φψ-CONTINUITY BETWEEN TWO POINTWISE QUASI-UNIFORMITY SPACES

BAYAZ DARABY

ABSTRACT. In this paper, by means of operations (is called here φ, ψ) we shall define $\varphi\psi$ -continuity between two pointwise quasi-uniform spaces and prove that the category of pointwise quasi-uniform spaces and pointwise quasi-uniformly continuous morphisms is topological.

2000 Mathematics Subject Classification: 54A40, 54D10, 54D15, 54D65, 03E72.

1. INTRODUCTION

There have been all kinds of studies about the theory of quasi-proximity and quasiuniformity in fuzzy set theory (see [1-3, 5, 6,8-12, etc.]). Moreover the concept of S-quasi-uniformity was also generalized to [0, 1]-fuzzy set theory by Ghanim et al. [6].

In this paper, by means of operations φ, ψ we shall define $\varphi\psi$ -continuity between pointwise quasi-uniform spaces and prove that the category **LOCDL-PQUnif** of pointwise quasi-uniform spaces and pointwise quasi-uniformly continuous morphisms is topological over **SET** × **LOCDL** with respect to the forgetful functor

 $V : \mathbf{LOCDL} - \mathbf{PQUnif} \to \mathbf{SET} \times \mathbf{LOCDL}$, where the category \mathbf{CDL} is the category having objects of completely distributive lattice and morphisms of complete lattice homomorphisms. \mathbf{LOCDL} is the dual \mathbf{CDL}^{op} of \mathbf{CDL} .

2. Preliminaries

For a completely distributive lattice K [14, 15] and a nonempty set X, K^X denotes the set of all K-fuzzy sets on X. K^X is also a completely distributive lattice when it inherits the structure of lattice K in a natural way, by defining \lor, \land, \leq pointwisely. The set of nonunit prime elements [7] in K^X is denoted by $P(K^X)$. The set of nonzero co-prime elements [7] in K^X is denoted by $M(K^X)$. A nonzero co-prime element in K^X is also called a molecule [16].

Definition 2.1. (The categories CDL and LOCDL). The category **CDL** is the category having objects of completely distributive lattices and morphisms of complete lattice homomorphisms, i.e., those mappings which preserve arbitrary joins and arbitrary meets. **LOCDL** is the dual **CDL**^{op} of **CDL**.

Definition 2.2. (Rodabaugh [14]). Let **C** be a subcategory of **LOQML**. An object in the category **SET** × **C** is an ordered pair (X, K), where $X \in |\mathbf{SET}|, K \in |\mathbf{C}|$, a morphism is an ordered pair $(f, \phi) : (X, K) \to (Y, L)$, where $f : X \to Y$ in **SET**, $\phi : K \to L$ in **C**. Composition and identity morphisms are defined component-wise in the respective categories.

When C = LOCDL, we obtain the category $SET \times LOCDL$.

Definition 2.3. (Shi [15]). Let $(X, K) \in |\mathbf{SET} \times \mathbf{LOCDL}|$. A pointwise quasiuniformity on K^X (or on (X, K)) is a nonempty subset \mathcal{U} of $\mathcal{R}(K^X)$ satisfying $(U1) \ u \in \mathcal{R}(K^X), v \in \mathcal{U}, u \leq v \Rightarrow u \in \mathcal{U}.$ $(U2) \ u, v \in \mathcal{U} \Rightarrow u \lor v \in \mathcal{U}.$

(U3) $u \in \mathcal{U} \Rightarrow \exists v \in \mathcal{U} \text{ such that } v \odot v \geq u.$

Let \mathcal{U} be a pointwise quasi-uniformity on (X, K). Then $\mathcal{A} \subset \mathcal{U}$ is called a basis of \mathcal{U} if for each $u \in \mathcal{U}$, there exists $v \in \mathcal{A}$ such that $u \leq v$. $\mathcal{B} \subset \mathcal{U}$ is called a sub-basis of \mathcal{U} if the set of all finite suprema of elements of \mathcal{B} is a basis of \mathcal{U} . When \mathcal{U} is a poinwise quasi-uniformity on $(X, K), (X, K, \mathcal{U})$ or (K^X, \mathcal{U}) is called a pointwise quasi-uniform space.

Lemma 2.4. Let $\mathcal{R}(K^X)$ denote the set of all *R*-mappings from $M(K^X)$ to K^X , $\mathcal{R}(L^Y)$ denote the set of all *R*-mappings from $M(L^Y)$ to L^Y and $(f,\phi) : (X,K) \to (Y,L)$ be in **SET** ×**LOCDL**. Then for any $v \in \mathcal{R}(L^Y), (f,\phi)^{\leftarrow} \circ v \circ (f,\phi)^{\rightarrow} \in \mathcal{R}(K^X)$. In [15], the mapping $(f,\phi)^{\leftarrow} \circ v \circ (f,\phi)^{\rightarrow}$ from $\mathcal{R}(L^Y)$ to $\mathcal{R}(K^X)$ is denoted by $(f,\phi)^* : \mathcal{R}(L^Y) \to \mathcal{R}(K^X)$.

As was proved in [15], we can obtain the following two theorems.

Theorem 2.5. Let $(f, \phi) : (X, K) \to (Y, L)$ be in **SET** ×**LOCDL** and \mathcal{V} be a pointwise quasi-uniformity on (Y, L). Then $(f, \phi)^*(\mathcal{V})$ is a basis for a pointwise quasi-uniformity \mathcal{U} on (X, K), \mathcal{U} is written as $(f, \phi)^{\leftarrow}(\mathcal{V})$ [15].

Theorem 2.6. Let $(f, \phi) : (X, K) \to (Y, L)$ be in **SET** × **LOCDL** and \mathcal{V} be a pointwise quasi-uniformity on (Y, L) Then $\eta((f, \phi)^{\leftarrow}(\mathcal{V})) = (f, \phi)^{\leftarrow}(\eta(\mathcal{V}))$ [15].

Definition 2.7. Let (X, K, \mathcal{U}) be a pointwise quasi-uniform space. A mapping $\varphi : K^X \to K^X$ is called an operation on K^X if for each $A \in L^X \setminus \emptyset$, $int(A) \leq A^{\varphi}$ and $\emptyset^{\varphi} = \emptyset$ where A^{φ} denotes the value of φ in A [4].

3.MAIN RESULTS

Definition 3.1. Let (X, K, \mathcal{U}) and (Y, L, \mathcal{V}) be two pointwise quasi-uniform spaces. Let φ, ψ be two operations on K^X, L^Y respectively $(f, \phi) : (X, K) \to (Y, L)$ in **SET** × **LOCDL** is said to be pointwise quasi-uniformly $\varphi\psi$ -continuous with respect to \mathcal{U} and \mathcal{V} if for each $v \in \mathcal{V}$, there exists $u \in \mathcal{U}$ such that for any $a, b \in M(K^X)$,

 $b \text{ not } \leq u^{\varphi}(a) \Rightarrow (f, \phi)^{\rightarrow}(b) \text{ not } \leq v^{\psi}((f, \phi)^{\rightarrow}(a)).$

Theorem 3.2. Let (X, K, \mathcal{U}) and (Y, L, \mathcal{V}) are two pointwise quasi-uniform spaces. Let φ, ψ be two operations on K^X, L^Y respectively. Then for $(f, \phi) : (X, K) \to (Y, L)$ in **SET** × **LOCDL**, the following statements are equivalent : (1) (f, ϕ) is pointwise quasi-uniformly $\varphi\psi$ -continuous.

(2) For each $v \in \mathcal{V}$, there exists $u \in \mathcal{U}$ such that $(f, \phi)^{\leftarrow} \circ v^{\psi} \circ (f, \phi)^{\rightarrow} \leq u^{\psi}$. (3) $(f, \phi)^* (\mathcal{V})^{\psi} \subset \mathcal{U}^{\varphi}$.

Proof. The proof is straightforward from Definition 3.5. and Lemma 2.4. \Box

Corollary 3.3. Let φ be operation on K^X , and ψ be operation on L^Y and H^Z . If $(f, \phi) : (X, K, \mathcal{U}) \to (Y, L, \mathcal{V})$ is pointwise quasi-uniformly $\varphi \psi$ -continuous and $(g, \psi) : (Y, L, \mathcal{V}) \to (Z, H, \mathcal{W})$ is pointwise quasi-uniformly $\varphi \psi$ -continuous, then $(g, \psi) \circ (f, \phi) : (X, K, \mathcal{P}) \to (Z, H, \mathcal{R})$ is pointwise quasi-uniformly $\varphi \psi$ -continuous.

In Theorem 3.2, if we suppose that $\varphi = \psi = id$ then we shall have the following results:

(I) Let (X, K, \mathcal{U}) and (Y, L, \mathcal{V}) are two pointwise quasi-uniform spaces. Then for $(f, \phi) : (X, K) \to (Y, L)$ in **SET** × **LOCDL**, the following statements are equivalent: (1) (f, ϕ) is pointwise quasi-uniformly continuous.

(2) For each $v \in \mathcal{V}$, there exists $u \in \mathcal{U}$ such that $(f, \phi)^{\leftarrow} \circ v \circ (f, \phi)^{\rightarrow} \leq u$.

(3) (f, ϕ)^{*}(\mathcal{V}) $\subset \mathcal{U}$.

(II) If both $(f, \phi) : (X, K, \mathcal{U}) \to (Y, L, \mathcal{V})$ and $(g, \rho) : (Y, L, \mathcal{V}) \to (Z, H, \mathcal{W})$ are pointwise quasi-uniformly continuous, then so is $(g, \rho) \circ (f, \phi) : (X, K, \mathcal{P}) \to (Z, H, \mathcal{R}).$

It is clear that the identical mapping $id_{(X,K)} : (X,K) \to (X,K)$ is pointwise quasi-uniformly continuous. Therefore from results (I) and (II) we get the following:

Theorem 3.4. Pointwise quasi-uniform spaces and pointwise quasi-uniformly continuous morphisms form a category, called the category of pointwise quasi-uniform spaces, denoted by $\mathbf{LOCDL} \times \mathbf{PQUnif}$.

We shall prove that the category **LOCDL-PQUnif** is topological over **SET** × **LOCDL** with respect to the forgetful functor V : **LOCDL** – **PQUnif** \rightarrow **SET** × **LOCDL**, where the forgetful functor V : **LOCDL** – **PQUnif** \rightarrow **SET** × **LOCDL** has the following shape:

$$V(X, K, \mathcal{U}) = (X, K), \quad V(f, \phi) = (f, \phi).$$

A V-structured source from pointwise quasi-uniform space looks like

 $((X,K), (f_i,\phi_i): (X,K) \to V(X_i,K_i,\mathcal{U}_i))_{\Omega}.$

Lemma 3.5. Let $((X, K), (f_i, \phi_i) : (X, K) \to V(X_i, K_i, \mathcal{U}_i))_{\Omega}$ be a V-structured source in **SET** × **LOCDL** from **LOCDL-PQUnif**. then there exists a pointwise quasi-uniformity \mathcal{U} on (X, K) such that each $(f_i, \phi_i) : (X, K, \mathcal{U}) \to (X_i, K_i, \mathcal{U}_i)$ is pointwise quasi-uniformly $\varphi \psi$ -continuous.

Proof. Put

$$\mathcal{A} = \{ (f_i, \phi_i)^* (\mathcal{U}_i^{\psi}) | i \in \Omega \} = \{ (f_i, \phi_i)^{\leftarrow} \circ u_i^{\psi} \circ (f_i, \phi_i)^{\rightarrow} | u_i \in \mathcal{U}_i, i \in \Omega \}.$$

Then it is easy to show that \mathcal{A} is a subbases for a pointwise quasi-uniformity \mathcal{U}^{φ} on (X, K) and each (f_i, ϕ_i) is pointwise quasi-uniformly $\varphi \psi$ -continuous.

Lemma 3.6. $((X, K, \mathcal{U}), (f_i, \phi_i) : (X, K) \to V(X_i, K_i, \mathcal{U}_i))_{\Omega}$ is an initial V-lift of the V-structured source of Lemma 3.5 where \mathcal{U} is given in the proof of Lemma 3.5.

Proof. Let $((X, K, \mathcal{V}))$, $(g_i, \mu_i) : (X, K) \to V(X_i, K_i, \mathcal{U}_i))_{\Omega}$ be another V-lift of the V-structured source of Lemma 3.5, and let $(h, \rho) : (X, K) \to (X, K)$ be a ground morphism such that

$$\forall i \in \Omega, \ (g_i, \mu_i) = (f_i, \phi_i) \circ (h, \rho).$$

Then $(g_i, \mu_i)^{\leftarrow} = (h, \rho)^{\leftarrow} \circ (f_i, \phi_i)^{\leftarrow}$. To prove that $(h, \rho) : (X, K, \mathcal{V}) \to (X, K, \mathcal{U})$ is pointwise quasi-uniformly continuous, we shall prove that $(h, \rho) : (X, K, \mathcal{V}) \to (X, K, \mathcal{U})$ is pointwise quasi-uniformly $\varphi \psi$ -continuous, take $u \in \mathcal{U}$. Then by the proof of Lemma 3.9 we know that there exists a finite family $\{i_1, i_2, \cdots, i_n\} \subset \Omega$ and $\{u_{i_1} \in \mathcal{U}_{i_1}, u_{i_2} \in \mathcal{U}_{i_2}, \cdots, u_{i_n} \in \mathcal{U}_{i_n}\}$ such that

$$u^{\psi} \leq \bigvee_{i=1}^{n} (f_i, \phi_i)^{\leftarrow} \circ u_i^{\psi} \circ (f_i, \phi_i)^{\rightarrow}.$$

Hence

$$(h,\rho)^{\leftarrow} \circ u^{\psi} \circ (h,\rho)^{\rightarrow} \leq (h,\rho)^{\leftarrow} \circ \left(\bigvee_{i=1}^{n} (f_{i},\phi_{i})^{\leftarrow} \circ u_{i}^{\psi} \circ (f_{i},\phi_{i})^{\rightarrow}\right) \circ (h,\rho)^{\rightarrow}$$

$$= \bigvee_{i=1}^{n} ((h,\rho)^{\leftarrow} \circ (f_{i},\phi_{i})^{\leftarrow} \circ u_{i}^{\psi} \circ (f_{i},\phi_{i})^{\rightarrow} \circ (h,\rho)^{\rightarrow})$$

$$= \bigvee_{i=1}^{n} ((g_{i},\mu_{i})^{\leftarrow} \circ u_{i}^{\psi} \circ (g_{i},\mu_{i})^{\rightarrow}) \leq v^{\varphi} \in \mathcal{V}^{\varphi}.$$
 (For $v \in \mathcal{V}$) This shows that $(h,\rho) : (X,K,\mathcal{V}) \rightarrow (X,K,\mathcal{U})$ is pointwise quasi-uniformity $\varphi\psi$ -continuous. Now we are getting $\varphi = \psi = id$, so $(h,\rho) : (X,K,\mathcal{V}) \rightarrow (X,K,\mathcal{U})$ is

pointwise quasi-uniformly continuous.

Lemma 3.7. $((X, K, \mathcal{U}), (f_i, \phi_i) : (X, K) \to V(X_i, K_i, \mathcal{U}_i))_{\Omega}$ is the unique V-initial lift of the V-structured source of Lemma 3.5, where \mathcal{U} is given in the proof of Lemma 3.5.

Proof. Let $((X, K, \mathcal{V}), (g_i, \mu_i) : (X, K) \to V(X_i, K_i, \mathcal{U}_i))_{\Omega}$ be another V-initial lift. Now we prove that $\mathcal{U} = \mathcal{V}$. Since both constructs are lifts, it follows immediately that

 $(f_i, \phi_i) = V(f_i, \phi_i) = V(g_i, \mu_i) = (g_i, \mu_i).$

Let $(h, \rho) : (X, K) \to (X, K)$ by $h = id_X$, $\rho = id_K$. Then using the initial properties of each lift, we have (h, ρ) must be pointwise quasi-uniformly $\varphi \psi$ -continuous, so with getting $\varphi = \psi = id$ we have (h, ρ) is pointwise quasi-uniformly continuous, both from (X, K, \mathcal{V}) to X, K, \mathcal{U} , and from (X, K, \mathcal{U}) to (X, K, \mathcal{V}) ; the former implies $\mathcal{U} \subset \mathcal{V}$, and the latter implies $\mathcal{V} \subset \mathcal{U}$. So $\mathcal{U} = \mathcal{V}$.

Theorem 3.8 The category LOCDL-PQUnif is topological over SET \times LOCDL with respect to the forgetful functor V : LOCDL – PQUnif \rightarrow SET \times LOCDL.

Proof. With conjoining Lemma 3.5, 3.6, 3.7 and interpretation of Definition 1.3.1 in [14], we can obtain the proof. \Box

References

[1] G. Artico, R. Moresco, *Fuzzy proximities and totally bounded fuzzy uniformities*, J. Math. Anal. Appl. 99 (1984) 320-337.

[a] C A : D M = D : (1904) 520-557.

 [2] G. Artico, R. Moresco, Fuzzy uniformities induced by fuzzy proximities, Fuzzy Sets and Systems 31 (1989) 111-121.

[3] M.Y. Bakier, K. El-Saady, *Fuzzy proximity order spaces*, Fuzzy Sets and Systems 104 (1999) 341-350.

[4] B. Daraby, Fuzzy $\varphi\psi$ -continuous functions between L-topological spaces (I), Fuzzy Systems and Mathematics, 23 (2009) 90-94.

[5] M.H. Ghanim, O.A. Tantawy, F.M.Selim, Gradations of uniformity

and gradations of proximity, Fuzzy Sets and Systems 79 (1996) 285-290.

[6] M.H. Ghanim, O.A. Tantawy, F.M. Selim, On S-fuzzy quasi-proximity spaces,

Fuzzy Sets and Systems 109 (2000) 285-290.

[7] G. Gierz, et al., A compendium of continuous lattices, Springer, Berlin, 1980.

[8] U. Höhle, Rodabaugh (Eds.), *Mathematics of Fuzzy Sets: Logic, Topology,* and Measure theory, the Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Dordrecht, 1999.

[9] A.K. Katsaras, Fuzzy proximities and fuzzy completely regular spaces, J. Anal.
St. Univ. Jasi. 26 (1980) 31-41.

[10] A.K. Katsaras, *Fuzzy quasi-proximities and fuzzy quasi-uniformities*, Fuzzy Sets and Systems, 27 (1988)335-343.

[11] W.-J. Liu, Uniformity and proximity of L-fuzzy topological spaces, Fuzzy Sets and Systems 30 (1989) 37-45.

[12] G.N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952) 677-680.

[13] G.N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953) 518-522.

[14] S.E. Rodabaugh, *Categorial foundations of variable-basis fuzzy topology*, in: U. Höhle, Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic,

Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, Dordrecht, 1999, pp. 273-388.

[15] F.-G. Shi, *Pointwise uniformities in fuzzy set theory*, Fuzzy Sets and Systems 98 (1998) 141-146.

[16] G.-J. Wang, *Theory of topological molecular lattices*, Fuzzy Sets and Systems 47 (1992) 351-376.

Bayaz Daraby

Department of Mathematics University of Maragheh Maragheh, Iran. email:bayazdaraby@yahoo.com