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APPLICATIONS OF SIMULATION METHODS TO BARRIER
OPTIONS DRIVEN BY LÉVY PROCESSES
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Abstract. In this paper, we apply a mixed Monte Carlo and Quasi-Monte
Carlo method, which we proposed in a previous paper, to problems from mathe-
matical finance. We estimate by simulation the Up-and-Out barrier options and
Double Knock-Out barrier options. We assume that the stock price of the under-
laying asset S = S(t) is driven by a Lévy process L(t). We compare our estimates
with the estimates obtained by using the Monte Carlo and Quasi-Monte Carlo me-
thods. Numerical results show that an important improvement can be achieved by
using the mixed method.
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1. Introduction

The valuation of financial derivatives is one of the most important problems from
mathematical finance. The risk-neutral price of such a derivative can be expressed
in terms of a risk-neutral expectation of a random payoff. In some cases, the expec-
tation is explicitly computable, such as the Black & Scholes formula for pricing call
and put options on assets modeled by a geometric Brownian motion. However, if we
consider call or put options written on assets with non-normal returns, there exists
no longer closed form expressions for the price, and therefore numerical methods
are involved. Among these methods, Monte Carlo (MC) and Quasi-Monte Carlo
(QMC) methods play an increasingly important role.

One of the first applications of the MC method in this field appeared in Boyle
[2], who used simulation to estimate the value of a standard European option. Ap-
plications of the QMC method to option pricing problems can be found in [13], [16]
and [21].
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Barndorff-Nielsen [1] proposed to model the log returns of asset prices by using
the normal inverse Gaussian (NIG) distribution. This family of non-normal distri-
butions has proven to fit the semi-heavily tails observed in financial time series of
various kinds extremely well (see Rydberg [22] or Eberlein and Keller [7]). The time
dynamics of the asset prices are modeled by an exponential Lévy process. To price
such derivatives, even simple call and put options, we need to consider the numerical
evaluation of the expectation. Raible [18] has considered a Fourier method to eval-
uate call and put options. Alternatives to this method are the MC method or the
QMC method. The QMC method has been applied with succes in financial applica-
tions by many authors (see [8]), and has strong convergence properties. Majority of
the work done on applying these simulation techniques to financial problems was in
direction where one needs to simulate from the normal distribution. One exception
is Kainhofer (see [14]), who proposes a QMC algorithm for NIG variables, based on
a technique proposed by Hlawka and Mück (see [12]) to generate low-discrepancy
sequences for general distributions.

Barrier options are one of the most important derivatives in the financial markets.
In the case of barrier options the general idea is that the payoff depends on whether
the underlying asset price hits a predetermined barrier level (see [15]). In this paper
we evaluate by simulation the Up-and-Out barrier options and Double Knock-Out
barrier options, in the situation where the stock price is modeled by an exponential
Lévy process. For the Knock-Out barrier option, the option is valid only as long as
the barrier is never touched during the life of the option. For the double Knock-
Out barrier options the option is valid only as long as the underlying asset remains
above the lower barrier and bellow the upper barrier until maturity. If the asset
price touches either the upper or the lower barrier, then the option is knocked out
worthless (zero payoff). Because of the difficulty in obtaining general analytical
solutions for barrier options driven by Lévy processes much of the work has been
focused on numerical or Monte Carlo valuation methods.

In this paper, we apply the Monte Carlo method, the Quasi-Monte Carlo and a
mixed Monte Carlo and Quasi-Monte Carlo method, which we proposed in a previous
paper [19], to estimate the value of two types of barrier options.

2. A mixed Monte Carlo and Quasi-Monte Carlo method

Let us consider the problem of estimating integrals of the form

I =
∫

[0,1]s
f(x)dH(x), (1)

where f : [0, 1]s → R is the function we want to integrate and H : Rs → [0, 1]
is a distribution function on [0, 1]s. In the continuous case, the integral I can be
rewritten as
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I =
∫

[0,1]s
f(x)h(x)dx,

where h is the density function corresponding to the distribution function H.
In the MC method (see [23]), the integral I is estimated by sums of the form

ÎN =
1
N

N∑
k=1

f(xk),

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common density function h.
In the QMC method (see [23]), the integral I is approximated by sums of the

form 1
N

∑N
k=1 f(xk), where (xk)k≥1 is a H-distributed low-discrepancy sequence on

[0, 1]s.
Next, the notions of discrepancy and marginal distributions are introduced.
Definition 2.1 [H-discrepancy] Consider an s-dimensional continuous distri-

bution on [0, 1]s, with distribution function H. Let λH be the probability measure
induced by H. Let P = (x1, . . . , xN ) be a sequence of points in [0, 1]s. The H-
discrepancy of sequence P is defined as

DN,H(P ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λH(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J =
∏s

i=1[ai, bi] ⊆ [0, 1]s;
AN (J, P ) counts the number of elements of the set (x1, . . . , xN ), falling into the
interval J, i.e.

AN (J, P ) =
N∑

k=1

1J(xk).

1J is the characteristic function of J .
The sequence P is called H-distributed if DN,H(P ) → 0 as N →∞.
The H-distributed sequence P is said to be a low-discrepancy sequence if

DN,H(P ) = O
(
(log N)s/N

)
.

The non-uniform Koksma-Hlawka inequality ([3]) gives an upper bound for the
approximation error in QMC integration, when H-distributed low-discrepancy se-
quences are used.

Theorem 2.2 [non-uniform Koksma-Hlawka inequality] Let f : [0, 1]s → R be
a function of bounded variation in the sense of Hardy and Krause and (x1, . . . , xN )
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be a sequence of points in [0, 1]s. Consider an s-dimensional continuous distribution
on [0, 1]s, with distribution function H. Then, for any N > 0∣∣∣∣∣

∫
[0,1]s

f(x)dH(x)− 1
N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ VHK(f)DN,H(x1, . . . , xN ), (2)

where VHK(f) is the variation of f in the sense of Hardy and Krause.
Definition 2.3 Consider an s-dimensional continuous distribution on [0, 1]s,

with density function h and distribution function H. For a point u =
(
u(1), . . . , u(s)

)
∈

[0, 1]s, the marginal density functions hl, l = 1, . . . , s, are defined by

hl

(
u(l)

)
=

∫
. . .

∫
︸ ︷︷ ︸
[0,1]s−1

h
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Hl, l = 1, . . . , s, are defined by

Hl

(
u(l)

)
=

∫ u(l)

0
hl(t)dt.

We consider s-dimensional continuous distributions on [0, 1]s, with independent
marginals, i.e.,

H(u) =
s∏

l=1

Hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

This can be expressed, using the marginal density functions, as follows:

h(u) =
s∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

Consider an integer 0 < d < s. Using the marginal density functions, we con-
struct the following density functions on [0, 1]d and [0, 1]s−d, respectively:

hq(u) =
d∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(d)) ∈ [0, 1]d,

and

hX(u) =
s∏

l=d+1

hl(u(l)), ∀u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d.

The corresponding distribution functions are
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Hq(u) =
∫ u(1)

0
. . .

∫ u(d)

0
hq

(
t(1), . . . , t(d)

)
dt(1) . . . dt(d),

u = (u(1), . . . , u(d)) ∈ [0, 1]d, (3)

and

HX(u) =
∫ u(d+1)

0
. . .

∫ u(s)

0
hX

(
t(d+1), . . . , t(s)

)
dt(d+1) . . . dt(s),

u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d. (4)

Next, we present the notion of H-mixed sequence.
Definition 2.4 [H-mixed sequence] ([19]) Consider an s-dimensional continuous

distribution on [0, 1]s, with distribution function H and independent marginals Hl,
l = 1, . . . , s. Let Hq and HX be the distribution functions defined in (3) and (4),
respectively.
Let (qk)k≥1 be a Hq-distributed low-discrepancy sequence on [0, 1]d, with
qk = (q(1)

k , . . . , q
(d)
k ), and Xk, k ≥ 1, be independent and identically distributed

random vectors on [0, 1]s−d, with distribution function HX , where
Xk = (X(d+1)

k , . . . , X
(s)
k ).

A sequence (mk)k≥1, with the general term given by

mk = (qk, Xk), k ≥ 1, (5)

is called a H-mixed sequence on [0, 1]s.
Let (mk)k≥1 be a H-mixed sequence on [0, 1]s, with the general term given by

(5).
In order to estimate general integrals of the form (1), we introduce the following
estimator.

Definition 2.5 ([19]) Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed
sequence, introduced by us in Definition 2.4, with qk = (q(1)

k , . . . , q
(d)
k ) and Xk =

(X(d+1)
k , . . . , X

(s)
k ). We define the following estimator for the integral I:

θm =
1
N

N∑
k=1

f(mk). (6)

We call the method of estimating the integral I, based on the estimator θm,
defined in (6), the mixed method. Theoretical results concerning the mixed method
can be found in [9] and [19]. Another combined MC and QMC method is proposed
in [20].
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3. Evaluation of barrier options by simulation

In the following, we apply the Monte Carlo method, the Quasi-Monte Carlo
method and the mixed method to a problem from mathematical finance, namely the
valuation of barrier options. We focus on Up-and-Out barrier options and Double
Knock-Out barrier options. The general setting of the problem and the modeling
part is presented next.

We consider the situation where the stock price of the underlying asset S = S(t)
is driven by a Lévy process L(t),

S(t) = S(0)eL(t). (7)

Lévy processes can be characterized by the distribution of the random variable
L(1). This distribution can be hyperbolic (see [7]), normal inverse gaussian (NIG),
variance-gamma or Meixner distribution.

According to the fundamental theory of asset pricing (see [5]), the risk-neutral
price of a barrier option, C(0), is given by

C(0) = EQ(C(τ, Sτ )), (8)

where C(τ, Sτ ) is the discounted payoff of the derivative, τ is the first hitting time
of the considered barrier price by the underlying asset S(t) and Q is an equivalent
martingale measure or a risk-neutral measure. In this paper, we are mostly con-
cerned with exponential NIG-Lévy processes, meaning that L(t) has independent
increments, distributed according to a NIG distribution. For a detailed discussion
of the NIG distribution and the corresponding Lévy process, we refer to Barndorff-
Nielsen [1] and Rydberg [22]. In the situation of exponential NIG-Lévy models, we
have an incomplete market, leading to a continuum of equivalent martingale mea-
sures Q, which can be used for risk-neutral pricing. Here, we choose the approach of
Raible [18] and consider the measure obtained by Esscher transform method. This
approach is so-called structure preserving, in the sense that the distribution of L(1)
remains in the class of NIG distributions.

In the following, we consider the evaluation of Up-and-Out barrier call options,
which have to be valued by simulation. The random variable τ is defined as

τ = inf{v ≥ 0|S(v) ≥ L}, (9)

where L is the barrier price. The discounted payoff of such an option is

C(τ, Sτ ) =
{

e−rT (S(T )−K)+ , S(t) < L, ∀t ≤ T, i.e. τ = T,
e−rτR , τ < T,

(10)
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where the constant K is the strike price, T is the expiration time, R is a prescribed
cash rebate and r > 0 is a constant risk-free annual interest rate.

Let us assume that the cash rebate is zero, i.e. R = 0. Hence, the second part
of the discounted payoff is zero. For the risk neutral price C(0) we obtain

C(0) = e−rT EQ((S(T )−K)+ · I{sup0≤t≤T S(t)<L})

= e−rT EQ(max{S(T )−K, 0} · I{sup0≤t≤T S(t)<L}),

where I is the indicator function. If we replace the stock price by (7), we obtain

C(0) = e−rT EQ(max{S(0)eL(T ) −K, 0} · I{S(0)·sup0≤t≤T eL(t)<L}). (11)

The evaluation of the stock price S(t) should be made at discrete times 0 = t0 < t1 <
t2 < . . . < ts = T . For simplicity, we focus on regular time intervals, ∆t = ti − ti−1.
We note that

Xi = L(ti)− L(ti−1) = L(ti−1 + ∆t)− L(ti−1) ∼ L(∆t), i = 1, . . . , s,

are independent and identically distributed NIG random variables with the same
distribution as L(t1).

Dropping the discounted factor from the risk-neutral option price, we get the
expected payoff under the Esscher transform measure of the Up-and-Out barrier
call option

EQ(max{S(0)eL(T ) −K, 0} · I{S(0)·esup0≤t≤T L(t)
<L}) =

= E((S(0)e
∑s

i=1 Xi −K)+ · I{S(0)·emax1≤k≤s{0,
∑k

i=1
Xi}<L}

). (12)

Our purpose is to evaluate the expected payoff (12). For this, we rewrite the
expectation (12) as a multidimensional integral on Rs

I =
∫

Rs

(
S(0)e

∑s
i=1 x(i) −K

)
+
· I
{S(0)·emax1≤k≤s{0,

∑k
i=1

x(i)}
<L}︸ ︷︷ ︸

E(x)

dG(x) =
∫

Rs

E(x)dG(x),

(13)
where G(x) =

∏s
i=1 Gi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Gi(x(i)) denotes the

distribution function of the so-called log returns induced by L(t1), with the corre-
sponding density function gi(x(i)). These log increments are independent and NIG
distributed, with probability density function

fNIG(x;µ, β, α, δ) =
α

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)δK1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
(14)
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where K1(x) denotes the modified Bessel function of third type of order 1 (see [17]).
In order to approximate the integral (13), we have to transform it to an integral

on [0, 1]s. We can do this using an integral transformation, as follows.
We first consider the family of independent double-exponential distributions with

the same parameter λ > 0, having the cumulative distribution functions Gλ,i : R →
[0, 1], i = 1, . . . , s,

Gλ,i(x) =
{

1
2eλx , x < 0
1− 1

2e−λx , x ≥ 0,
(15)

and the inverses G−1
λ,i : [0, 1] → R, i = 1, . . . , s, given by

G−1
λ,i(x) =

{
1
λ log (2x) , x ≤ 1

2
− 1

λ log (2− 2x) , x > 1
2 .

(16)

Next, we consider the substitutions x(i) = G−1
λ,i(1 − y(i)), i = 1, . . . , s, and then

take y(i) = 1− z(i), i = 1, . . . , s.
The integral (13) becomes

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 G−1

λ,i(z
(i)) −K

)
+
· I
{S(0)·emax1≤k≤s{0,

∑k
i=1

G−1
λ,i

(z(i))}
<L}︸ ︷︷ ︸

f(z)

dH(z)

=
∫

[0,1]s
f(z)dH(z), (17)

where H : [0, 1]s → [0, 1], defined by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (18)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i ,

i = 1, . . . , s.
In conclusion, we want to estimate the integral (17). This can be done using

the Monte Carlo method, the Quasi-Monte Carlo method, as well the mixed Monte
Carlo and Quasi-Monte Carlo method proposed by us.

In the case of a Double Knock-Out barrier call option, reasoning and modeling
in a similar way, we need to estimate the following integral:

I =
∫

[0,1]s
f(z) · I

{S(0)·emin1≤k≤s{0,
∑k

i=1
G−1

λ,i
(z(i))}

>l}︸ ︷︷ ︸
p(z)

dH(z)

=
∫

[0,1]s
p(z)dH(z), (19)
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where l is the lower barrier, L is the upper barrier and H : [0, 1]s → [0, 1], defined
by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (20)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i ,

i = 1, . . . , s.

4. Numerical experiments

In the following, we compare numerically our mixed method with the MC and
QMC methods. As a measure of comparison, we will use the absolute errors pro-
duced by these three methods in the approximation of the integrals (17) and (19).

4.1 The MC, QMC and mixed estimates

The MC estimate is defined as follows:

θMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (21)

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common distribution function H defined in (20).
In order to generate such a point xk, we proceed as follows. We first generate a

random point ωk = (ω(1)
k , . . . , ω

(s)
k ), where ω

(i)
k is a point uniformly distributed on

[0, 1], for each i = 1, . . . , s. Then, for each component ω
(i)
k , i = 1, . . . , s, we apply the

inversion method (see [4] and [6]), and obtain that H−1
i (ω(i)

k ) = (Gλ,i ◦ G−1
i )(ω(i)

k )
is a point with the distribution function Hi. As the s-dimensional distribution
with the distribution function H has independent marginals, it follows that xk =
((Gλ,1 ◦G−1

1 )(ω(1)
k ), . . . , (Gλ,s ◦G−1

s )(ω(s)
k )) is a point on [0, 1]s, with the distribution

function H. As we can see, in order to generate non-uniform random points on
[0, 1]s, with distribution function H, we need to know the inverse of the distribution
function of a NIG distributed random variable or, at least an approximation of it. As
the inverse function is not explicitly known, an approximation of it is needed in our
simulations. In order to obtain an approximation of the inverse, we use the Matlab
function ”niginv” as implemented by R. Werner, based on a method proposed by K.
Prause in his Ph.D. dissertation [17].

The QMC estimate is defined as follows:

θQMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (22)
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where x = (xk)k≥1 is a H-distributed low-discrepancy sequence on [0, 1]s, with
xk = (x(1)

k , . . . , x
(s)
k ), k ≥ 1.

In order to generate such a sequence, we apply a method proposed by Hlawka and
Mück in [12]. In their method, they create directly H-distributed low-discrepancy
sequences, where H can be any distribution function on [0, 1]s, with density function
h, which can be factored into a product of independent, one-dimensional densities.
The method is based on the following theoretical result.

Theorem 4.1 ([11]) Consider an s-dimensional continuous distribution on [0, 1]s,
with distribution function H and density function h(u) =

∏s
j=1 hj(u(j)), ∀u =(

u(1), . . . , u(s)
)
∈ [0, 1]s. Assume that hj(t) 6= 0, for almost every t ∈ [0, 1] and

for all j = 1, . . . , s. Furthermore, assume that hj, j = 1, . . . , s, are continuous on
[0, 1]. Denote by Mf = supu∈[0,1]s f(u). Let ω = (ω1, . . . , ωN ) be a sequence in
[0, 1]s. Generate the sequence x = (x1, . . . , xN ), with

x
(j)
k =

1
N

N∑
r=1

[
1 + ω

(j)
k −Hj

(
ω(j)

r

)]
=

1
N

N∑
r=1

1
[0,ω

(j)
k ]

(
Hj

(
ω(j)

r

))
, (23)

for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of a.
Then the generated sequence x has a H-discrepancy of

DN,H(x1, . . . , xN ) ≤ (2 + 6sMf )DN (ω1, . . . , ωN ).

As our distribution function H can be factored into independent marginals, and
has the support on [0, 1]s, we can apply directly the above theorem, to generate
H-distributed low-discrepancy sequences. During our experiments, we employed as
low-discrepancy sequences ω = (ωk)k≥1 on [0, 1]s, the Halton sequences (see [10]).

All points constructed by the Hlawka-Mück method are of the form i/N , i =
0, . . . , N , in particular some elements of the sequence x = (x1, . . . , xN ) might as-
sume a value of 0 or 1. A value of 1 is a singularity of the function f(x), due to
the logarithm from the definition of G−1

λ,i(x), which becomes unbounded if x = 1.
Hence, the sequence constructed with Hlawka-Mück method is not directly suited
for unbounded problems. To overcome this problem, Kainhofer (see [14]) suggests
to define a new sequence, in which the value 1 is replaced by 1/N , where N is the
number of points in the set. This slight modification of the sequence is shown to
have a minor influence, as the transformed set does not loose its low-discrepancy
and can be used for QMC integration.

The H-mixed estimate proposed by us earlier is:

θm =
1
N

N∑
k=1

f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ), (24)
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where (qk, Xk)k≥1 is an s-dimensional H-mixed sequence on [0, 1]s.
In order to obtain such a H-mixed sequence, we first construct the Hq-distributed

low-discrepancy sequence (qk)k≥1 on [0, 1]d, using the Hlawka-Mück method (the
distribution function Hq was defined in (3)). Next, we generate the independent
and identically distributed random points xk, k ≥ 1 on [0, 1]s−d, with the common
distribution function HX , using the inversion method (the distribution function HX

was defined in (4)). Finally, we concatenate qk and xk for each k ≥ 1, and get our
H-mixed sequence on [0, 1]s.

In our experiments, we used as low-discrepancy sequences on [0, 1]d, for the
generation of H-mixed sequences, the Halton sequences (see [10]).

We suppose that the parameters of the NIG-distributed log-returns under the
equivalent martingale measure given by the Esscher transform are given by

µ = 0.00079 ∗ 5, β = −15.1977, α = 136.29, δ = 0.0059 ∗ 5, (25)

and they are the same as in Kainhofer (see [14]). We observe that these parameters
are relevant for daily observed stock price log-returns (see [22]). As the class of NIG
distributions is closed under convolution, we can derive weekly stock prices by using
a factor of 5 for the parameters µ and δ.

4.2 Up-and-Out barrier options

We suppose that the initial stock price is S(0) = 100, the strike price is K = 100,
the barrier price is L = 120 and the risk-free annual interest rate is r = 3.75%. We
choose the parameter of the double-exponential distribution λ = 95.2271.

The barrier option is sampled at weekly time intervals. We also let the option
to have maturities of s = 32 weeks. Hence, our problem is a 32 multidimensional
integral, over the payoff function.

We are going to compare the three estimates in terms of their absolute error,
where the ”exact” option price is obtained as the average of 10 MC simulations,
with N = 400000 for the initial integral (13).

In our tests we considered the dimension s = 32 of the transformed integral (17)
on [0, 1]s. The MC and H-mixed estimates are the mean values of 10 independent
runs, while the QMC estimate is the result of a single run. The results are presented
in Figure 1,where the number of samples N varies from 5000 to 10000 with a step
of 200.

We performed numerical tests for different values of d, the deterministic part of
the H-mixed sequence. We noticed that, in order to achieve a good performance of
the mixed method, the value of d should be around one third of the dimension of
the problem, confirming the conclusions from paper [19], concerning the choice of d.
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Figure 1: Simulation results for s = 32 and d = 10 for the Up-and-Out barrier call
option.

We can conclude that our mixed method can give considerable improvements
over the MC method in almost half of the situations and over the QMC method
in almost all of the situations, in estimating Up-and-Out barrier options driven by
Lévy processes. Also, the absolute errors for all three estimates are very small, even
for small sample sizes.

4.3 Double Knock-Out barrier options

We assume that the initial stock price is S(0) = 110, the strike price is K = 100,
the upper barrier price is L = 120 , the lower barrier price is l = 90 and the
risk-free annual interest rate is r = 3.75%. We choose the parameter of the double-
exponential distribution λ = 95.2271.

We are going to compare the three estimates in terms of their absolute error,
where the ”exact” barrier option price is obtained as the average of 10 MC simula-
tions, with N = 400000 for the initial integral.

In our tests we considered the dimension s = 32 of the transformed integral (19)
on [0, 1]s. The MC and H-mixed estimates are the mean values of 10 independent
runs, while the QMC estimate is the result of a single run. The numerical results
are presented in Figure 2, where the number of samples N varies from 5000 to 10000
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Figure 2: Simulation results for s = 32 and d = 10 for the Double Knock-Out barrier
call option.

with a step of 200.
We performed numerical tests for different values of d. We noticed that, to

achieve a good performance of the mixed method, the value of d should be 10,
which is around one third of the dimension of the problem and which confirms the
conclusions from paper [19] concerning the choice of d.

From the simulation results, we conclude that our mixed method can give consid-
erable improvements over the MC method in almost half of the situations and over
the QMC method in all of the situations, in estimating Double Knock-Out barrier
options driven by Lévy processes. Also, we notice that the absolute errors for all
three estimates are very small, even for small sample sizes.
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