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THE EXTENDED ADOMIAN DECOMPOSITION METHOD FOR
FOURTH ORDER BOUNDARY VALUE PROBLEMS

G. Ebadi and S. Rashedi

Abstract. In this paper, we use an efficient numerical algorithm for solv-
ing two point fourth-order linear and nonlinear boundary value problems, which is
based on the Adomian decomposition method (ADM), namely, the extended ADM
(EADM). The proposed method is examined by comparing the results with other
methods. Numerical results show that the proposed method is much more efficient
and accurate than other methods with less computational work.
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1. Introduction

In recent years, much attention have been given to solve the fourth-order bound-
ary value problems, which have application in various branches of pure and applied
sciences. Various numerical methods including finite difference, B-spline [7], homo-
topy perturbation method [11], variational iteration method [14] and Adomian de-
composition method [8, 13] were developed for solving fourth-order boundary value
problems . To be more precise, we consider the following fourth-order boundary
value problem

u(4)(x) = f(x, u, u′, u′′, u′′′), (1)

with the boundary conditions

u(a) = α1, u′(a) = α2, (2)
u(b) = β1, u′(b) = β2,

or

u(a) = α1, u′′(a) = α2, (3)
u(b) = β1, u′′(b) = β2,
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where f is a continuous function on [a,b] and the parameters αi and βi, i = 1,2 are
finite real arbitrary constants.

Adomian [1, 2] introduced an approximate analytical method that allows the
solution of nonlinear functional equations without linearization or assumption of in-
finitesimally small parameters. Since its discovery, Adomians decomposition method
(ADM) has been shown by several investigators [1, 2, 12, 16] to be extremely effi-
cient and versatile. The ADM yields rapidly convergent series solution with much
less computational work [1, 4].

2.Adomian decomposition method (ADM)

In the ADM [1], we first write (1) in the operator form,

Lu = Nu+ φ, (4)

where L = d4/dx4 and N is the nonlinear operator that can be defined by N = f̂ ,
where f̂(x, u, u′, u′′, u′′′) = f(x, u, u′, u′′, u′′′)−φ(x). Assume that the 4-fold operator
L−1 exists and is easily obtained. Applying L−1 on both sides of (4) and using the
boundary conditions yields

u = g + L−1φ+ L−1Nu, (5)

where g represents the term arising from the given boundary conditions. The ADM
[1] takes the solution u and the nonlinear functionN(u) as infinite series, respectively

u =
∞∑

n=0

un, N(u) =
∞∑

n=0

An(u0, u1, · · · , un),

where Adomian polynomials An are given by [1]

An(u0, u1, · · · , un) =
1
n!

[ dn

dλn
N(

n∑
i=0

uiλ
i)

]
λ=0

Let us consider the inverse operator L−1 with the boundary conditions as follows

L−1(.) =
∫ x

a

∫ x

a

∫ x

a

∫ x

a
(.) dx dx dx dx. (6)

Applying the standard ADM yields the following recursive scheme

u0(x) = u(a) + u′(a)(x− a) + 1
2!u

′′(a)(x− a)2 + 1
3!u

′′′(a)(x− a)3 + L−1(φ),

un+1(x) = L−1(An), n = 0, 1, . . . .
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Convergence aspects of the ADM have been investigated in [4]. For later numer-
ical computation, let the expression

Sn(x) =
n−1∑
i=0

ui(x), (7)

denote the n-term approximation to u(x). In order to determine all other compo-
nents un(x), n ≥ 1, the zeroth component u0(x) has to be determined. However,
u′′(a) and u′′′(a) are not defined by the boundary conditions (2) so that the zeroth
component cannot be directly determined.

Many authors [3, 6, 9, 17] have proposed modified ADMs to overcome this
difficulty. In [9, 17] u′′(a) and u′′′(a) are set to be constants, u′′(a) = c and
u′′′(a) = d, and they can be determined such that the nth partial sum Sn(x, c)
and S′n(x, c) satisfy the boundary conditions (2) at x = b because Sn(a, c) = u(a)
and S′n(a, c) = u(a). In this case, it requires additional computational work to solve
the nonlinear equations Sn(b, c) = u(b) and S′n(b, c) = u′(b), also in [6, 10] u′′(a) and
u′′′(a) are set by series

u′′(a) =
∞∑

n=0

cn, u′′′(a) =
∞∑

n=0

dn,

each component un(x) can be obtained as follows

u0(x) = u(a) + u′(a)(x− a) +
1
2!
c0(x− a)2 +

1
3!
d0(x− a)3 + L−1(φ), (8)

un+1(x) =
1
2!
cn+1(x− a)2 +

1
3!
dn+1(x− a)3 + L−1(An), n = 0, 1, · · · (9)

In order to determine the unknown constants cn, dn, n = 0, 1, · · · it is also required
that the nth partial sums Sn and S′n satisfy the boundary conditions (2). It is
obvious that Sn(a) = u(a) and S′n(a) = u′(a), thus unknown constants c0, d0 can be
determined by satisfying the following conditions

u0(b) = u(b), u′0(b) = u′(b). (10)

Also each constants cn+1, dn+1, n = 1, 2, · · · can be determined by solving

un+1(b) = 0, u′n+1(b) = 0. (11)

It also requires additional computational work.
In this work, a new modification of the ADM is proposed to overcome difficulties
occurred in the standard ADM for solving fourth-order boundary value problems,
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namely, the extended ADM (EADM). Main idea of the EADM is to create a canon-
ical form containing all boundary conditions so that the zeroth component is explic-
itly determined without additional calculations and all other components are also
easily determined.
Our aim in this work is to determine the accuracy and efficiency of the EADM in
solving linear and nonlinear fourth-order boundary value problems. Numerical com-
parisons are made between the approximate numerical results and other methods.

3.Analysis of EADM

As described before, the standard ADM requires additional computational work
in determining each component un(x). It is easy to see that these difficulties originate
from the fact that all canonical forms contain the unknown constants. Thus, our
main goal is to create a new canonical form containing all boundary conditions so
that each component un(x) in the recursive scheme can be explicitly determined
without additional computational work. Here we define the inverse operator L−1 as
follows

L−1(.) =
∫ x

a

∫ x

a

∫ x

a

∫ x

a
(.) dx dx dx dx. (12)

Applying L−1 on both sides of (4) and using the boundary conditions (2) yields

u(x) = u(a) + u′(a)(x− a) +
1
2!
u′′(a)(x− a)2

+
1
3!
u′′′(a)(x− a)3 + L−1(φ) + L−1(Nu). (13)

The extended form of the Adomian decomposition method [10] will be implemented
here. Our aim is now to determine the constants u′′(a) and u′′′(a). This can be
achieved by imposing the remaining two boundary conditions (2) at x = b to the
Sn. Thus we have

Sn(b) = u(b), S′n(b) = u′(b).

Solving for u′′(a) and u′′′(a) yields

u′′(a) = 2
(a−b)2

(
u′(b)(a− b) + 2u′(a)(a− b) + 3(u(b) − u(a))

+(b− a)
[
(L−1φ)′

]
x=b

+ (b− a)
[
(L−1Nu)′

]
x=b

−3
[
(L−1φ)

]
x=b

− 3
[
(L−1Nu)

]
x=b

)
,

u′′′(a) = 6
(a−b)3

(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a))

+(b− a)
[
(L−1φ)′

]
x=b

+ (b− a)
[
(L−1Nu)′

]
x=b

−2
[
(L−1φ)

]
x=b

− 3
[
(L−1Nu)

]
x=b

)
.
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By substituting u′′(a) and u′′′(a) into (13), we have

u(x) = u(a) + u′(a)(x− a) + q(x)2
(
u′(b)(a− b) + 2u′(a)(a− b)

+3(u(b) − u(a)) + (b− a)
[
(L−1φ)′

]
x=b

+ (b− a)
[
(L−1Nu)′

]
x=b

−3
[
(L−1φ)

]
x=b

− 3
[
(L−1Nu)

]
x=b

)
− q(x)3

(
u′(a)(a− b)

+u′(b)(a− b) + 2(u(b) − u(a)) + (b− a)
[
(L−1φ)′

]
x=b

(14)

+(b− a)
[
(L−1Nu)′

]
x=b

− 2
[
(L−1φ)

]
x=b

− 2
[
(L−1Nu)

]
x=b

)
+L−1(φ) + L−1(Nu),

where q(x) = (x− a)/(b− a).
The components un(x), n = 0, 1, · · · can be elegantly determined by using the
recursive relation

u0(x) = u(a) + u′(a)(x− a) + q(x)2
(
u′(b)(a− b) + 2u′(a)(a− b)

+3(u(b) − u(a)) + (b− a)
[
(L−1φ)′

]
x=b

− 3
[
(L−1φ)

]
x=b

)
−q(x)3

(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a)) (15)

+(b− a)
[
(L−1φ)′

]
x=b

− 2
[
(L−1φ)

]
x=b

)
+ L−1(φ),

un+1(x) = q(x)2
(
(b− a)

[
(L−1An)′

]
x=b

− 3
[
(L−1An)

]
x=b

)
−q(x)3

(
(b− a)

[
(L−1An)′

]
x=b

− 2
[
(L−1An)

]
x=b

)
+ L−1An, (16)

where An is the Adomian polynomials associated with the nonlinear operator N .
It is worth noting that the canonical form (14) consists of all boundary conditions.
Moreover, the nth partial sum Sn and S′n from the recursive schemes, (15) and
(16), always satisfy the boundary conditions for any n. Thus, it is not necessary to
determine the unknown constant u′′(a) and u′′′(a) by extra calculations.

Remark 1. We note that each component un(x), n = 0, 1, · · · in (15), (16) is
identical to the components un(x), n = 0, 1, · · · in (8) and (9). Because applying
(10) and (11) to un, n = 0, 1, · · · in (8) and (9) yields

c0 =
2

(a− b)2
(
2u′(a)(a− b) + u′(b)(a− b) + 3(u(b) − u(a))

+(b− a)
[
(L−1φ)′

]
x=b

− 3
[
(L−1φ)

]
x=b

)
,
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d0 =
6

(a− b)3
(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a))

+(b− a)
[
(L−1φ)′

]
x=b

− 2
[
(L−1φ)

]
x=b

)
,

cn+1 =
−2

(a− b)2
(
(a− b)

[
(L−1An)′

]
x=b

+ 3
[
(L−1An)

]
x=b

)
,

dn+1 =
−6

(a− b)3
(
(a− b)

[
(L−1An)′

]
x=b

+ 2
[
(L−1An)

]
x=b

)
.

As discussed in [10] there are several types of fourfold definite integrals, it is
possible to produce different components for each twofold definite integral. We
prove that EADM is independent on the inverse operator which is defined by any
fourfold definite integral. For this we consider the inverse operator L−1

k defined by

L−1
k =

∫ x

νk

∫ x

ωk

∫ x

ζk

∫ x

ηk

dx dx dx dx, k = 1, 2, · · · , 16, (17)

where νk, ωk, ζk, ηk are introduced in table 1. Let us define uk
n by the component

induced by L−1
k in EADM. Applying the procedures in EADM with the inverse

operator L−1
1 yields

u1
0(x) = u0(x), u1

n+1(x) = un+1(x),

where u0(x) and un+1(x) obtained in (15) and (16).

Table 1: Parameter values used for illustration purposes

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
νk a a a a a a a a b b b b b b b b
ωk a a a a b b b b a a a a b b b b
ζk a a b b a a b b a a b b a a b b
ηk a b a b a b a b a b a b a b a b

Lemma 1. L−1
1 ψ − q(x)2

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 3
[
(L−1

1 ψ)
]
x=b

)
+ q(x)3

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 2
[
(L−1

1 ψ)
]
x=b

)
= L−1

2 ψ − q(x)2(
(a− b)

[
(L−1

2 ψ)′
]
x=b

+ 3
[
(L−1

2 ψ)
]
x=b

)
+ q(x)3

(
(a− b)

[
(L−1

2 ψ)′
]
x=b

+ 2
[
(L−1

2 ψ)
]
x=b

)
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Proof. Let us define ψ1, ψ2, ψ3, and ψ4 by (ψ1)′ = ψ, (ψ2)′ = ψ1, (ψ3)′ = ψ2 and
(ψ4)′ = ψ3. Then we have

L−1
1 ψ = ψ4(x) − ψ4(a) − (x− a)ψ3(a) −

(x− a)2

2!
ψ2(a) −

(x− a)3

3!
ψ1(a),

L−1
2 ψ = ψ4(x) − ψ4(a) − (x− a)ψ3(a) −

(x− a)2

2!
ψ2(a) −

(x− a)3

3!
ψ1(b).

Therefore, we have:

L−1
1 ψ −q(x)2

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 3
[
(L−1

1 ψ)
]
x=b

)
+q(x)3

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 2
[
(L−1

1 ψ)
]
x=b

)
=

−1
(a− b)3

(
2ψ4(b)x3 − 2ψ4(a)x3 + aψ3(a)x3 − bψ3(b)x3 −

bψ3(a)x3 + aψ3(b)x3 − 2a2ψ3(b)x2 + b2ψ3(b)x2 + aψ3(b)bx2 (18)
+3ψ4(a)ax2 + 3ψ4(a)bx2 − a2ψ3(a)x2 − aψ3(a)bx2 − 3ψ4(b)bx2

+2b2ψ3(a)x2 − 3ψ4(b)ax2 + 6aψ4(b)bx− 6aψ4(a)bx− ab2ψ3(a)x
−2ab2ψ3(b)x+ 2a2bψ3(a)x+ a2bψ3(b)x+ a3ψ3(b)x− ψ3(a)b3xψ4(x)a3

+a3ψ4(b) − a2b2ψ3(a) + a2b2ψ3(b) − 3a2ψ4(b)b+ ψ4(x)b3 − ψ4(a)b3

+ψ3(a)ab3 + 3ψ4(x)a2b− 3φ4(x)ab2 + 3ψ4(a)ab2 − a3bψ3(b)
)
.

In the same manner, we have the same result for

L−1
2 ψ − q(x)2

(
(a− b)

[
(L−1

2 ψ)′
]
x=b

+ 3
[
(L−1

2 ψ)
]
x=b

)
+

q(x)3
(
(a− b)

[
(L−1

2 ψ)′
]
x=b

+ 2
[
(L−1

2 ψ)
]
x=b

)
.

Corollary 1. From Lemma 1, it is easy to see that u1
n(x) = u2

n(x), n = 0, 1, · · · .

Remark 2. Now let us consider each component u3
n(x), n = 0, 1, · · · by taking

L−1
3 as the inverse operator. Each component u3

n(x), n = 0, 1, · · · can be easily
obtained by the same procedures in EADM as follows:

u3
0(x) = u(a) + u′(a)(x− a) − q(x)2

(
2u′(b)(a− b) + u′(a)(a− b)

+3(u(b) − u(a)) + 2(b− a)
[
(L−1

3 φ)′
]
x=b

− 3
[
(L−1

3 φ)
]
x=b

)
−r(x)3

(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a)) +

(b− a)
[
(L−1

3 φ)′
]
x=b

− 2
[
(L−1

3 φ)
]
x=b

)
−

(
u′(a)(a− b) + (19)
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u′(b)(a− b) + 2(u(b) − u(a)) + (b− a)
[
(L−1

4 φ)′
]
x=b

− 2
[
(L−1

3 φ)
]
x=b

)
+3q(x)

(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a)) +

(b− a)
[
(L−1

3 φ)′
]
x=b

− 2
[
(L−1

3 φ)
]
x=b

)
+ L−1

3 φ,

u3
n+1(x) = −q(x)2

(
2(b− a)

[
(L−1

3 An)′
]
x=b

− 3
[
(L−1

3 An)
]
x=b

)
−q(x)3

(
(b− a)

[
(L−1

3 An)′
]
x=b

− 2
[
(L−1

3 An)
]
x=b

)
−

(
(b− a)

[
(L−1

3 An)′
]
x=b

− 2
[
(L−1

3 An)
]
x=b

)
(20)

+3q(x)
(
(b− a)

[
(L−1

3 An)′
]
x=b

− 2
[
(L−1

3 An)
]
x=b

)
+L−1

3 An, n = 0, 1, · · · ,

where r(x) = (x− b)/(b− a).

Lemma 2. u1
n(x) = u3

n(x), n = 0, 1, · · · .

Proof.

1 − r(x) = 1 − x− b

b− a
=
x− a

b− a
= q(x).

This implies that

u(a) + u′(a)(x− a) − q(x)2
(
2u′(b)(a− b) + u′(a)(a− b) + 3(u(b)−

u(a))
)
− r(x)3

(
u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a))

)
−(

u′(a)(a− b) + u′(b)(a− b) + 2(u(b) − u(a))
)

+ 3q(x)
(
u′(a)(a− b)

+u′(b)(a− b) + 2(u(b) − u(a))
)

= u(a) + u′(a)(x− a)−
q(x)2

(
2u′(a)(b− a) + u′(b)(b− a) + 3(u(a) − u(b))

)
+

q(x)3
(
u′(a)(b− a) + u′(b)(b− a) + 2(u(a) − u(b))

)
.

Thus, it is sufficient to show that

L−1
1 ψ −q(x)2

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 3
[
(L−1

1 ψ)
]
x=b

)
+q(x)3

(
(a− b)

[
(L−1

1 ψ)′
]
x=b

+ 2
[
(L−1

1 ψ)
]
x=b

)
= L−1

3 ψ − q(x)2
(
2(b− a)

[
(L−1

3 ψ)′
]
x=b

− 3
[
(L−1

3 ψ)
]
x=b

)
(21)

−r(x)3
(
(b− a)

[
(L−1

3 ψ)′
]
x=b

− 2
[
(L−1

3 ψ)
]
x=b

)
−

(
(b− a)

[
(L−1

3 ψ)′
]
x=b

−2
[
(L−1

3 ψ)
]
x=b

)
+ 3q(x)

(
(b− a)

[
(L−1

3 ψ)′
]
x=b

− 2
[
(L−1

3 ψ)
]
x=b

)
.
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With the assumption of lemma 1 we have

L−1
3 ψ = ψ4(x) − ψ4(a) − (x− a)ψ3(a) −

(x− a)2

2!
ψ2(b) −

(x− b)3

3!
ψ1(a)

+
(a− b)3

3!
ψ1(a) +

(a− b)2

2!
(x− a)ψ1(a).

By substituting L−1
3 ψ in the second side of (21) we get the same result in (18). It

completes the proof.
Since the boundary conditions (2) are symmetric in terms of a and b, therefore

by exchanging a and b, we get

u(k)
n (x) = u(16−k+1)

n (x), k = 1, 2, · · · , 8.

So for proving the equality of u(k)
n (x)’s for k = 1, 2, · · · , 16 it suffices to prove the

equality of u(k)
n (x)’s for k = 1, 2, · · · , 8. For this, we have olready shown the equality

of u(1)
n (x), u(2)

n (x) and u(3)
n (x) in lemmas 1 and 2, and the rest of the equalities can

be proved in a similar way. Thus, the following conclusion can be obtained.

Theorem 1. Every component uk
n(x), n = 0, 1, · · · induced by L−1

k , k =
1, . . . , 16 in EADM is identical. In other words, EADM is independent on the inverse
operator which is defined by any fourfold definite integral.

We note that all of these lemmas and theorem are true with the boundary con-
dition (3)

4. Examples

In this section, we demonstrate the effectiveness of the EADM with several illus-
trative examples. All numerical results obtained by EADM are compared with the
results obtained by various numerical methods.

Example 1. Consider the following linear problem [13],

u(4)(x) = (1 + c)u′′(x) − cu(x) +
1
2
cx2 − 1, 0 < x < 1,

subject to
u(0) = 1, u′(0) = 1,
u(1) = 1.5 + sinh(1), u′(1) = 1.5 + cosh(1).

The exact solution for this problem is u(x) = 1+ 1
2x2 + sinh(x). For each test point,

the absolute error between the exact solution and the results obtained by the HPM,

73



G. Ebadi, S. Rashedi - The extended Adomian decomposition method for...

ADM [13] and the EADM is compared in Table 2 and 3 for c = 1 and c = 10.
Our approximate solutions obtained using EADM are in good agreement with the
exact solution when the parameter c is less than 10. With only two iterations a
better approximation S2 has been obtained than the results by HPM and ADM.

Table 2: Absolute errors of the first-order approximate solution when c = 1.

k Analytical solution EHPM EADM EEADM

0.0 1.0000000000 0.0000 0.0000 0.0000
0.1 1.1051667500 7.4E − 5 7.4E − 5 1.1488E − 6
0.2 1.2213360025 2.5E − 4 2.5E − 4 3.2027E − 7
0.3 1.3495202934 4.6E − 4 4.6E − 4 1.1328E − 5
0.4 1.4907523258 6.5E − 4 6.5E − 4 3.4636E − 5
0.5 1.6460953055 7.6E − 4 7.6E − 4 6.6411E − 5
0.6 1.8166535821 7.5E − 4 7.5E − 4 9.6330E − 5
0.7 2.0035837018 6.1E − 4 6.1E − 4 1.1038E − 4
0.8 2.2081059822 3.8E − 4 3.8E − 4 9.6471E − 5
0.9 2.4315167257 1.3E − 4 1.3E − 4 5.2931E − 5
1.0 2.6752011936 0.0000 0.0000 0.0000

Example 2. Consider the following linear fourth-order integro-differential equa-
tion [15],

y(4)(x) = x(1 + ex) + 3ex + y(x) −
∫ x

0
y(x)dx, 0 < x < 1,

subject to the boundary conditions:

y(0) = 1, y′′(0) = 2, y(1) = 1 + e, y′′(1) = 3e.

The exact solution is y(x) = 1 + xex.
The numerical results of EADM compared with exact solution and VIM [14] are

presented in Table 4. These results are evaluated at n = 2 term of the recurrence
relation (7). It can be seen from the numerical results in Table 4 that the EADM
is more accurate than the VIM solution in [14]. Even though the ADM [8] shows a
better performance than EADM, it is easy to obtain a similar accurate approxima-
tion with a few more iterations in EADM.
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Table 3: Absolute errors of the first-order approximate solution obtained by HPM,
ADM and EADM for Example 1 when c = 10.

k Analytical solution EHPM EADM EEADM

0.0 1.0000000000 0.0000 0.0000 0.0000
0.1 1.1051667500 1.7E − 4 1.7E − 4 4.50410E − 6
0.2 1.2213360025 5.7E − 4 5.7E − 4 3.02581E − 5
0.3 1.3495202934 1.0E − 3 1.0E − 3 8.72832E − 5
0.4 1.4907523258 1.4E − 3 1.4E − 3 1.67419E − 4
0.5 1.6460953055 1.6E − 3 1.6E − 3 2.44493E − 4
0.6 1.8166535821 1.6E − 3 1.6E − 3 2.83793E − 4
0.7 2.0035837018 1.2E − 3 1.2E − 3 2.58064E − 4
0.8 2.2081059822 7.6E − 3 7.6E − 3 1.66169E − 4
0.9 2.4315167257 2.5E − 3 2.5E − 3 4.94701E − 5
1.0 2.6752011936 0.0000 0.0000 0.0000

Example 3. Consider the following nonlinear fourth-order integro-differential
equation [15],

y(4)(x) = 1 +
∫ x

0
e−xy2(x)dx, 0 < x < 1.

subject to the boundary conditions:

y(0) = 1, y′′(0) = 1, y(1) = e, y′′(1) = e.

The exact solution is y(x) = ex. Table 5 shows the accuracy of the approximate
solution y1(x), where E(x) = |ex − y1(x)| be the absolute error. Also, it is evident
that the overall errors can be made smaller by adding new terms from the iterative
formulas.

Example 4. Consider the following nonlinear fourth-order integro-differential
equation [14],

u(4)(x) = u2(x) + 1, 0 < x < 2,

subject to the boundary conditions u(0) = u′(0) = u(2) = u′(2) = 0.
Table 6 displays the comparison of the EADM with the trapezoidal rule solution

[5] for some values of x. The obtained solution is of remarkable accuracy, as shown
in Table 6.
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Table 4: Absolute errors of the first-order approximate solution obtained by VIM
and EADM for Example 2.

k Exact solution EV IM EEADM

0.0 1.0 0.00 0.00
0.2 1.24428 1.65737E − 4 5.816195E − 5
0.4 1.59673 2.84804E − 4 9.206495E − 5
0.6 2.09327 3.12185E − 4 8.912111E − 5
0.8 2.78043 2.13844E − 4 5.314847E − 5
1.0 3.71828 0.00 0.00

Table 5: Absolute errors of the first-order approximate solution obtained by VIM
and EADM for Example 3.

k Exact solution EV IM EEADM

0.0 1.0 0.00 0.00
0.2 1.2214 1.11471E − 03 4.01367E − 05
0.4 1.49182 1.88476E − 03 6.73710E − 05
0.6 1.82212 2.00882E − 03 7.08922E − 05
0.8 2.22554 1.32855E − 03 4.61244E − 05
1.0 2.71828 5.27578E − 13 2.00000E − 15

5. Conclusion

In this work, the EADM is extended to solve the two point fourth order bound-
ary value problems. ADM has been successful for solving many application prob-
lems with simple calculations. However, it has difficulties in dealing with boundary
conditions for solving two-point boundary problems. Many approaches have been
presented to overcome these difficulties. However, they require additional compu-
tational work since all boundary conditions are not included in the canonical form.
Our fundamental goal is to create the canonical form containing all boundary con-
ditions. The EADM does not require us to calculate the unknown constant which
is usually a derivative at the boundary. All numerical approximations by EADM
are compared with the results in many other methods such as homotopy perturba-
tion method, variational iteration method and the trapezoidal rule (TRAP). From
the results in illustrative examples, it is concluded that EADM is a very effective
algorithm which provides promising results with simple calculations.
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Table 6: Comparison of the first-order approximate solution obtained by VIM with
numerical solution obtained by the trapezoidal rule (TRAP) [5].

k V IM EADM TRAP [1]
0.0 0.000000000 0.00000000 0.00000000
0.1 0.001514138 0.001505652 0.00150566
0.2 0.005437536 0.005405472 0.00540548
0.3 0.010916675 0.108487561 0.01084878
0.4 0.017198041 0.017084801 0.01708483
0.5 0.023628128 0.023462922 0.02346295
0.6 0.029653459 0.029432459 0.02943250
0.7 0.034820601 0.034542813 0.03454287
0.8 0.038776177 0.038443468 0.03844355
0.9 0.041266870 0.040884029 0.04088413
1.0 0.042139406 0.041714244 0.04171435
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