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HOMOTOPY ANALYSIS METHOD FOR SOLVING
RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH

CONSTANT EFFORT HARVESTING BY USING TWO
PARAMETERS H1 AND H2

Safar Irandoust, Ahmad Golbabai, Hosein Kheiri and Davood
Ahmadian

Abstract. In this paper, we apply the homotopy analysis method (HAM)
to obtain approximate solution for the Ratio-dependent predator-prey system with
constant effort harvesting. We optimize the values of h1 and h2 by an Euclidean
residual for the system of equations. The validity of this method is verified, because it
agrees with Runge-Kutta (RKF78) in figures. The comparison between the results of
the proposed method and homotopy perturbation method(HPM) as well as Adomian
decomposition method (ADM), reveals this method is very effective and convenient.
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1. Introduction

One of the most interesting applications of systems of differential equations is the
predator-prey problem [1-15]. It was developed independently by Alfred Lotka and
Vito Volterra in the 1920’s, and is characterized by oscillations in the population size
of both predator and prey, with the peak of the predator’s oscillation lagging slightly
behind the peak of the prey’s oscillation. From then on, the dynamic relationship
between predators and their prey has long been and will continue to be one of
dominant themes in both ecology and mathematical ecology due to its universal
existence and importance. The model makes several simplifying assumptions.
1) The prey population will grow exponentially when the predator is absent.
2) The predator population will starve in the absence of the prey population (as
opposed to switching to another type of prey).
3) Predators can consume infinite quantities of prey.
4) There is no environmental complexity (in other words, both populations are
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moving randomly through a homogeneous environment).
The general case of predator-prey system is as follows:{

dx
dt = xg(x)− yf(x, y)− µx(x)x,
dy
dt = γf(x, y)y − µy(y)y,

(1)

which x(t) and y(t) represent the size of the prey and predator population respec-
tively at time t. g(x) is the per capita prey growth rate in the absence of the predator,
µx and µy are natural mortalities of prey and predator, respectively. f(x, y) is the
functional response, and γf(x, y) is the per capita production of predator due to
predation, which is often called the numerical response. The functional response
plays a main role in system (1). The knowledge of this function determines the dy-
namics of the whole system and the transfer of the biomass in the predation because
it is proportional to the numerical response.

Now by letting f(x, y) = x/(x + y), µx(x) = r, µy(y) = e and g(x) = (1 − x)
we obtain the special case of predator-prey system called predator-prey system with
constant effort harvesting which formulated as follows:

dx
dt = x(t)(1− x(t))− bx(t)y(t)

x(t)+y(t) − rx(t),
dy
dt = cx(t)y(t)

x(t)+y(t) − ey(t),
(2)

x(0) = x0, y(0) = y0,

where x0 and yo are the initial size of the prey and predator population.
It is obvious that the harvesting activity decreases the predator population indirectly
by reducing the availability of the prey to the predator.

We rewrite the expanding system equations (2) as follows:
dx
dt = x(t)(1− x(t))− bf(t)− rx(t),
dy
dt = cf(t)− ey(t),
f(t) = x(t)y(t)

x(t)+y(t) ,

(3)

x(0) = x0, y(0) = y0, f(0) =
x0y0

x0 + y0
. (4)

Now we want to approximate these equations system by HAM. This method firstly
was developed by S. J. Liao in 1992 and was used by him and other scientist [16-20],
its results have negligible differences with Runge-Kutta (RKF78) in comparison fig-
ures. In addition, the authors use an Euclidean residual and determine the auxiliary
parameters h1 and h2 so that the residual approaches to zero. Here, HAM is applied
on (3) and the results of this method are compared with the results of homotopy
perturbation method (HPM) and Adomian decomposition method (ADM) [21-23].
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2.Homotopy Analysis Solution

For convenience of the readers, we will first present a brief description of the standard
HAM. To achieve our goal, let us assume the nonlinear differential equations be in
the form of

Nj [u1(t), u2(t), ..., us(t)] = 0, j = 1...n, (5)

where Nj are nonlinear operators, t is an independent variable, ui(t) are unknown
functions. By means of generalizing the traditional homotopy method, Liao’s so
called zeroth-order deformation equation will be

(1− q)Lj [φi(t, q)− ui0(t)] = qhkH(t)Nj [φ1(t, q), φ2(t, q), ..., φs(t, q)], (6)
i = 1...s, j = 1, ...n, k ≤ j

where q ∈ [0, 1] is an embedding parameter, H(t) is an auxiliary function, hk are
nonzero auxiliary parameters, Lj is an linear operator, ui,0(t) are initial guesses of
ui(t) and φi(t; q) are unknown functions. It is important to note that, one has great
freedom to choose auxiliary objects such as H(t) and Lj in HAM; this freedom plays
an important role in establishing the keyston of validity and flexibility of HAM as
shown in this paper. Obviously, when q = 0 and q = 1, both

φi(t, 0) = ui,0(t) and φi(t, 1) = ui(t), (7)

hold. Thus as q increases from 0 to 1, the solutions φi(t; q) changes from the initial
guesses ui,0(t) to the solutions ui(t). Expanding φi(t; q) in Taylor series with respect
to q, one has

φi(t, q) = ui,0(t) +
+∞∑
s=1

ui,m(t)qm, i = 1, ..., s. (8)

where

ui,m(t) =
1
m!

∂mφi(t, q)
∂qm

|q=0, i = 1, ...s. (9)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters hk, and
the auxiliary functions are so properly chosen, then the series (8) converges at q = 1,
one has

φi(t, 1) = ui,0(t) +
+∞∑
s=1

ui,s(t), i = 1, ...s, (10)
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which must be one of the solutions of the original nonlinear equations, as proved by
Liao.

Define the vectors

~ui,n(t) = {ui,0(t), ui,1(t), ..., ui,n(t)}, i = 1, ..., s. (11)

Differentiating (16), m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called N th-order
deformation equation:

L[ui,m(t)− χmui,m−1(t)] = hiRi,m(~ui,m−1), i = 1, ..., s. (12)

Where

Ri,m(~ui,m−1) =
1

(m− 1)!
∂m−1Nj [φi(t, q)]

∂qm−1
|q=0, j = 1, ...n, i = 1, ..., s. (13)

and

χm =

{
0 m ≤ 1,
1 m > 1.

(14)

It shouldFor convenience of the readers, we will first present a brief description of
the standard HAM.
To achieve our goal, let us assume the nonlinear differential equations be in the form
of

Nj [u1(t), u2(t), ..., us(t)] = 0, j = 1...n, (15)

where Nj are nonlinear operators, t is an independent variable, ui(t) are unknown
functions. By means of generalizing the traditional homotopy method, Liao’s so
called zeroth-order deformation equation will be

(1− q)Lj [φi(t, q)− ui0(t)] = qhkH(t)Nj [φ1(t, q), φ2(t, q), ..., φs(t, q)], (16)
i = 1...s, j = 1, ...n, k ≤ j

where q ∈ [0, 1] is an embedding parameter, H(t) is an auxiliary function, hk are
nonzero auxiliary parameters, Lj is an linear operator, ui,0(t) are initial guesses of
ui(t) and φi(t; q) are unknown functions. It is important to note that, one has great
freedom to choose auxiliary objects such as H(t) and Lj in HAM; this freedom plays
an important role in establishing the keyston of validity and flexibility of HAM as
shown in this paper. Obviously, when q = 0 and q = 1, both

φi(t, 0) = ui,0(t) and φi(t, 1) = ui(t), (17)
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hold. Thus as q increases from 0 to 1, the solutions φi(t; q) changes from the initial
guesses ui,0(t) to the solutions ui(t). Expanding φi(t; q) in Taylor series with respect
to q, one has

φi(t, q) = ui,0(t) +
+∞∑
s=1

ui,m(t)qm, i = 1, ..., s, (18)

where

ui,m(t) =
1
m!

∂mφi(t, q)
∂qm

|q=0, i = 1, ...s. (19)

If the auxiliary linear operator, the initial guesses, the auxiliary parameters hk, and
the auxiliary functions are so properly chosen, then the series (8) converges at q = 1,
one has

φi(t, 1) = ui,0(t) +
+∞∑
s=1

ui,s(t), i = 1, ...s, (20)

which must be one of the solutions of the original nonlinear equations, as proved by
Liao.Define the vectors

~ui,n(t) = {ui,0(t), ui,1(t), ..., ui,n(t)}, i = 1, ..., s. (21)

Differentiating (16), m times with respect to the embedding parameter q and then
setting q = 0 and finally dividing them by m!, we have the so-called N th-order
deformation equation:

L[ui,m(t)− χmui,m−1(t)] = hiRi,m(~ui,m−1), i = 1, ..., s, (22)

where

Ri,m(~ui,m−1) =
1

(m− 1)!
∂m−1Nj [φi(t, q)]

∂qm−1
|q=0, j = 1, ...n, i = 1, ..., s. (23)

and

χm =

{
0 m ≤ 1,
1 m > 1.

(24)

It should be emphasized that ui,m(t) is governed by the linear equations (16) and
(20) with the linear boundary conditions that come from the original problem. These
equations can be easily solved by sym be emphasized that ui,m(t) is governed by the
linear equations (16) and (20) with the linear boundary conditions that come from
the original problem. These equations can be easily solved by symbolic computation
softwares such as Maple and Mathematica.
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3.Applications

In this section, we will apply the HAM on (3). The solution of x(t), y(t) and
f(t) can be expressed by a set of base function

{tn, n = 0, 1, ...} (25)

as following:

vi(t) =
+∞∑
n=0

ci,n(h1, h2)tn, i = 1, 2, 3, (26)

where ci,n(h1, h2) are coefficient to be determined and vi(t) for i = 1...3, represent
the solution of x(t) , y(t) and f(t). In HAM, we have the so-called rule of solution
expression, i.e. the solution of (15) must be expressed in the same form as (26).
Furthermore, under the first rule of solution expression and according to the con-
dition in (3), it is straightforward to choose the initial approximation of x(t), y(x)
and f(t) as:

x0(t) = x0, y0(t) = y0, f(0) =
x0y0

x0 + y0
(27)

and the auxiliary linear operator :

L[φi(t, q)] =
∂φi(t, q)

∂t
, i = 1, 2 (28)

as well as:

L[φ3(t, q)] = φ3(t, q), (29)

it possesses the property:

L[ci] = 0, (30)

where ci (i = 1, 2) are integral constants. Moreover, Eqs.(3) suggest to define the
nonlinear operators

N1[φ1(t, q), φ3(t, q)] =
∂φ1(t, q)

∂t
− φ1(t, q)[1− φ1(t, q)] + bφ3(t, q) + rφ1(t, q),

N2[φ2(t, q), φ3(t, q)] =
∂φ2(t, q)

∂t
− cφ3 + eφ2(t, q), (31)

N3[φ1(t, q), φ2(t, q)] =
φ1(t, q)φ2(t, q)

φ1(t, q) + φ2(t, q)
.
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Using the above definition, we construct the zeroth-order deformation equations

(1− q)L[φ1(t, q)− x0(t)] = qh1N1[φ1(t, q), φ3(t, q)],
(1− q)L[φ2(t, q)− y0(t)] = qh1N2[φ2(t, q), φ3(t, q)], (32)
(1− q)L[φ3(t, q)− f0(t)] = qh2N3[φ1(t, q), φ2(t, q)].

Obviously, when q = 0 and q = 1,we have

φ1(t, 0) = x0(t), φ1(t, 1) = x(t), (33)
φ2(t, 0) = y0(t), φ2(t, 1) = y(t), (34)
φ3(t, 0) = f0(t), φ3(t, 1) = f(t). (35)

Therefore, as the embedding parameter q increases from 0 to 1, φi(t, q) varies from
the initial guesses x0(t), y0(t) and f0(t) to the solution x(t), y(t), and f(t) respec-
tively. Expanding φi(t, q) in Taylor series with respect to q one has

φ1(t, q) = x0(t) +
+∞∑
m=1

xm(t)qm,

φ2(t, q) = y0(t) +
+∞∑
m=1

ym(t)qm, (36)

φ3(t, q) = f0(t) +
+∞∑
m=1

fm(t)qm,

where

xm(t) =
1
m!

∂mφ1(t, q)
∂qm

|q=0,

ym(t) =
1
m!

∂mφ2(t, q)
∂qm

|q=0, (37)

fm(t) =
1
m!

∂mφ3(t, q)
∂qm

|q=0.

Define the vectors:

~xn(t) = {x0(t), x1(t), ..., xn(t)},
~yn(t) = {y0(t), y1(t), ..., yn(t)}, (38)
~fn(t) = {f0(t), f1(t), ..., fn(t)}.

So the N th-order deformation equations are:

L[xm(t)− χmxm−1(t)] = h1R1,m(~xm−1(t)),
L[ym(t)− χmym−1(t)] = h1R2,m(~ym−1(t)), (39)

L[fm(t)− χmfm−1(t)] = h2R3,m(~fm−1(t)),
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where

R1,m(~xm−1(t)) =
1

(m− 1)!
∂m−1N1[φ1(t, q), φ3(t, q)]

∂qm−1
|q=0,

R2,m(~ym−1(t)) =
1

(m− 1)!
∂m−1N2[φ2(t, q), φ3(t, q)

∂qm−1
|q=0, (40)

R3,m(~fm−1(t)) =
1

(m− 1)!
∂m−1N1[φ1(t, q), φ2(t, q)

∂qm−1
|q=0.

Now, the solution of the N th-order deformation equations (39) for m ≥ 1 becomes

xm(t) = χmxm−1(t) + h1{
∫ t

0
[x′m−1(τ)− xm−1(τ)

+
m−1∑
k=0

xk(τ)xm−1−k(τ) + fm−1(τ) + rxm−1(τ)]dτ}+ c1, (41)

ym(t) = χmym−1(t) + h1

∫ t

0
[y′m−1(τ)− cfm−1(τ) + eym−1(τ)]dτ + c2, (42)

fm(t) = χmfm−1(t) + h2(fm−1(t)−
∂m−1[ φ1(t,q)φ2(t,q)

φ1(t,q)+φ2(t,q) ]

∂qm−1
|q=0), (43)

where the integration constants ci(i = 1, 2) are determined by the initial conditions
(4). Then we obtain some sequences, for approximating the problem :

x0(t) = 0.5,

x1(t) = −0.05h1t, (44)
x2(t) = −0.05h1t + 0.05h2

1t− 0.0025h2
1t

2,

...
, (45)

y0(t) = 0.3,

y1(t) = 0.1125h1t, (46)
y2(t) = 0.1125h1t + 0.1125h2

1t + 0.028125h2
1t

2,

...
and (47)

f0(t) = 0.1875,

f1(t) = 0, (48)
f2(t) = −0.0369140625h1h2t.
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Finally, we obtain the exact solution in the form of :

x(t) =
∞∑

m=0

xm(t),

y(t) =
∞∑

m=0

ym(t), (49)

f(t) =
∞∑

m=0

fm(t).

4.Optimization method of the homotopy parameters and discussions

Some researchers like Kazuki Yabushita, Mariko Yamashita and Kazuhiro Tsuboi
investigate the suitable values for h1, h2 by defining a residual for their nonlinear
system and in this section we follow this way [24]. Here, we show the optimiza-
tion method of the homotopy parameters h1, h2 for the order of approximation N.
The homotopy parameter is an arbitrary constant when N is infinite; however, the
optimum values of homotopy parameter should be found under the finite number
of N. This method can be applied to the problem without the exact solution. The
N th-order approximate solutions of (32) are defined as follows:

xN (t) =
N∑

m=0

xm(t),

yN (t) =
N∑

m=0

ym(t), (50)

fN (t) =
N∑

m=0

fm(t).

Now ,We consider a residual of the Nth-order approximate solutions for (3). The
residual is expressed as follows:

εN (h1, h2) = [{
∫ 2

0

dxN (t)
dt

− xN (t)(1− xN (t)) + bfN (t) + rxN (t)}2

+{
∫ 2

0

dyN (t)
dt

− cfN (t) + eyN (t)}2]
1
2 . (51)

Ultimately, we consider two cases of Ratio-dependent predator-prey system with
constant effort harvesting :
case 1: b = 0.8, c = 0.2, e = 0.5, r = 0.1 and initial conditions x0 = 0.5, y0 = 0.3,
case 2: b = 0.5, c = 0.5, e = 0.1, r = 0.2 and initial conditions x0 = 0.5, y0 = 0.2.
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Figure 1: (Top):Contours of log10ε3(h1, h2), (Bottom): Variations of x(t) and
y(t) (x0 = 0.5, y0 = 0.3).
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Figure 2: (Top):Contours of log10ε3(h1, h2), (Bottom): Variations of x(t) and
y(t) (x0 = 0.5, y0 = 0.2) .
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The figures for each cases are drawn and the solutions are represented and com-
pared with other methods. First we consider the case 1 and draw log10ε3(h1, h2)
to obtain suitable values for h1 and h2. according to this diagram by choosing
h1 = −.81, h2 = −1.02 , we can accelerate our accuracy. Now we show our results
in this diagram: Similarly, the process of case 2, h1 = −.8, h2 = −1.17 are found
likely.

comparing the results with HPM and ADM shows that this method is more
effective, moreover its validity verified by approaching to (RKF78).

Conclusion

In this letter, we use the HAM to approximate system of the Ratio-dependent
Predator-prey equations. We defined an Euclidean residual for the mentioned sys-
tem and obtained optimal values for h1 and h2.The optimum values of h1 and h2 for
the order of approximation N are determined successfully. Ultimately, we show the
present solution has sufficient validity because it agrees with RKF78 solution and
has high accuracy respect to HPM and ADM methods.
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