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HAMILTONIAN STRUCTURE AND NEW EXACT SOLITON
SOLUTIONS OF SOME KORTEWEG – DE VRIES EQUATIONS

V. G. Gupta, P. Sharma

Abstract. In this paper, we discuss the Hamiltonian structure of Korteweg–de
Vries equation, modified Korteweg–de Vries equation, and generalized Korteweg–
de Vries equation. We proposed the Sine-function algorithm to obtain the exact
solution for non-linear partial differential equations. This method is used to obtain
the exact solutions for KdV, mKdV and GKdV equations. Also, we have applied
the method to Burgers equation which does not admit Hamiltonian structure.
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1. Introduction

Recently, in a review article Praught and Smirnov [1], discussed the multi-
Hamiltonian structure of the Korteweg–de Vries equation and the history of Lenard
recursion formula for the construction of higher order Korteweg–de Vries equations,
so that the higher order Korteweg–de Vries equations also has the same conserved
quantities as the basic Korteweg–de Vries equation have. This led to the KdV
hierarchy.

The Korteweg–de Vries equation, an evolution equation in one space dimension
is named after the Dutch mathematicians Korteweg and de Vries [2], however it was
even earlier discovered by Boussinesq [3]. Initially the KdV equation was proposed
as a model equation for long surface waves of water in a narrow and shallow channel.
The objective of study the KdV equation was to obtain Solitary wave solutions of
the type discovered in nature Russell [4]. Later it was found that this equation
also models waves in other homogeneous, weakly nonlinear and weakly dispersive
media. Since, the mid sixties the KdV equation received a lot of attention in the
aftermath of computational experiments of Kruskel and Zabusky [5], which led to
the discovery of the interaction properties of the Solitary wave solutions and in
turn to the understanding of KdV equation as an infinite dimensional integrable
Hamiltonian system.
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In recent years, a lot of attention is made by many mathematicians and scien-
tists to develop the methods for exact Solitary wave solutions of partial differential
equations, such as, tanh method [6,7], the extended tanh-function method [8,9],
the modified extended tanh-function method [10-14], variational iteration method
[15-20], First Integral Method [21,22].

The purpose of this paper is to review the Hamiltonian structure of the GKdV
equation and to get mKdV and KdV equations as its spectial cases. Then we
construct the new exact Solitary wave solutions of GKdV, mKdV, and KdV equatios
using Sine-function method.

2. Hamiltonian Structure

Initially it was observed by Gardner [23], Faddeev and Zakharov [24] that the
KdV equation can be put in Hamiltonian form. The following Lemma is used for
the Hamiltonian structure of KdV equation.

Lemma [25]. If H(u) =
∫∞
−∞ F (u, ux, uxx...)dx then the corresponding vector

field is given by

XH(u) =
∂

∂x

(
δF

δu

)
,

where δF
δu = ∂F

∂u − ∂
∂x

(
δF
δux

)
+ ∂2

∂x2

(
δF

δuxx

)
− ... denotes the L2-gradient of H.

We take the underlying phase space as the Sobolev space, endowed with the
Poisson bracket (in case of KdV equation, called KdV bracket) proposed by Gardner:

{F,G} =
∫ ∞

−∞

δF

δu

∂

∂x

(
δG

δu

)
dx,

where F and G are the differentiable functions of the corresponding phase space with
L2-gradients. The corresponding Hamiltonian equations become ut = ∂

∂x

(
δF
δu

)
.

Example 1. The general Korteweg–de Vries (GKdV) equation. The
general Korteweg–de Vries (GKdV) equation [26] for long waves in shallow water
has the form:

ut + εupux + νuxxx = 0.

Using the above Lemma we find that the corresponding Hamiltonian for this equation
is given by

H(u) =
∫ ∞

−∞

( −ε

p2 + 3p + 2
up+2 +

1
2
νu2

x

)
dx.
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Case I. When ε = −6, p = 1, ν = 1, the Hamiltonian H(u), reduces to the
Hamiltonian for KdV equation as:

H1(u) =
∫ ∞

−∞

(
u3 +

1
2
u2

x

)
dx

with the corresponding Korteweg–de Vries (KdV) equation: ut − 6uux + uxxx = 0,
which is the same Hamiltonian and Hamilton equation as given by Kappeller and
Poschel [27].

Case II. When ε = −6, p = 2, ν = 1, the Hamiltonian H(u), reduces to the
Hamiltonian for mKdV equation as:

H2(u) =
∫ ∞

−∞

(
1
2
u4 +

1
2
u2

x

)
dx

with the corresponding modified Korteweg–de Vries (mKdV) equation:

ut − 6u2ux + uxxx = 0.

3. The Sine function Method

Consider the nonlinear partial differential equation of the form:

F (u, ut, ux, uxx, uxxt, ...) = 0, (1)

where u(x, t) is the solution of nonlinear partial differential equation (1). We use
the transformations

u(x, t) = f(ξ), ξ = x− ct. (2)

This enables us to use the following changes:

∂

∂t
(.) = −c

d

dξ
(.),

∂

∂x
(.) =

d

dξ
(.),

∂2

∂x2
(.) =

d2

dξ2
(.), ... (3)

Eq. (3) changes Eq. (1) in the form

G(f, f ′, f ′′, f ′′′, ...) = 0 (4)

The solution of Eq. (4) can be expressed in the form:

f(ξ) = λ sinα(µξ), | ξ |≤ π

µ
(5)
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where λ, α and µ are unknown parameters which are to be determined. Thus we
have:

f ′ =
df(ξ)
dξ

= λαµ sinα−1(µξ) cos(µξ), (6)

f ′′ =
d2f(ξ)

dξ2
= −λµ2α sinα(µξ)+λµ2α(α−1) sinα−2(µξ)−λµ2α(α−1) sinα(µξ). (7)

Using Eq. (5) in Eq. (4) we obtain a trigonometric equation in terms of sinα(µξ).
To determine the parameters first we determine α by balancing the exponents of each
pair of sine. Then collecting all terms of the same power in the form sinα(µξ) and
then equating their coefficients equal to zero we get system of algebraic equations
among the unknowns λ, α and µ. Finally, the problem is reduced to a system of
algebraic equations that can be solved to obtain the unknown parameters λ, α and
µ. Hence, the solution considered in Eq. (5) is obtained. The above analysis yields
the following theorem.

Theorem 1. The exact analytical solution of the nonlinear partial differential
equations (1) can be determined in the form given by Eq. (5) where all constants
are found from the algebraic equations.

4. Applications

In order to illustrate the effectiveness of the proposed method two examples are
illustrated as follows.

Example 2. The general Korteweg–de Vries (GKdV) equation. The
general Korteweg–de Vries (GKdV) equation [26] for long waves in shallow water
has the form:

ut + εupux + νuxxx = 0. (8)

Using the transformation u(x, t) = f(ξ) and ξ = x− ct, Eq.(8)reduces to:

−c
df(ξ)
dξ

+ εfp(ξ)
df(ξ)
dξ

+ ν
d3f(ξ)

dξ3
= 0. (9)

Integrating Eq. (9), gives

−cf(ξ) +
ε

p + 1
(f(ξ))p+1 + ν

d2f(ξ)
dξ2

= 0. (10)

Substituting Eq. (5) and (7) into Eq. (10) gives:

−cλ sinα(µξ) +
ελp+1

p + 1
sin(p+1)α(µξ)− νλαµ2 sinα(µξ)+
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+νλµ2α(α− 1) sinα−2(µξ)− νλµ2α(α− 1) sinα(µξ) = 0. (11)

Eq. (11) is satisfied only if the following system of algebraic equations holds:

(p + 1)α = α− 2,

−cλ− νλαµ2 − νλµ2α(α− 1) = 0,

ελp+1

p + 1
+ νλµ2α(α− 1) = 0. (12)

Solving the system of equations (12), we obtain:

α = −2
p
, µ = ± ιp

√
c

2
√

ν
, λ = 2−1/p

(
c(2 + 3p + p2)

ε

)1/p

. (13)

Substituting Eq. (13) into Eq. (5) we obtain the exact soliton solution of the GKdV
equation in the form:

u(x, t) = 2−1/p

(
c(2 + 3p + p2)

ε

)1/p

sin−2/p
(
± ιp

√
c

2
√

ν
(x− ct)

)
. (14)

Case I. Putting ε = −6, p = 1, ν = 1; in equation (14) we obtain the exact
soliton solution of the KdV equation in the form

u(x, t) = − c

2
cosec2

(
± ι
√

c

2
(x− ct)

)
. (15)

Case II. Putting ε = −6, p = 2, ν = 1; in equation (14) we obtain the exact
soliton solution of the mKdV equation in the form

u(x, t) = ι
√

c sin−1(±ι
√

c(x− ct)). (16)

Example 3. The Burgers equation. Finally, consider the well-known Burg-
ers equation in the form

ut = uux − kuxx = 0. (17)

Using the transformation u(x, t) = f(ξ) and ξ = x− ct, Eq.(17) reduces to:

−c
df(ξ)
dξ

+ f(ξ)
df(ξ)
dξ

− k
d2f(ξ)

dξ2
= 0. (18)

147



V. G. Gupta, P. Sharma - Hamiltonian structure and new exact...

Integrating Eq. (18), gives

−cf(ξ) +
f2(ξ)

2
− k

df(ξ)
dξ

= 0. (19)

In a similar manner to solve Eq. (19) by Sine-function method, we obtain the system
of equations as follows.

Case I. 4α = 2α− 2, c2λ2 − k2λ2α2µ2 = 0, λ4

4 − k2λ2α2µ2 = 0.
Case II. 3α = 2α− 2, −cλ3 − k2λ2α2µ2 = 0, c2λ2 − k2λ2α2µ2 = 0.
Thus we obtain the exact soliton solution of the Burgers equation in the form:

u(x, t) = ±2c sin−1
(
± c

k
(x− ct)

)
,

u(x, t) = −ccosec2
(

c

2k
(x− ct)

)
. (20)

5. Conslusions

In this paper, we have discussed the Hamiltonian structure of GKdV equation
and then get the same Hamiltonian structure of KdV equation, and mKdV equation
given in [27], as its particular cases. The Sine-function method has been successfully
applied to find the solution for four nonlinear partial differential equations such as
GKdV, KdV, mKdV, and Burgers equations. The Sine-function method is used
to find new exact solution. Thus, it is possible that the proposed method can
be extended to solve the problems of nonlinear partial differential equations which
arising in the theory of solitons and other areas.
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References

[1] J. Praught, R.G. Smirnov, A. Lenard, A Mystery Unraveled, SIGMA, Vol.1
(2005).

[2] D.J. Korteweg, G. Vries, On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves, Phil. Mag. Ser.
Vol. 39, No. 5 (1895), 422-443.

[3] J. Boussinesq, Theorie de lintumescence liquid appelee onde solitaire ou de
translation, se propageant dans un canal rectangulaire, Comptes Rend. Acad. Sci.,
Paris, Vol. 72 (1871), 755-759.

148



V. G. Gupta, P. Sharma - Hamiltonian structure and new exact...

[4] J.S. Russell, Report on waves, Reports of the Fourteenth Meeting of the
British Association for the Advancement of Sciences, John Murray, London, 1844,
311-390.

[5] M.D. Kruskal, N.J. Zabusky, Interaction of solitons in a collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett., Vol. 15 (1965), 240-243.

[6] E.J. Parkes, B.R. Duffy, Travelling solitary wave solutions to a compound
KdV-Burgers equation, Phys. Lett. A, Vol. 229 (1997), 217-220.

[7] A.H. Khater, W. Malfiet, D.K. Callebaut, E.S. Kamel, The tanh method,
a simple transformation and exact analytical for nonlinear reaction-diffusion equa-
tions, Chaos Solitons Fractals, Vol. 14 (2002), 513-522.

[8] E. Fan, Extended tanh-function method and its applications to nonlinear equa-
tions, Phys. Lett. A, Vol. 277 (2000), 212-218.

[9] E. Fan, Traveling Wave Solutions for Generalized Hirota–Satsuma Coupled
KdV Systems, Z. Naturforsch. A, Vol. 56 (2001), 312-318.

[10] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Modified extended
tanh-function method for solving nonlinear partial differential equations, Phys. Lett.
A, Vol. 299 (2002), 179-188.

[11] S.A. EL-Wakil, M.A. Abdou, New exact travelling wave solutions using mod-
ified extended tanh-function method, Chaos Solitons Fractals, Vol. 31 (2007), 840-
852.

[12] S.A. EL-Wakil, M.A. Abdou, Modefied extended tanh-function method for
solving nonlinear particle differential equations, Chaos Solitons Fractals, Vol. 31
(2007), 1256-1264.

[13] A.A. Soliman, The modified extended tanh-function method for solving Burg-
ers type equations, Physica A, Vol. 361, No. 2 (2006), 394-404.

[14] M.A. Abdou, A.A. Soliman, Modified extended tanh-function method and
its application on nonlinear physical equations, Phys. Lett. A, Vol. 353 (2006),
487-492.

[15] M.A. Abdou, A.A. Soliman, Variational iteration method for solving Burger’s
and coupled Burger’s equations, J. Comput. Appl. Math., Vol. 181, No. 2 (2005),
245-251.

[16] A.A. Soliman, Numerical simulation of the generalized regularized long wave
equation by Hes variational iteration method, Math. Comput. Simul., Vol. 70, No.
2 (2005), 119-124.

[17] M.A. Abdou, A.A. Soliman, New applications of Variational iteration method,
Physica D, Vol. 211 (2005), 1-8.

[18] A.A. Soliman, A numerical simulation and explicit solutions of KdVBurgers
and Laxs seventh-order KdV equations, Chaos Solitons Fractals, Vol. 29 (2006),
294-302.

149



V. G. Gupta, P. Sharma - Hamiltonian structure and new exact...

[19] A.A. Soliman, M.A. Abdou, Numerical solutions of nonlinear evolution equa-
tions using variational iteration method, J. Comput. Appl. Math. (2007).

[20] M.A. Abdou, On the variational iteration method, Phys. Lett. A (2007).
[21] K.R. Raslan, The first integral method for solving some important nonlinear

partial differential equations, Nonlinear Dynamics, Vol. 53, No. 4 (2008), 281.
[22] F. Tascan, A. Bekir, Travelling Wave solutions of the Cahn-Allen equation

by using first integral method, Applied Mathematics and Computation, Vol. 207
(2009), 279-282.

[23] C.S. Gardner, Korteweg–de Vries equation and generalizations. IV. The
Korteweg–de Vries equation as a Hamiltonian system, J. Math. Phys., Vol. 12
(1971), 1548-1551.

[24] L.D. Faddeev, V.E. Zakharov, Kortweg–de Vries equation: a completely
integrable Hamiltonian system, Funct. Anal. Appl., Vol. 5 (1971), 280287.

[25] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry,
Second Edition, Springer-Verlag, New York (1999).

[26] Kh.O. Abdulloev, I.L. Bogolubsky, V.G. Makhankov, One more example of
inelastic soliton interaction, Phys. Lett. A, Vol. 56, No. 6 (1976), 427-428.

[27] T. Kappeller, J. Poschel, On the Korteweg–de Vries equation and KAM
Theory, Geometric Analysis and Nonlinear Partial Differential Equations, Springer,
Berlin (2003), 397-416.

V. G. Gupta and P. Sharma
Department of Mathematics,
University of Rajasthan,
Jaipur 302004, INDIA
email: guptavguor@rediffmail.com, sharmapatanjali@rediffmail.com

150


