]] 6≡ 74mod(185). Proposition 2.17 follows. �

Proposition 2.18. (Fundamental.8: [ The non obvious using of the minimality
of n]). Suppose that Theorem 2.10 is false; and let on,1 be a remarkable element
[such a on,1 exists , by using Proposition 2.14 and definition 2.15]. Fix once and for
all on,1 [ on,1 is fixed once and for all; so on,1 does not move anymore]. Then
n < 12 + 9on,1.
Proof. Otherwise [we reason by reduction to absurd], clearly

n ≥ 12 + 9on,1 (2 .18 .0 ),

and we observe the following.
Observation.2.18.1. n = 12 + 9on,1 .

Indeed, remark [by recalling that on,1 is a remarkable element and by using
Proposition 2.17] that

n < 49 + 9on,1 (2 .18 .1 .0 ).

Look at 49 + 9on,1; observing [by using property (1.1.0) of Proposition 1.1] that
on,1 ≡ 11 mod(37), then the previous congruence immediately implies that

49 + 9on,1 ≡ 49 + 9× 11 mod(37) (2 .18 .1 .1 ).

Clearly 49 + 9× 11 = 148 and congruence (2.18.1.1) clearly says that

49 + 9on,1 ≡ 148 mod(37) (2 .18 .1 .2 ).
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Congruence (2.18.1.2) immediately implies that

49 + 9on,1 ≡ 0 mod(37) (2 .18 .1 .3 ),

since 148 = 4× 37. Now consider n; recalling that n is of type of type 37, then [by
using the definition of type 37 we immediately deduce that

n ≡ 0 mod(37) (2 .18 .1 .4 ).

Now using congruences (2.18.1.4) and (2.18.1.3), then it becomes trivial to deduce
that inequality (2.18.1.0) implies that

n ≤ 49 + 9on,1 − 37 (2 .18 .1 .5 )

[since n ≡ 0 mod(37) and 49+9on,1 ≡ 0 mod(37) and n < 49+9on,1 ]. Inequality
(2.18.1.5) clearly says that

n ≤ 12 + 9on,1 (2 .18 .1 .6 ).

That being so, using inequalities (2.18.0.) and (2.18.1.6), then we immediately
deduce that n = 12 + 9on,1. Observation.2.18.1 follows.
Observation.2.18.2. Look at on,1 [recall that on,1 is a remarkable element];
then n is a minimum counter-example to Theorem 2.10 and n is of type 37 and
n ≥ 11 + 185FF5

5 and n− 37 is of type 37 and on−37,1 exists.
Clearly n is a minimum counter-example to Theorem 2.10 and is of type 37 [since

on,1 is a remarkable element]; n ≥ 11 + 185FF5
5 and on−37,1 exists and n − 37 is

of type 37 [by recalling that on,1 is a remarkable element and by using property
(2.16.0) of Proposition 2.16]. Observation.2.18.2 follows.
Observation 2.18.3. Look at on,1 [recall that on,1 is a remarkable element];
then on,1 ≤ n− 63.

This observation is immediate, by recalling that on,1 is a remarkable element and
by using property (2.16.3) of Proposition 2.16.
Observation 2.18.4.Look at on,1 [recall that on,1 is a remarkable element ]
and consider on−37,1 [this consideration gets sense, since on−37,1 exists (by using
Observation.2.18.2)]. Then on,1 = on−37,1.

Indeed this Observation is also immediate, by recalling that on,1 is a remarkable
element and by using property (2.16.2) of Proposition 2.16.
Observation 2.18.5.Look at on,1 [recall that on,1 is a remarkable element] and
consider on−37,1. Now let φ(on,1) [see definitions 2.0 for the equation of φ(on,1)] and
via φ(on,1), consider φ(on−37,1); then

R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74mod(185)
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[ we recall (see Recall 2.1) that I[Fix[φ(on−37,1)]] is the imaginary part of
Fix[φ(on−37,1)] and R[Fix[φ(on−37,1)]] is the real part of Fix[φ(on−37,1)]. Fix[φ(on−37,1)]
is known, via definitions 2.6 ].

Indeed, look at φ(on−37,1); recalling that on,1 is a remarkable element, then,
using Proposition 2.17, it becomes immediate to deduce that R[Fix[φ(on−37,1)]] +
I[Fix[φ(on−37,1)]] 6≡ 74mod(185). Observation 2.18.5 follows.
Observation 2.18.6.Look at on,1 [recall that on,1 is a remarkable element] and put

q(n) = i(9on,1 − 25)2( o3
n,1 − on,1 + 1) + 48877(9on,1 − 25).

Then R[Fix[q(n)]] + I[Fix[q(n)]] 6≡ 74mod(185).
Indeed, look at φ(on−37,1); observing (via definitions 2.0) that φ(on,1) =

in2(o3
n,1 − on,1 + 1) + 48877n, then using the previous equation, we immediately

deduce that

φ(on−37,1) = i(n− 37)2(o3
n−37,1 − on−37,1 + 1) + 48877(n− 37) (2 .18 .6 .0 ).

Observing (by using Observation.2.18.4) that on,1 = on−37,1 , then it becomes
trivial to deduce that equation (2.18.6.0) is of the form

φ(on−37,1) = i(n− 37)2(o3
n,1 − on,1 + 1) + 48877(n− 37) (2 .18 .6 .1 ).

Now noticing (by Observation.2.18.1) that n = 12+9on,1, clearly n−37 = 9on,1−25,
and it becomes immmediate to deduce that equation (2.18.6.1) is of the form

φ(on−37,1) = i(9on,1 − 25)2( o3
n,1 − on,1 + 1) + 48877(9on,1 − 25) (2 .18 .6 .2 ).

That being so, look at the equation q(n) (we recall that the equation of q(n) is
given in the begining of statement of this Observation.2.18.6); then using equation
(2.18.6.2), it becomes trivial to see that

φ(on−37,1) = q(n) (2 .18 .6 .3 ).

Observe (by Observation.2.18.5) that

R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74 mod(185) (2 .18 .6 .4 ).

Now using (2.18.6.4) and (2.18.6.3), then it becomes trivial to deduce that
R[Fix[q(n)]] + I[Fix[q(n)]] 6≡ 74 mod(185). Observation.2.18.6 follows.
Observation.2.18.7.Look at q(n) defined in Observation 2.18.6. Then R[q(n)] +
I[q(n)] 6≡ 74 mod(185).

Indeed, consider q(n) defined in Observation.2.18.6 and look at on,1 (recall that
on,1 is a remarkable element) ; noticing (by using Observation.2.18.2) that n is of
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type 37, and observing (by Observation.2.18.4) that on,1 = on−37,1, clearly all the
hypotheses of Remark 2.9 are satisfied; so the conclusion of Remark 2.9 is also
satisfied; consequently

q(n) is n− conform and Fix[q(n)] = q(n) (2 .18 .7 .0 ).

(2.18.7.0) clearly implies that

Fix[q(n)] = q(n) (2 .18 .7 .1 ).

That being so, observe (by Observation.2.18.6) that

R[Fix[q(n)]] + I[Fix[q(n)]] 6≡ 74 mod(185) (2 .18 .7 .2 ).

Now using (2.18.7.1) and (2.18.7.2), then it becomes trivial to deduce that
R[q(n)] + I[q(n)] 6≡ 74 mod(185). Observation.2.18.7 follows.

These simple observations made, consider q(n) defined in Observation.2.18.6 and
look at on,1; observing (by using Observation.2.18.2) that n ≥ 11 + 185FF5

5 , then it
becomes trivial to deduce that all the hypotheses of Proposition 2.12 are satisfied;
so the conclusion of Proposition 2.12 is also satisfied; in particular property (2.12.1)
of Proposition 2.12 is satisfied; consequently R[q(n)] + I[q(n)] ≡ 74 mod(185) and
the previous congruence clearly contradicts
Observation.2.18.7. Proposition 2.18 follows. �

The previous simple Propositions made, we now prove simply Theorem 2.10.
Proof of Theorem 2.10. Otherwise [ we reason by reduction to absurd], let on,1 be
a remarkable element [such a on,1 exists, by using Proposition 2.14 and definition
2.15]. Fix once and for all on,1 [on,1 is fixed once and for all; so on,1 does not move
anymore]. We observe the following.
Observation.2.10.i. n is a minimum counter-example to Theorem 2.10 and n is of
type 37.

Indeed, this observation is immediate, by recalling that on,1 is a remarkable
element.
Observation 2.10.ii.φ(on,1) is not n-conform or R[Fix[φ(on,1)]]+I[Fix[φ(on,1)]] ≡
74 mod(185) or n ≥ 12+9on,1 [we recall (see Recall 2.1) that I[Fix[φ(on,1)]] is the
imaginary part of Fix[φ(on,1)] and R[Fix[φ(on,1)]] is the real part of Fix[φ(on,1)].
φ(on,1) is given in definitions 2.0 and Fix[φ(on,1)] is known via definitions 2.6 ].

Indeed, this observation is also immediate, by recalling that on,1 is a remarkable
element.
Observation 2.10.iii. None of properties (2.10.0) and (2.10.1) of Theorem 2.10 is
satisfied by n.
Indeed, observing [by Observation.2.10.i] that n is a minimum counter-example to
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Theorem 2.10, then in particular n is a counter-example to Theorem 2.10, and clearly
none of properties (2.10.0) and (2.10.1) of Theorem 2.10 is satisfied by n.
Observation 2.10.iv. n ≥ 11 + 185FF5

5 and on−37,1 exists and on,1 = on−37,1 and
on,1 ≤ n− 63 and n < 12 + 9on,1.

Indeed n ≥ 11+185FF5
5 and on−37,1 exists [by noticing that on,1 is a remarkable

element and by using property (2.16.0) of Proposition 2.16]; on,1 = on−37,1 [by
noticing that on,1 is a remarkable element and by using property (2.16.2) of
Proposition 2.16]; on,1 ≤ n − 63 [by noticing that on,1 is a remarkable element and
by using property (2.16.3) of Proposition 2.16]; and n < 12+9on,1 [by noticing that
on,1 is a remarkable element and by using Proposition 2.18]. Observation 2.10.iv
follows.
Observation.2.10.v. Consider on,1 and look at φ(on,1) (see definitions 2.0 for the
equation of φ(on,1)). Then φ(on,1) is n conform (see definition 2.2 for the meaning
of n-conform).
Indeed, observing (by using Observation 2.10.i) then n is of type 37 and noticing (by
using Observation 2.10.iv) that on,1 = on−37,1 , then it becomes trivial to deduce that
all the hypotheses of assertion 2.3.1 of Remark 2.3 are satisfied; so the conclusion
of assertion 2.3.1 of Remark 2.3 is also satisfied; therefore φ(on,1) is n-conform.
Observation 2.10.v follows.
Observation.2.10.vi.Consider on,1 and look at φ(on,1). Then

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] ≡ 74 mod(185).

Otherwise [ we reason by reduction to absurd], clearly

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74 mod(185) (2 .10 .vi .0 ).

Now observe [by using Observation.2.10.iv] that

n < 12 + 9on,1 (2 .10 .vi .1 ),

and Remark [by using Observation.2.10.v ] that

φ(on,1) is n− conform (2 .10 .vi .2 ).

That being so, using (2.10.vi.2) and (2.10.vi.0) and (2.10.vi.1), then it becomes
trivial to deduce that φ(on,1) is n-conform and R[Fix[φ(on,1)]]+I[Fix[φ(on,1)]] 6≡
74 mod(185) and n < 12 + 9on,1; this contradicts Observation.2.10.ii. Observation
2.10.vi follows.
Observation 2.10.vii.Let on,1 [recall that on,1 is a remarkable element ] and look
at φ(on,1); now, via φ(on,1), consider φ(on−37,1) [this consideration gets sense,

360



I. A. G. Nemron - An Elementary Proof Of The Fermat Composite Conjecture...

since on−37,1 exists, by using Observation 2.10.iv]. Then R[Fix[φ(on−37,1)]] +
I[Fix[φ(on−37,1)]] 6≡ 74mod(185).

Indeed, this Observation is immediate, by recalling that on,1 is a remarkable
element and by using Proposition 2.17.
Observation 2.10.viii.Let on,1 and look at φ(on,1); now, via φ(on,1), consider
φ(on−37,1) [this consideration gets sense, since on−37,1 exists, by using Observation
2.10.iv]. Now put

Z ′(n) = i(−74n + 1369)(o3
n,1 − on,1 + 1)− 1808449.

Then φ(on−37,1) = φ(on,1) + Z ′(n) and Z ′(n) is n-
conform and
Fix[Z ′(n)] = 1369i(o3

n,1 − on,1 + 1)− 1808449 .
Indeed, observing (by using Observation 2.10.i) then n is of type 37 and noticing (by
using Observation 2.10.iv) that on,1 = on−37,1 , then it becomes trivial to deduce that
all the hypotheses of Proposition 2.11 are satisfied; so the conclusion of Proposition
2.11 is also satisfied; so the two properties (2.11.0) and (2.11.1) of Proposition 2.11
are simultaneously satisfied; therefore φ(on−37,1) = φ(on,1) + Z ′(n) ( by property
(2.11.0) of Proposition 2.11 ) and, Z ′(n) is n-conform and Fix[Z ′(n)] = 1369i(o3

n,1−
on,1 +1)−1808449 (by property (2.11.1) of Proposition 2.11 ). Observation 2.10.viii
follows.
Observation 2.10.ix. Let on,1 and look at φ(on,1). Now let Z ′(n) introduced in
Observation.2.10.viii.
Then R[Fix[φ(on,1) + Z ′(n)]] + I[Fix[φ(on,1) + Z ′(n)]] 6≡ 74 mod(185).
Indeed, observing (by using Observation.2.10.viii) that φ(on−37,1) = φ(on,1)+Z ′(n)
and noticing (by using Observation.2.10.vii) that
R[Fix[φ(on−37,1)]] + I[Fix[φ(on−37,1)]] 6≡ 74 mod(185), then it becomes trivial
to deduce that R[Fix[φ(on,1) + Z ′(n)]] + I[Fix[φ(on,1) + Z ′(n)]] 6≡ 74 mod(185)
.Observation 2.10.ix follows.
Observation 2.10.x.Let on,1 and look at φ(on,1). Now let Z ′(n) introduced in
Observation.2.10.viii. Then φ(on,1) + Z ′(n) is n-conform and Fix[φ(on,1) +
Z ′(n)] = Fix[φ(on,1)] + Fix[Z ′(n)].

Indeed, observing (by Observation 2.10.v) that φ(on,1) is n-conform and noticing
(by using Observation 2.10.viii) that Z ′(n) is n-conform, then, by using property
(2.7.1) of Remark 2.7, it becomes trivial to deduce that φ(on,1)+Z ′(n) is n-conform
and Fix[φ(on,1) + Z ′(n)] = Fix[φ(on,1)] + Fix[Z ′(n)]. Observation.2.10.x follows.
Observation 2.10.xi.Let on,1 and look at φ(on,1). Now let Z ′(n) introduced in
Observation.2.10.viii. Then R[Fix[φ(on,1)]] + R[Fix[Z ′(n)]] + I[Fix[φ(on,1)]] +
I[Fix[[Z ′(n)]] 6≡ 74mod(185)

Indeed, observing (by using Observation.2.10.x) that Fix[φ(on,1) + Z ′(n)] =
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Fix[φ(on,1)] + Fix[Z ′(n)], then it becomes trivial to deduce that

R[Fix[φ(on,1) + Z ′(n)]] = R[Fix[φ(on,1)] + Fix[Z ′(n)] ]

and
I[ Fix[φ(on,1) + Z ′(n)] ] = I[ Fix[φ(on,1)] + Fix[Z ′(n)] ] (b.).

Since it is trivial to see that R[ Fix[φ(on,1)] + Fix[Z ′(n)] ] = R[Fix[φ(on,1)]] +
R[Fix[Z ′(n)]] and I[ Fix[φ(on,1)] + Fix[Z ′(n)] ] = I[Fix[φ(on,1)]] + I[Fix[Z ′(n)]]
(because R[Fix[φ(on,1)] + Fix[Z ′(n)]] is the real part of Fix[φ(on,1)] + Fix[Z ′(n)]
and I[Fix[φ(on,1)]+Fix[Z ′(n)]] is the imaginary part of Fix[φ(on,1)]+Fix[Z ′(n)]),
then, using the previous two trivial equalities, it becomes immediate to deduce that
(b.) clearly says that

R[Fix[φ(on,1) + Z ′(n)]] = R[Fix[φ(on,1)]] + R[Fix[Z ′(n)]]

and
I[Fix[φ(on,1) + Z ′(n)]] = I[Fix[φ(on,1)]] + I[Fix[Z ′(n)]] (c.).

That being so, observe (by using Observation.2.10.ix) that

R[Fix[φ(on,1) + Z ′(n)]] + I[Fix[φ(on,1) + Z ′(n)]] 6≡ 74mod(185) (2 .10 .xi .1 ).

Now using the two equalities of (c.), then it becomes trivial to see that (2.10.xi.1)
clearly says that R[Fix[φ(on,1)]]+R[Fix[Z ′(n)]]+I[Fix[φ(on,1)]]+I[Fix[[Z ′(n)]] 6≡
74 mod(185).
Observation.2.10.xi follows.
Observation.2.10.xii.Let Z ′(n) introduced in Observation.2.10.viii and let on,1.
Now put

Z(n) = 1369i(o3
n,1 − on,1 + 1)− 1808449.

Then R[Fix[φ(on,1)]] + R[Z(n)] + I[Fix[φ(on,1)]] + I[Z(n)] 6≡ 74 mod(185).
Indeed look at Z(n) and Z ′(n), observing [by using Observation.2.10.viii]

that
Fix[Z ′(n)] = 1369i(o3

n,1−on,1 +1)−1808449, then it becomes trivial to deduce that

Fix[Z ′(n)] = Z(n) (2 .10 .xii .0 ).

Observe [by Observation.2.10.xi ] that

R[Fix[φ(on,1)]] + R[Fix[Z ′(n)]] + I[Fix[φ(on,1)]] + I[Fix[[Z ′(n)]] 6≡ 74mod(185)
(2 .10 .xii .1 ).

That being so, using equality (2.10.xii.0), then it becomes trivial to deduce that
(2.10.xii.1) clearly says that R[Fix[φ(on,1)]]+R[Z(n)]+ I[Fix[φ(on,1)]]+ I[Z(n)] 6≡
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74mod(185). Observation.2.10.xii follows.
Observation.2.10.xiii. Let Z(n) introduced in Observation.2.10.xii and let on,1.
Then R[Z(n)] + I[Z(n)] ≡ 0 mod(185).
Indeed let Z(n) introduced in Observation 2.10.xii; observing (by using Observation.2.10.iv)
that n ≥ 11+185FF5

5 , then it becomes immediate to deduce that all the hypotheses of
Example.3 of Recall 2.1 are satisfied; so the conclusion of Example.3 of Recall 2.1 is
also satisfied; consequently R[Z(n)]+I[Z(n)] ≡ 0 mod(185). Observation.2.10.xiii
follows.

These thirdteen simple observations made, Let on,1 and look at φ(on,1).
Now let Z(n) introduced in Observation.2.10.xii; then, by applying Observation.2.10.xii,
we have

R[Fix[φ(on,1)]] + R[Z(n)] + I[Fix[φ(on,1)]] + I[Z(n)] 6≡ 74mod(185) (2 .10 .xiv).

It is trivial to see that (2.10.xiv) clearly says that

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] + R[Z(n)] + I[Z(n)] 6≡ 74mod(185) (2 .10 .xv).

Now observe (by using Observation.2.10.xiii) that

R[Z(n)] + I[Z(n)] ≡ 0 mod(185) (2 .10 .xvi).

That being so, using congruence (2.10.xvi), then it becomes trivial to deduce
that (2.10.xv) implies that R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74mod(185) and this
contradicts Observation 2.10.vi. Theorem 2.10 follows.�

Theorem 2.10 immediately implies that there are infinitely many Fermat
composite numbers and the Fermat composite conjecture is only an obvious special
case of the Goldbach conjecture.
Corollary 2.19. Let n be of type 37 and let on,1; then 12 + 9on,1 > n.
Proof. Observe [by using Theorem 2.10] that at least one of the following two
properties (2.19.0) and (2.19.1) is satisfied by n.

on,1 ≥ n + 11 (2 .19 .0 );

φ(on,1) is n-conform and

R[Fix[φ(on,1)]] + I[Fix[φ(on,1)]] 6≡ 74mod(185)andn < 12 + 9on,1 (2 .19 .1 ).

Using (2.19.0) and (2.19.1) and all the previous, then it becomes trivial to deduce
that

on,1 ≥ n + 11 or n < 12 + 9on,1 (2 .19 .2 ).
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Now noticing [by using property (1.1.0) of Proposition 1.1] that on,1 > 10+185FF5
5

for every integer n ≥ 2 (in particular, for every n of type 37, we have on,1 >
10 + 185FF5

5 ), then using (2.19.2), it becomes immediate to deduce that in all the
cases, we have 12 + 9on,1 > n. �
Corollary 2.20. Let n be of type 37 and let on,1; then 10on,1 > n.
Proof. Indeed look at the quantities 12+9on,1 and 10on,1; noticing [by using property
(1.1.0) of Proposition 1.1] that
on,1 > 10+185FF5

5 for every integer n ≥ 2, then it becomes immediate to deduce that

10on,1 > 12 + 9on,1, where n is of type 37 (2 .20 .0 ).

That being so, observing [by Corollary 2.19] that

12 + 9on,1 > n, where n is of type 37 (2 .20 .1 ),

then, using properties (2.20.0) and (2.20.1), it becomes immediate to deduce that

10on,1 > n, where n is of type 37.

Corollary 2.20 follows. �

Theorem 2.21. The following two property are simulaneously satisfied.
(2.21.0). The Fermat composite conjecture is an obvious special case of the Goldbach
conjecture.
(2.21.1). There are infinitely many Fermat composite numbers .
Proof. (2.21.0). To simply prove property (2.21.0), we observe the following.
Observation 2.21.0.1. For every n of type 37, we have 30on,1 > g′′n+1.

Indeed observing ( by Corollary 2.20) that for every n of type 37, we have
10on,1 > n, then, using the previous inequality, it becomes trivial to deduce that for
every n of type 37, we have 30on,1 > 3n > 2n+4 > g′′n+1; consequently 30on,1 > g′′n+1.

This Observation made, recalling that n is of type 37, then (by using the
definition of type 37),

n is clearly of the form n = 37k where k is an integer ≥ 3 (2 .21 .0 .2 ).

Now using (2.21.0.2) and Observation 2.21.0.1 and property 1.2.4 of Proposition
1.2, it becomes trivial to deduce that the Fermat composite conjecture is an obvious
special case of the Goldbach conjecture. Property (2.21.0) follows.
(2.21.1). Observing ( by Corollary 2.20) that for every n of type 37, we have
10on,1 > n, then we immediately deduce that,

for every n of type 37, we have 30on,1 > n (2 .21 .1 .0 ).
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Now using (2.21.1.0) and property (1.2.3) of Proposition 1.2 [note (by the definition
of type 37) that n is of type 37 if n = 37k, where k is an integer ≥ 3], we immediately
deduce that there are infinitely many Fermat composite numbers. Property (2.21.1)
follows and Theorem 2.21 immediately follows.�
Remark 2.22. Via equation φ(on,1) given in definitions 2.0, then, Theorem 2.10
clearly shows that the Fermat composite conjecture that we have solved was only
related to the Goldbach conjecture and was also related to elementary complex
analysis mixting with elementary arithmetic calculus and elementary arithmetic
congruences. Consequently, the Fermat composite conjecture that we have solved,
was only simple combinatorial number theory problem.
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