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Abstract. Let S = M o(G, P, I) be a Rees matrix semigroup with zero over
a group G, we show that the approximate amenability of `1(S) is equivalent to its
amenability whenever the group G is amenable and the index set I is finite.
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1. Introduction

In [8], Esslamzadeh introduced a new category of Banach algebras, l1-Munn al-
gebras, which he used as a tool in the study of semigroup algebras. He characterized
amenable l1-Munn algebras and also semisimple ones in this category. He also com-
pared l1-Munn algebras with some other well-known algebras and investigated some
of their basic structural properties. In particular, he showed that the amenabilty
of l1-Munn algebra M(A,P, I, J) is equivalent to the amenability of the Banach
algebra A whenever I and J are finite index sets and the sandwich matrix P is
invertible.

In [5], Dales, Ghahramani, and Gronbaek introduced the concept of n-weak
amenability for Banach algebras for n ∈. They determined some relations between
m- and n-weak amenability for general Banach algebras and for Banach algebras
in various classes, and proved that, for each n ∈, (n + 2)- weak amenability always
implies n-weak amenability. Let A be a weakly amenable Banach algebra. Then it
was proved in [5] that in the case where A is an ideal in its second dual (A′′, ), A
is necessarily (2m − 1)-weakly amenable for each m ∈. The authors of [5] asked
the following questions: (i) Is a weakly amenable Banach algebra necessarily 3-
weakly amenable? (ii) Is a 2-weakly amenable Banach algebra necessarily 4-weakly
amenable? A counter-example resolving question (i) was given by Zhang in [17], but
it seems that question (ii) is still open.

It was also shown in [[5], Corollary 5.4] that for certain Banach space E the
Banach algebra N (E) of nuclear operators on E is n-weakly amenable if and only
if n is odd.
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Another variation of the notion of amenability for Banach algebras was also
introduced by Ghahramani and Loy in [10]. Let A be a Banach algebra and let X
be a Banach A-bimodule. A derivation D : A → X is approximately inner if there
is a net (xα) in X such that

D(a) = limα(a · xα − xα · a) (a ∈ A),

the limit being taken in (X, ‖.‖). The Banach algebra A is approximately amenable
if, for each Banach A-bimodule X, every continuous derivation D : A → X ′ is
approximately inner.

The basic properties of approximately amenable Banach algebras were estab-
lished in [10], see also [2]. Certainly every amenable Banach algebra is approxi-
mately amenable; a commutative, approximately amenable Banach algebra is weakly
amenable; examples of commutative, approximately amenable Banach algebras which
are not amenable were given in [[10], Example 6.1]. Characterizations of approxi-
mately amenable Banach algebras were also established in [10], they are analogous
to the characterization of amenable Banach algebras as those with a bounded ap-
proximate diagonal.

A class of Banach algebras that was not considered in [5] is the Banach algebras
on semigroups. In [15], Mewomo considered this class of Banach algebras by exam-
ining the n-weak amenability of some semigroup algebras. In particular, he showed
that l1(S) is (2k + 1)-weakly amenable for k ∈+ and a Rees matrix semigroup S.

In this paper, we shall continue our study on Rees matrix semigroup algebra
with relation to its amenability and approximate amenability. We shall also extend
the results in [8] on l1-Munn algebras.

2. Preliminaries

First, we recall some standard notions; for further details, see [4], [11], and [3] .
Let A be an algebra. Let X be an A-bimodule. A derivation from A to X is a

linear map D : A → X such that

D(ab) = Da · b + a · Db (a, b ∈ A) .

For example, δx : a → a · x− x · a is a derivation; derivations of this form are the
inner derivations.

Let A be a Banach algebra, and let X be an A-bimodule. Then X is a Banach
A-bimodule if X is a Banach space and if there is a constant k > 0 such that

a · x ≤ ka x, x · a ≤ ka x (a ∈ A, x ∈ X) .
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By renorming X, we may suppose that k = 1. For example, A itself is Banach
A-bimodule, and X ′, the dual space of a Banach A-bimodule X, is a Banach A-
bimodule with respect to the module operations defined by

〈x, a · λ〉 = 〈x · a, λ〉, 〈x, λ · a〉 = 〈a · x, λ〉 (x ∈ X)

for a ∈ A and λ ∈ X ′; we say that X ′ is the dual module of X. Successively, the
duals X(n) are Banach A-bimodules; in particular A(n) is a Banach A-bimodule for
each n ∈. We take X(0) = X.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then Z 1(A,X)
is the space of all continuous derivations from A into X, N 1(A,X) is the space
of all inner derivations from A into X, and the first cohomology group of A with
coefficients in X is the quotient space

H 1(A,X) = Z 1(A,X)/N 1(A,X) .

The Banach algebra A is amenable if H 1(A,X ′) = {0} for each Banach A-bimodule
X and weakly amenable if H 1(A,A′) = {0}. Further, as in [5], A is n-weakly
amenable for n ∈ if H 1(A,A(n)) = {0}, and A is permanently weakly amenable if it
is n-weakly amenable for each n ∈ . For instance, each C∗-algebra is permanently
weakly amenable [[5], Theorem 2.1].

Arens in [1] defined two products, and , on the bidual A′′ of Banach algebra
A; A′′ is a Banach algebra with respect to each of these products, and each algebra
contains A as a closed subalgebra. The products are called the first and second
Arens products on A′′, respectively. For the general theory of Arens products, see
[4]-[6].

Let S be a non-empty set. Then

` 1(S) =

{
f ∈S :

∑
s∈S

|f(s)| < ∞
}

,

with the norm 1 given by ‖f‖1 =
∑

s∈S |f(s)| for f ∈ ` 1(S). We write δs for the
characteristic function of {s} when s ∈ S.

Now suppose that S is a semigroup. For f, g ∈ ` 1(S), we set

(f ? g)(t) =
{∑

f(r)g(s) : r, s ∈ S, rs = t
}

(t ∈ S)

so that f ? g ∈ ` 1(S). It is standard that (` 1(S), ?) is a Banach algebra, called
the semigroup algebra on S. For a further discussion of this algebra, see [4], [6], for
example. In particular, with A = ` 1(S), we identify A′ with C(βS), where βS is the
Stone-Čech compactification of S, and (A′′, ) with (M(βS), ), where M(βS) is the
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space of regular Borel measures on βS of S; in this way, (βS, ) is a compact, right
topological semigroup that is a subsemigroup of (M(βS), ) after the identification
of u ∈ βS with δu ∈ M(βS).

Let S be a semigroup, and let o ∈ S be such that so = os = o; (s ∈ S). Then
o is a zero for the semigroup S. Suppose that o /∈ S; set So = S ∪ {o}, and define
so = os = o (s ∈ S) and o2 = o. Then So is a semigroup containing S as a
subsemigroup; we say that S is formed by adjoining a zero to S.

We recall that S is a right zero semigroup if the product in S is such that

st = t (s, t ∈ S) .

In this case, f ? g = ϕS(f)g (f, g ∈ ` 1(S)).
Let S be a semigroup. we recall that S is regular if, for each s ∈ S, there exists

t ∈ S with sts = s. S is an inverse semigroup if for every s ∈ S there is a unique
s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. An element p ∈ S is an idempotent if
p2 = p; the set of idempotents of S is denoted by E(S). Let S be a semigroup with
a zero 0. Then an idempotent p is primitive if p 6= 0 or q = 0 whenever q ∈ E(S)
with q ≤ p, where ≤ is partially ordered on E(S) defined as p ≤ q if p = pq = qp for
every p, q ∈ E(S). S is 0-simple if S[2] 6= {0} and the only ideals in S are {0} and S,
and S is completely 0-simple if it is 0-simple and contains a primitive idempotent.

3. Approximate amenability of l1-Munn algebras

Let A be a unital algebra, let I and J be arbitrary index sets, and let P = (ai,j)
be a J × I nonzero matrix over A. Then M(A,P, I, J) the vector space of all I × J
matrices over A is an algebra for the product

a ◦ b = aPb (a, b ∈M(A,P, I, J))

(in the sense of matrix products). This is the Munn algebra over A with sandwich
matrix P , and it is denoted by

A = M(A,P, I, J) .

Now suppose that A is a unital Banach algebra and that each non-zero element
in P has norm 1. Then M(A,P, I, J) is also a Banach algebra for the norm given
by (3.1)

(aij) =
∑
{aij : i ∈ I j ∈ J ((aij) ∈M(A,P, I, J)) . (1)

These Banach algebras are those defined by Esslamzadeh in [[8], Definition 3.1] called
l1-Munn algebra with the sandwich matrix P. When J = I, we denote M(A,P, I, J)
by M(A,P, I), and when J = I with P an identity I × I matrix over A, we denote
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M(A,P, I, J) by M(A, I). Also we denote M(, I) simply by M(I) and in particular
when |I| = n < ∞,M(I) is the algebra Mn of n× n complex matrices.

We may make the following assumptions if necessary : each non-zero element of
P is invertible, and P has no zero rows or columns.

The following useful results are from [8] on l1-Munn algebras.
Lemma 3.1 Every u ∈M(I)⊗̂A has a unique expression of the form

u =
∑

i,j∈I εij ⊗ aij , aij ∈ A.

Lemma 3.2 M(A, I) is isometrically algebra isomorphic to M(I)⊗̂A.

The next result is well-known for the case that I is finite, see [[6], Theorem 2.7].
The general case can be proved with the same technique and using Lemmas 3.1 and
3.2.

Theorem 3.3 Let A be a unital Banach algebra.
(i) The Banach algebra M(A, I) is amenable if and only if A is amenable.
(ii) The Banach algebra M(A, I) is weakly amenable if and only if A is weakly
amenable.

We recall that a Banach algebra A is super-amenable if H 1(A,X) = {0} for each
Banach A-bimodule X and that a diagonal operator π : A⊗̂A → A is defined as
π(a⊗̂b) = ab (a, b ∈ A). m ∈ A⊗̂A is called a diagonal for A if a ·m −m · a = 0
and aπ(m) = a. A is super-amenable if and only if A has a diagonal and A⊗̂B
is super-amenable if A and B are super amenable, see page 84 of [16] for further
details. Since Mn has a diagonal, then it is super-amenable. With this, we have the
next result.

Theorem 3.4 let A be a super-amenable Banach algebra, then M(A,P, I, J) is
super-amenable whenever I and J are finite and P is invertible.

Proof. Since I and J are finite and P is invertible, then M(A,P, I, J) is topo-
logically algebra isomorphic to Mn⊗̂A for n = |I| = |J | by Lemma 3.2 above and
Lemma 3.5 of [8], and so, it is super-amenable.

4. Approximate amenability of Ress semigroup algebras

Let S be a semigroup. It is not known in general when the semigroup algebra
` 1(S) is approximately amenable; partial result is given in [[9], Theorem 9.2]. Thus
we cannot determine when ` 1(S) is approximately amenable. Some known structural
implications of amenability of ` 1(S) for an arbitrary semigroup S are given below.

Theorem 4.1 let S be a semigroup with ` 1(S) amenable. Then
(i) E(S) is finite [[3], Theorem 2]
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(ii) S is regular [[3], Theorem 2]
(iii) ` 1(S) has an identity [[6], Corollary 10.6].

Here we give some special cases; we describe Rees semigroups, and show that,
for each such semigroup S, the approximate amenability of ` 1(S) is equivalent to
its amenability whenever the index set I is finite and the group G is amenable.

Rees semigroups are described in [[11], §3.2] and [[6], Chapter 3]. Indeed, let
G be a group, and let I, J be arbitrary nonempty set; the zero adjoined to G is
o. A Rees semigroup has the form S = M(G, P, I, J); here P = (aij) is a J × I
matrix over G, the collection of I × J matrices with components in G. For x ∈ G,
i ∈ I, and j ∈ J , let (x)ij be the element of M(G o, I, j) with x in the (i, j)th. place
and o elsewhere. As a set, S consists of the collection of all these matrices (x)ij .
Multiplication in S is given by the formula

(x)ij(y)k` = (xajky)i` (x, y ∈ G, i, k ∈ I, j, ` ∈ J) ;

it is shown in [[11], Lemma 3.2.2] that S is a semigroup.
Similarly, we have the semigroup M o(G, P, I, J), where the elements of this

semigroup are those of M(G, P, I, J), together with the element o, identified with
the matrix that has o in each place (so that o is the zero of M o(G, P, I, J)), and
the components of P are now allowed to belong to G o. The matrix P is called
the sandwich matrix in each case. The semigroup M o(G, P, I, J) is a Rees matrix
semigroup with a zero over G.

We write M o(G, P, I) for M o(G, P, I, I) in the case where J = I.
The above sandwich matrix P is regular if every row and column contains at

least one entry in G; the semigroup M o(G, P, I, J) is regular as a semigroup if and
only if the sandwich matrix is regular.

For the Rees matrix semigroup S = M o(G, P, I), suppose P = (aij), where
aii = eG (i ∈ I) and aij = 0 (i 6= j), so that P = IG(I) is the I × I identity
matrix. Then we set M o(G, P, I) = M o(G, I). With this notation, we have the
next result.

Proposition 4.2 let S = M o(G, I) be a Rees matrix semigroup with a zero over
a group G with index set I. Then `1(S) is amenable if and only if G is amenable
and I is a finite set.
Proof. Suppose the index set I is infinite. Since {(e)ii : i ∈ I} ⊂ E(S) where e is the
identity element of G and E(S) is the set of idempotents in S, then E(S) is infinite
since I is suppose to be infinite. Since S is inverse, then `1(S) is not amenable by
using the remark on page 143 of [7].

As in [6], let S = M o(G, P, I, J) be a Rees matrix semigroup with zero over a
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group G with index sets I and J and P a regular sandwich matrix. We set

N(P ) = {(j, k) ∈ I × J : ajk 6= 0}

and
Z(P ) = {(j, k) ∈ I × J : ajk = 0}.

For i ∈ I and j ∈ J, let eij = (e)ij where e is the identity element of G. The elements
eij are the matrix units of S. An idempotent other than o of M o(G, P, I, J) has the
form (a−1

jk )kj , where (j, k) ∈ N(P ), and so

|E(S)| = |N(P )|+ 1

if the index sets I and J are finite and E(S) is infinite if I and J are infinite. In
particular, in the case where J = I and P = IG(I) and S = M o(G, I), then

|E(S)| = |I|+ 1

if I is finite and E(S) is infinite if the index set I is infinite. With this, we give a
generalization of proposition 4.2.

Proposition 4.3 let S = M o(G, P, I) be a Rees matrix semigroup with zero
over a group G and a regular sandwich matrix P with index set I. Then `1(S) is
amenable if and only if G is amenable and I is finite.

Proof. Suppose the index set I is infinite, then E(S) is infinite with the above
explaination. Since `1(S) is inverse, then `1(S) is not amenable by the remark on
page 143 of [7].

We next consider the approximate amenability of `1(S) for S = M o(G, P, I, J).

Lemma 4.4 Let S be any infinite set, then `1(S) is not approximately amenable.

Proof. Suppose `1(S) is approximately amenable. Since S is infinite, there exists
a continuous epimorphism ϕ : `1(S) → `1(), and so `1() is approximately amenable
using proposition 2.2 of [10]. This is a contradiction because `1() does not have a left
approximate identity, so by [[10], Lemma 2.2], `1() is not approximately amenable.

Proposition 4.5 Let S = M o(G, P, I) be a Rees matrix semigroup with zero
over a group G with an infinite index I. Then `1(S) is not approximately amenable.

Proof. Clearly S is infinite if I is infinte. Thus the result follows from Lemma
4.4.
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Theorem 4.6 Let S = M o(G, P, I) be a Rees matrix semigroup with a zero over
a group G and a regular sandwich matrix P with index set I. Then the following are
equivalent
(i) `1(S) is amenable
(ii) `1(S) is approximately amenable
(iii) G is amenable and I is finite.

Proof. The implication (i) ⇒ (ii) is clear, while the implications (iii) ⇔ (i) is
proposition 4.3. We only need to prove the implication (ii) ⇒ (iii).
Suppose `1(S) is approximately amenable, then I is not infinite by proposition 4.5,
so we conclude that I is finite. We finally prove that G is amenable. Since `1(S)
is approximately amenable, then `1(S1) is approximately amenable by [[10], Propo-
sition 2.4], where `1(S1) is the unitization of `1(S) and S1 = S ∪ {1} such that
s ·1 = 1 ·s = s (s ∈ S1) and s · t = st (s, t ∈ S). And so by [[10], Theorem 2.1(b)],
there is a net (Mv) ⊂ (`1(S1)⊗̂`1(S1))∗∗ such that for every s ∈ S1,
δs ·Mv −Mv · δs → 0 and π∗∗(Mv) = δ1.
Let io ∈ I be fixed and to each ϕ ∈ `∞(G), we define ϕ̃ ∈ `∞(S1 × S1) by

ϕ̃(s, t) =

 ϕ(g) if t = (g)ioio ,

1 otherwise
For each v, define 〈ϕ, mv〉 = 〈ϕ̃, Mv〉. Thus,

〈1,mv〉 = 〈1̃,Mv〉 = 〈1, π∗∗(Mv)〉 = 〈1, δ1〉 = 1.

For g ∈ G, we have

(
ϕ̃ · δ(g)ioio

)
(s, t) = ϕ̃ (s, (g)ioiot) =

 ϕ(gh) if t = (h)ioio ,

1 otherwise

and

˜ϕ · δg(s, t) =

 (ϕ · δg)(h) if t = (h)ioio ,

1 otherwise
=

 ϕ(gh) if t = (h)ioio ,

1 otherwise

Thus, ϕ̃ · δ(g)ioio = ˜ϕ · δg.
Similarly, δ(g)ioio · ϕ̃ = ϕ̃.
And so, for each g ∈ G, ϕ ∈ `∞(G) and v,

〈ϕ · δg − ϕ, mv〉 = 〈 ˜ϕ · δg − ϕ̃, Mv〉
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= 〈ϕ̃ · δ(g)ioio − δ(g)ioio · ϕ̃, Mv〉

〈ϕ̃, δ(g)ioio ·Mv −Mv · δ(g)ioio〉

≤ ‖δ(g)ioio ·Mv −Mv · δ(g)ioio‖‖ϕ‖∞.

Thus, ‖δg ·mv −mv‖ → 0.
Let m be a w∗-cluster point of (mv). By passing to a subnet, we may suppose that
m = w∗− limvmv. From ‖δg ·mv −mv‖ → 0, we have δg ·m = m. And so, for every
ϕ ∈ `∞(G), g ∈ G, we have

〈ϕ · δg,m〉 = 〈ϕ, δg ·m〉 = 〈ϕ, m〉.

By using [16, Theorem 1.1.9], it easily follows that G is amenable.
Remark 4.7 Theorem 4.6 shows that for a regular Rees matrix semigroup S =

M o(G, P, I) with zero over a group G, the approximate amenability of `1(S) is
equivalent to its amenability in a case where G is amenable and I is finite.
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