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TENSOR PRODUCT OF ENDO-PERMUTATION MODULES

Ahmad M. Alghamdi And Makkiah S. Makki

Abstract. In this paper, we study some properties of the exterior tensor prod-
uct on the category of modules. For this, we prove that the exterior tensor product
of two permutation, endo-permutation, endo-trivial and endo-monomial modules
are still permutation, endo-permutation endo- trivial and endo-monomial modules
respectively. Also, we prove that the cap of an exterior tensor product of two
modules equal the exterior tensor product of their caps. Also, we prove that the
exterior tensor product of two Dade algebras is a Dade algebra.
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1. Introduction

The concept of Endo-permutation modules for a p-group G for some prime num-
ber p is invented by E. Dade in two papers [8, 9]. It is a generalization of the
permutation modules which is due to Green [10, 11]. E. Dade studied many prop-
erties of this class of modules and classified endo-permutation modules for abelian
p-groups. The construction in [2] by J. Alperin is an important step for studying
endo-permutation modules. However, the classification of endo-permutation mod-
ules over non- abelian p-groups took a long time to achieve. It has been completed
by many authors and ended in 2004. See [15] for more details.

The importance of the class of endo-permutation modules can be seen when one
studies the sources of simple G-modules in the case that G is a p-solvable group [14,
Chapter 5] as well as when one studies the equivalence between blocks.

Another class of modules which has been introduced and studied by many au-
thors is called endo-trivial modules [3, 9]. It is well known that each endo-trivial
module is an endo-permutation module. This notion has been used as a tool to
investigate and classify endo-permutation modules. The importance of the class of
endo-trivial modules can be seen when one studies the equivalence of the stable
category of a block [4]. Jon Carlson and Jacques Thevenaz classified this class of
modules [5]. For a recent work on endo-trivial modules, the reader can consult the
papers [6, 7].
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Our purpose in this paper is to study the exterior tensor product of the category
of these modules. Our motivation stems from the fact that the tensor product is an
operation in mathematics which enables us to construct new objects from others.

For the coefficients, we consider for a prime number p a p-modular system
(K, R,F ). This means that R is a complete discrete valuation ring, K is the quo-
tient field of R of characteristic zero and F is the field of residue of R which is an
algebraically closed of characteristic p. For notation, we shall write O to denote R or
F . We assume that all modules are free over O and finitely generated OG-modules
where G is an arbitrary finite group.

Our paper is organized as a sequence of sections each of which is concerned
respectively to the tensor product of permutation modules, endo-permutation mod-
ules, endo-trivial modules, Dade’s algebras and endo-monomial modules. We use
the notation ⊗ to mean ⊗O.

2.Tensor product of permutation modules

Let G be a finite group and M be an OG-module. We start with the following
definition which is due to Green in [11].

Definition 2.1. An OG-module M is called an OG-permutation module if it
has an invariant O-basis X under the action of G. In this case we write M = OX.

For any two finite groups G1 and G2, the exterior tensor product of two OG1

and OG2-modules can be defined as follows:
Definition 2.2. If Mi is an OGi-module for i = 1, 2 the exterior tensor product

of Mi is an O[G1 ×G2]-module with underlying O-module M1 ⊗M2 and the action
of G1 ×G2 is given by: (g1, g2).(m1 ⊗m2) = g1m1 ⊗ g2m2.

Since all modules we are dealing with are finitely generated, any module M has
a finite subset, say X = {xi : i = 1, 2, ..., n} such that any element m ∈ M can be
written uniquely as m = Σn

i=1αixi with αi ∈ O.
We call a finite set X a G-set if it is endowed with an action of G on it. The

following lemma explains the exterior tensor product of two permutation modules.
The proof is easy but, we include it for completeness.

Lemma 2.3. If Mi is a permutation OGi-module, where i = 1, 2 then M1⊗M2

is a permutation O[G1 ×G2]-module.

Proof. Since each Mi is a permutation OGi-module for i = 1, 2 then from
Definition 2.1, each Mi can be written in the the form Mi = kXi for i = 1, 2
where X1 and X2 are the invariant basis for M1 and M2 respectively. Now since
M1 ⊗M2 is an O[G1 × G2]-module such that M1 ⊗M2 = OX1 ⊗ OX2. Therefore,
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M1 ⊗ M2 = O[X1 × X2]. This means that the module M1 ⊗ M2 has an invariant
basis X1 ×X2. So, M1 ⊗M2 is a permutation O[G1 ×G2]-module.

3.Tensor product of endo-permutation modules

Let G be a p-group for some prime number p. For any OG-module M we denote by
EndO(M) the endomorphism algebra of M . This algebra can be endowed with an
OG-module structure coming from the action of G by conjugation; that is if g ∈ G
and ϕ ∈ EndO(M), then gϕ(m) = g.ϕ(g−1.m) for all m ∈ M . Dade [8] defined the
concept of an endo-permutation module as:

Definition 3.1. An OG-module M is called an endo-permutation module if
EndO(M) is a permutation OG-module.

It is clear that each endo-permutation module is a permutation module.

Now we need the following two lemmas:
Lemma 3.2. For any OG-module M , we have EndO(M) ∼= M⊗M∗ as an OG-

module, where M∗ = Hom(M,O) is the dual OG-module and the tensor product is
over O.

From the previous lemma, we see that M is an endo-permutation OG-module if
and only if M ⊗M∗ is a permutation OG-module.

Lemma 3.3. Let Gi be a finite group and Mi an OGi-module, where i = 1, 2.
Then EndO(M1 ⊗M2) ∼= EndO(M1)⊗ EndO(M2).

We shall prove the main theorem in this section:
Theorem 3.4. Let Gi be a finite group and Mi an endo-permutation OGi-

module, where i = 1, 2. Then M1⊗M2 is an endo-permutation O[G1×G2]-module.

Proof. Since each Mi is an endo-permutation OGi-module for i = 1, 2 then
from Definition 3.1 we have that EndO(Mi) is a permutation OGi-module. Now
using Lemma 3.2 and Lemma 3.3 we see that the tensor module M1 ⊗ M2 is an
endo-permutation module as EndO(M1 ⊗M2) is a permutation module.

Recall that an indecomposable OG-module M is called H-projective for some
subgroup H of G if M is a direct summand of the induced OG-module IndG

H(N)
for some OH-module N . A minimal subgroup of the collection of all subgroups of
G for which M is H-projective is called a vertex of M . It turns out that the vertex
is a p-subgroup of G. We write Vertex(M) for the vertex group of M .

We are interested in indecomposable endo-permutation OG-modules with max-
imal vertex G, because they are the ones that appear in representation theory. All
endo-permutation modules can be described from the knowledge of the indecompos-
able ones having maximal vertex (see [14] for more details).
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Definition 3.5. An endo-permutation OG-module M is said to be capped if it
has at least one indecomposable direct summand with vertex G. Such indecomposable
direct summand is called the cap of M and is denoted by M c.

In particular, if M is indecomposable, then M is capped if and only if it has
vertex G.

We shall use the following result which is due to B. Külshammer [13] for dealing
with the tensor product of capped module.

Lemma 3.6. Suppose that Mi is an indecomposable OGi-module; i=1, 2 with
vertex (Mi) = Vi. Then M1 ⊗ M2 is an indecomposable O[G1 × G2]-module with
vertex (M1 ⊗M2) = V1 × V2.

In the following theorem we shall prove a result about the relationship between
the tensor product of the cap of two endo-permutation modules and the cap of their
tensor product.

Theorem 3.7. Let Mi be an endo-permutation OGi-module for i = 1, 2. Sup-
pose that M c

i is the cap of Mi. Then M c
1 ⊗M c

2 = (M1 ⊗M2)c where (M1 ⊗M2)c is
the cap of the endo-permutation O[G1 ×G2]-module M1 ⊗M2.

Proof. Since M c
i is the cap of Mi that is an indecomposable direct summand

of Mi with vertex Gi, for i = 1, 2 Lemma 3.6 yields that M c
1 ⊗M c

2 is an indecom-
posable O[G1 ×G2]-module with vertex G1 ×G2. However, M1 ⊗M2 has a unique
indecomposable direct summand with vertex G1 ×G2. So, the result is complete.

4.The tensor product of endo-trivial modules

We continue to assume that G is a p-group for some prime number p and O is either
an algebraically closed field of characteristic p or a complete discrete valuation ring
of characteristic zero.

Definition 4.1. An OG-module M is called endo-trivial if there exists a projec-
tive OG-module F such that EndO(M) ∼= O ⊕ F as an OG-module.

Theorem 4.2. If Mi is an endo-trivial OGi-modules, where i = 1, 2 then M1 ⊗
M2 is an endo-trivial O[G1 ×G2]-module.

Proof. Since Mi is an endo-trivial OGi-module, there is a projective OGi-module
Fi such that EndO(Mi) ∼= O

⊕
Fi for i = 1, 2. By Lemma 3.3, EndO(M1 ⊗M2) ∼=

EndO(M1)⊗ EndO(M2). So,

EndO(M1 ⊗M2) ∼= (O ⊕ F1)⊗ (O ⊕ F2).

Therefore,

EndO(M1 ⊗M2) ∼= (O ⊗O)⊕ (F1 ⊗O)⊕ (O ⊗ F2)⊕ (F1 ⊗ F2).
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However, as O[G1 × G2]-isomorphism, we have O ⊗ O ∼= O, F1 ⊗ O ∼= F1 and
O ⊗ F2

∼= F2. Also F ′ := F1 ⊗ F2 is a projective O[G1 × G2]-module. Hence,
EndO(M1 ⊗ M2) ∼= O ⊕ F1 ⊕ F2 ⊕ F ′. It follows that EndO(M1 ⊗ M2) ∼= O ⊕ F,
where F := F1 ⊕ F2 ⊕ F ′ is a projective O[G1 ×G2]-module. By the definition, this
means that M1 ⊗M2 is an endo-trivial O[G1 ×G2]-module.

5.The tensor product of Dade algebras

A G-algebra over O is an O-algebra endowed with an action of the group G by
algebra automorphisms such that Ψ(g)(a) = ga for a ∈ A,Ψ ∈ aut(A). For any
G-algebra A we define the set of G-fixed elements of A by AG = {a ∈ A :
ga = a ∀ g ∈ G}.

Let H be a subgroup of G. We consider the relative trace map TrG
H : AH → AG

such that TrG
H(a) =

∑
t∈T

ta, where T is a set of representatives of the left cosets of
H in G. It is clear that the image of TrG

H is an ideal of AG. For technical reason and
as we use p-modular system, we shall write the sum of the image of the trace map
and the ideal ℘AH as AG

H , where ℘ is the unique maximal ideal in O. We define the
Brauer quotient as A(H) := AH/

∑
K<H AH

K .
Definition 5.1. Dade G-algebra A is an O-simple permutation G-algebra such

that A(G) 6= 0.

Suppose that G1 and G2 are two finite groups and let Ai; i = 1, 2 be a Gi-algebra
over O, the tensor algebra A1

⊗
A2 can be regarded as a G1 × G2-algebra by the

action (g1,g2)(a1 ⊗ a2) = g1a1 ⊗ g2a2, for all (g1, g2) ∈ G1 ×G2, ai ∈ Ai.
Now to introduce the main result in this section we recall the following lemma

about the H1 ×H2-fixed elements of A1
⊗

A2 as well as the image of the tensor of
the relative trace maps. For more details, see [1, Lemma 2.1 and Lemma 2.3].

Lemma 5.2. Assume that Ki ≤ Hi ≤ Gi for i = 1, 2. Then

(A1 ⊗A2)H1×H2 ∼= AH1
1 ⊗AH2

2 ,

and
(A1 ⊗A2)H1×H2

K1×K2

∼= A1
H1
K1
⊗A2

H2
K2

.

Theorem 5.3. The tensor product of any two Dade algebras is a Dade algebra.

Proof. Suppose that Ai is a Dade Gi-algebra for i = 1, 2. This means that each
Ai is an O-simple permutation Gi-algebra such that Ai(Gi) 6= 0. It is clear that the
tensor product A1 ⊗A2 is an O-simple permutation G1 ×G2-algebra.
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Now let us assume that A1 ⊗A2(G1 ×G2) = 0. Then we have

(A1 ⊗A2)G1×G2 =
∑

H1×H2≤G1×G2

[A1 ⊗A2]G1×G2
H1×H2

.

Using Lemma 5.2, we see that

AG1
1 ⊗AG2

2 = (
∑

H1≤G1

A1
G1
H1

)⊗ (
∑

H2≤G2

A2
G2
H2

).

It follows that, AGi
i =

∑
Hi≤Gi

Ai
Gi
Hi

. This means that Ai(Gi) = 0, which is a
contradiction. Hence, the result is the tensor product of any two Dade algebras is a
Dade algebra.

6.The tensor product of the monomial modules

The notion of monomial representations arises for induction from linear repre-
sentations. Let G be a finite group and H a subgroup of G. Consider the linear
characters of H which are the homomorphisms from H to the multiplicative group of
O. Let N be an OH-module. Assume that H acts on N via the linear O-characters
of H. We say that N is an OH-module of O-rank one if N is isomorphic to O as
O-module and H acts as follows: for h ∈ H and for n ∈ N we have h·n = λhn for
some λh ∈ O. Note that the action is well defined as we have a homomorphism from
H to the group of units of O. For more details see [12].

Definition 6.1. We say that M is a monomial OG-module if M = IndG
H(N)

for some subgroup H of G and some O-rank one OH-module N .

Now consider Hi to be a subgroup of a finite group Gi, for i = 1, 2. We would
like to study the tensor product of two O-rank one modules.

Lemma 6.2. Let Ni be an O-rank one OHi-module for i = 1, 2. The tensor
product N1 ⊗N2 is an O-rank one O[H1 ×H2]-module.

Proof. It is clear that as an O-module, N1⊗N2
∼= O⊗O ∼= O. For the action, if

hi ∈ Hi and λi ∈ O, for i = 1, 2, with hi·ni = λini, we see that the element (h1, h2)
in H1 ×H2 acts on (n1 ⊗ n2) ∈ N1 ⊗N2 in such way

(h1, h2)· (n1 ⊗ n2) = λ1n1 ⊗ λ2n2 = λ1λ2(n1 ⊗ n2) ∈ N1 ⊗N2.

We conclude that N1 ⊗N2 is an O-rank one O[H1 ×H2]-module.
The following proposition relates two monomial modules under the exterior ten-

sor product.
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Proposition 6.3. Let Mi be a monomial OGi-module, for i = 1, 2. Then we
have M1 ⊗M2 is a monomial O[G1 ×G2]-module.

Proof. The assumption that Mi is a monomial OGi-module for i = 1, 2 means
that there is a subgroup Hi of Gi such that Mi = IndGi

Hi
(Ni), for some O-rank one

OHi-module, for i = 1, 2. Using an analogue theory for Lemma 5.2 for modules, we
see that

M1 ⊗M2 = IndG1
H1

(N1)⊗ IndG2
H2

(N2) = IndG1×G2
H1×H2

(N1 ⊗N2).

Now Lemma 6.2 completes the proof and M1⊗M2 is a monomial O[G1×G2]-module.
A similar theory for endo-permutation modules can be done for monomial mod-

ules. Let us introduce the following definition.
Definition 6.4. Let M be an OG-module. We say that M is an endo-monomial

OG-module if EndO(M) is a monomial OG-module.
Since in this paper we concern to generalize some results in the category of

modules to the exterior tensor product, we have the following theorem.
Theorem 6.5. Let Mi be an endo-monomial OGi-module, for i = 1, 2. Then

we have M1 ⊗M2 is an endo-monomial O[G1 ×G2]-module.

Proof. By Definition 6.4, EndO(Mi) is a monomial OGi-module, for i = 1, 2.
By Proposition 6.3, EndO(M1)⊗EndO(M2) is a monomial O[G1×G2]-module, for
i = 1, 2. Now Lemma 3.3 implies that EndO(M1⊗M2) is a a monomial O[G1×G2]-
module. So, M1 ⊗M2 is an endo-monomial O[G1 ×G2]-module.
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