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Abstract. In this paper, we apply a combined Monte Carlo and Quasi-Monte
Carlo method, which we proposed in an earlier paper [32], to the evaluation of an
European Call option and of an Asian Call option. We assume that the stock price of
the underlying asset S = S(t) is driven by a Lévy process Z(t), with independent in-
crements distributed according to a NIG distribution. We compare our method with
the Monte Carlo and Quasi-Monte Carlo methods. The numerical results indicate
that our method provides significant error reduction over these methods.
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1. Introduction

The evaluation of the European and Asian options is one of the most important
problems in financial mathematics. The value of such an option can be expressed
in terms of a risk-neutral expectation of a random payoff. In the case of European
options, when the asset is modeled under the standard Black-Scholes assumptions,
the expectation is explicitly computable. However, in general, if the log-returns of
the asset prices are non-normally distributed, a closed expression for the price of an
European option is not available, and so numerical methods are involved. In the case
of arithmetic Asian options, even in the standard Black-Scholes framework, exact
closed-form formulas for pricing such options have not been available and therefore,
the price must be numerically computed.

Simulation techniques such as Monte Carlo (MC) and Quasi-Monte Carlo (QMC)
methods play a key role in the evaluation of such derivatives. The first application of
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MC methods in this field appeared in Boyle [2], who used simulation to estimate the
value of a standard European option. Applications of the QMC method to option
pricing problems can be found in [8], [14] and [17]. Majority of the work done on
applying these simulation techniques to financial problems was in direction where
one needs to simulate from the normal distribution.

Barndorff-Nielsen [1] was the one who proposed to model the log-returns, by
using the normal inverse Gaussian (NIG) distribution, as this class of distributions
has proven to fit the semi-heavily tails observed in financial time series of various
kinds extremely well [7], [34]. A method for evaluating such derivatives is the one
proposed by Raible [27], who considered a Fourier method to evaluate call and put
options. Other alternative methods for evaluating such derivatives are the MC and
QMC methods. In [15], Kainhofer proposes a QMC algorithm for generating NIG
variables, based on a technique proposed by Hlawka and Mück [12, 13] for generating
low-discrepancy sequences for general distributions.

In an earlier paper [32], we proposed a combined MC and QMC method, to
estimate a multidimensional integral I of a function f , with respect to the proba-
bility measure induced by a distribution function G on [0, 1]s. Our method is based
on random sampling from sequences with low G-discrepancy. Other methods that
combine the ideas of MC and QMC methods and their applications to option pricing
can be found in [19], [20], [22], [28], [9] and [29].

In this paper, we first recall the general setting of our combined method and
give some important theoretical results. Next, we apply our method to the evalua-
tion of an European Call option and of an Asian Call option. We assume that the
stock price of the underlying asset S = S(t) is driven by a Lévy process Z(t), with
independent increments distributed according to a NIG distribution. We compare
the estimate produced by our method with the estimates given by MC and QMC
methods. The numerical results indicate that our method provides significant error
reduction over these methods.

2. Monte Carlo and Quasi-Monte Carlo methods

We consider an s-dimensional continuous distribution on [0, 1]s, with distribution
function G and density function g (g is nonnegative and

∫
[0,1]s g(u)du = 1).

We consider the problem of approximating the multidimensional integral of a
function f : [0, 1]s → R, of the form

I =
∫

[0,1]s
f(x)dG(x) =

∫
[0,1]s

f(x)g(x)dx. (1)

Two frequently used approaches are the MC and QMC methods.
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In the MC method, we generate N independent sample variables X1, . . . , XN ,
with the density function g on [0, 1]s. The integral I is estimated by the sample
mean

ĪMC =
1
N

N∑
k=1

f(Xk).

The estimator ĪMC is an unbiased estimator of the integral I. The strong law of
large numbers tells us that

P
(

lim
N→∞

ĪMC = I
)

= 1.

In other words, the MC estimator converges almost surely to I, as N →∞.
The practical advantage of the MC method is that we can easily measure the

accuracy of the MC estimate, by constructing confidence intervals for I. They use

the sample standard deviation σ̄[f ] =
√

1
N−1

∑N
i=1

(
f(Xi)− ĪMC

)2, and are of the
form [33] (

ĪMC − tN−1,1−α
2

σ̄[f ]√
N

, ĪMC + tN−1,1−α
2

σ̄[f ]√
N

)
,

where tN−1,1−α
2

is the
(
1− α

2

)
-th percentile of the Student’s t-distribution with N−1

degrees of freedom, and 1− α is a given confidence level, α ∈ (0, 1).
In the MC method, by constructing confidence intervals for I, we get probabilistic

error bounds of order O
(
1/
√

N
)
.

The QMC method can be defined by analogy with the MC method, by replacing
the random samples by a sequence of ”well distributed” deterministic points. This
approach uses the so-called sequences with low G-discrepancy in [0, 1]s. We define
these sequences, using the notions of G-star discrepancy and G-discrepancy.

Definition 1 (G-star discrepancy). We consider a distribution on [0, 1]s,
with distribution function G. Let λG be the probability measure induced by G. Let
P = (x1, . . . , xN ) be a set of points in [0, 1]s. The G-star discrepancy of P is defined
as

D∗
N,G(P ) = D∗

N,G(x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λG(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[0, ai], and AN (J, P ) counts the number of elements of P falling into the inter-

val J, i.e.,

AN (J, P ) =
N∑

k=1

1J(xk),
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where 1J is the characteristic function of J .

Definition 2 (G-discrepancy). Under the same conditions as in Definition 1,
the G-discrepancy of P = (x1, . . . , xN ) is defined as

DN,G(P ) = DN,G(x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λG(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[ai, bi].

The notions of G-star discrepancy and G-discrepancy are natural generalizations
of the notions of star discrepancy and discrepancy, respectively, which are used in
the uniform case [18].

For a sequence P = (xk)k≥1 of points in [0, 1]s, we write D∗
N,G(P ) for the G-star

discrepancy and DN,G(P ) for the G-discrepancy of the first N terms of sequence P .

Definition 3 (sequence of points with low G-discrepancy). A sequence
of points P = (xk)k≥1, with xk ∈ [0, 1]s, k ≥ 1, is said to be with low G-discrepancy
if we have

DN,G(P ) = O

(
(log N)s

N

)
for all N ≥ 2.

Sequences with low G-discrepancy are used in QMC integration to approximate
the integral (1). The QMC integration formula is

I =
∫

[0,1]s
f(x)dG(x) ≈ 1

N

N∑
k=1

f(xk), (2)

where (xk)k≥1 is a sequence with low G-discrepancy in [0, 1]s.
The non-uniform Koksma-Hlawka inequality gives an upper bound for the error

of approximation in formula (2).

Theorem 4 (non-uniform Koksma-Hlawka inequality). ([3], [21])
Let f : [0, 1]s → R be a function of bounded variation in the sense of Hardy and
Krause. We consider a distribution on [0, 1]s, with distribution function G. Then,
for any x1, . . . , xN ∈ [0, 1]s, we have∣∣∣∣∣ 1

N

N∑
k=1

f(xk)−
∫

[0,1]s
f(x)dG(x)

∣∣∣∣∣ ≤ VHK(f)D∗
N,G(x1, . . . , xN ). (3)
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Generation of sequences with low G-discrepancy in [0, 1]s is the central issue in
the QMC method for approximating the integral I. Several methods for generating
such sequences are proposed in [10], [11], [30] and [31].

An important advantage of the QMC method is that we get deterministic upper
bounds for the error of approximation. Since in QMC method we use sequences
with low G-discrepancy, the approximation error is of order O((log N)s/N), which
is better than the order of MC error. This is due to the fact that, for each dimension
s, the inequality (log N)s/N < 1/

√
N holds for sufficiently large N .

Nevertheless, the error bound, given by the non-uniform Koksma-Hlawka in-
equality, while possible in theory, is intractable in practice. This is mainly due to
the difficulty of computing the factors VHK(f) and D∗

N,G(x1, . . . , xN ).
In order to take advantage of both types of methods, in the last years several

authors proposed a variety of methods, in which MC and QMC ideas are combined.
We mention here the following methods: Owen’s method based on (t, s)-sequences
[23, 24], the method based on shifted low-discrepancy sequences [4], [35], the so-
called ”hybrid” method [20] based on random sampling from sequences with low-
discrepancy, the method based on s-dimensional mixed sequences [19], [22], [36] and
the method based on s-dimensional H-mixed sequences [28], [29] and [9].

In [32] (see also [33]), we proposed a combined MC and QMC method based
on random sampling from sequences with low G-discrepancy in [0, 1]s. Next, we
describe our method.

3. Estimation of integrals using random sampling from sequences
with low G-discrepancy in [0, 1]s

Our combined MC and QMC method for estimating the multidimensional inte-
gral I, given by (1), consists of the following.

We consider a distribution on [0, 1]s, with distribution function G and density
function g. We use the marginal density functions gl, l = 1, . . . , s, and the marginal
distribution functions Gl, l = 1, . . . , s, defined as follows.

Definition 5. Consider a distribution on [0, 1]s, with density function g. For
a point u =

(
u(1), . . . , u(s)

)
∈ [0, 1]s, the marginal density functions gl, l = 1, . . . , s,

are defined by

gl

(
u(l)

)
=

∫
. . .

∫
︸ ︷︷ ︸
[0,1]s−1

g
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),
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and the marginal distribution functions Gl, l = 1, . . . , s, are defined by

Gl

(
u(l)

)
=

∫ u(l)

0
gl(t)dt.

We assume that G(u) =
∏s

l=1 Gl(u(l)), ∀u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s (indepen-

dent marginals). Moreover, we assume that the functions Gl, l = 1, . . . , s, are
invertible on [0, 1].

Let Ω = {β1, . . . , βr} be a space containing sets of points βi, i = 1, . . . , r, with
low G-discrepancy in [0, 1]s, where the point set βi, i = 1, . . . , r, is of the form

βi = (β1,i, . . . , βN,i),

with βk,i = (β(1)
k,i , . . . , β

(s)
k,i ) ∈ [0, 1]s, k = 1, . . . , N .

We define the random variable XN on the space Ω as follows.

Definition 6. ([32]) For an arbitrary point set βi = (β1,i, . . . , βN,i) ∈ Ω, the
value of the random variable XN is defined as

XN (βi) =
1
N

N∑
k=1

f(βk,i),

and is taken with probability 1/r.

Remark 7. ([32]) The distribution of the random variable XN is

XN :
(

1
N

∑N
k=1 f(βk,i)
1/r

)
βi=(β1,i,...,βN,i)
i=1,...,r

.

Theorem 8. ([32]) The random variable XN has the following properties:

lim
N→∞

E(XN ) = I, (4)

lim
N→∞

V ar(XN ) = 0. (5)

Once we have defined the random variable XN , we select the integers i1, . . . , iM at
random from the uniform distribution on {1, . . . , r}, and consider the corresponding
point sets βi1 , . . . , βiM . For each point set, we compute the value of the random
variable XN . The values XN (βi1), . . . , XN (βiM ) are values of the sample variables
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XN,i1 , . . . , XN,iM that are independent identically distributed random variables and
have the same distribution as XN .

We use the notation XN,M for the sample mean of the random variables XN,i1 , . . . ,
XN,iM , and xN,M for its value, i.e.,

XN,M =
XN,i1 + . . . + XN,iM

M
,

xN,M =
∑M

l=1 XN,il(βil)
M

=

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

.

Proposition 9. ([32]) For a fixed N , the estimator XN,M has the following
properties:

E(XN,M ) = E(XN ), (unbiased estimator of E(XN )), (6)

V ar(XN,M ) =
V ar(XN )

M
, (7)

lim
M→∞

V ar(XN,M ) = 0, (8)

P
(

lim
M→∞

XN,M = E(XN )
)

= 1, (XN,M converges almost surely to E(XN )).

(9)

Proposition 10. ([32]) For a fixed M , we have the following properties of the
estimator XN,M :

lim
N→∞

E(XN,M ) = I,

lim
N→∞

V ar(XN,M ) = 0.

Taking into account these properties, in our combined method the integral I is
approximated by

I ≈ xN,M =
∑M

l=1 XN,il(βil)
M

=

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

. (10)

Hence, in our method we take a random sampling from a finite set of QMC
approximations, and we consider the sample mean of that sample as an estimator
for the integral I. Our combined method involves random sampling from sequences
with low G-discrepancy in [0, 1]s (random sampling from non-uniform sequences
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with low G-discrepancy). It constructs the estimator XN,M , which we call an RSNU
estimator. We call the value xN,M an RSNU estimate.

Next, we derive confidence intervals for E(XN ) and then we give an important
remark concerning the confidence intervals for the integral I.

We consider a given confidence level 1−α, α ∈ (0, 1). We use the sample standard
deviation

σXN
=

√√√√ 1
M − 1

M∑
l=1

(
XN,il −XN,M

)2
.

Proposition 11. ([32]) A (1− α)% confidence interval for E(XN ) is(
XN,M − tM−1,1−α

2

σXN√
M

, XN,M + tM−1,1−α
2

σXN√
M

)
, (11)

where tM−1,1−α
2

is the
(
1− α

2

)
-th percentile of the Student’s t-distribution with M−1

degrees of freedom.

Remark 12. ([32]) We proved that E(XN ) → I, as N → ∞ (property (4)).
Therefore, for N sufficiently large, we consider E(XN ) ∼= I. Consequently, for large
enough values of N , the confidence interval for I is well approximated by the confi-
dence interval for E(XN ), given by (11).

In what follows, we give deterministic upper bounds for the error of approxima-
tion in formula (10).

Theorem 13. ([32]) The error of approximation in the combined method is
bounded by ∣∣I − xN,M

∣∣ ≤ 1
M

VHK(f)
M∑
l=1

D∗
N,G(βil).

Corollary 14. ([32]) For a fixed M , the RSNU estimate satisfies the following
property:

lim
N→∞

xN,M = I.

4. Application to finance: Evaluation of European Options

In the following, we apply our combined method to a problem from mathematical
finance. We consider a Black-Scholes type model with one bank account B, which
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compounds continuously with a constant interest rate, i.e., B(t) = B(0)ert and one
stock, whose price S = S(t) is driven by a Lévy process Z(t)

S(t) = S(0)eZ(t). (12)

Lévy processes can be characterized by the distribution of the random variable Z(1).
Typical examples for the distribution of Z(1) are normal inverse gaussian (NIG),
hyperbolic [7], variance-gamma [16], and Meixner distribution.

According to the fundamental theory of asset pricing [6], the risk-neutral price
of an S-derivative, C(0), is given by

C(0) = e−rT EQ(CT (S)), (13)

where CT (S) is the so-called payoff of the derivative, which, in this setting, coincides
with its value at expiration time T , and Q is an equivalent martingale measure.

In this paper, we consider exponential NIG-Lévy processes, meaning that Z(t)
has independent increments, distributed according to a NIG distribution. We con-
sider the measure obtained by Esscher transform method [27], as this preserves the
distribution of Z(1) in the class of NIG distributions. For a comprehensive discus-
sion of the NIG distribution and the corresponding Lévy process, we refer to [1] and
[34].

Next, we evaluate by simulation the value of an European Call option. The
payoff of such an option is

CT (S) = max{S(T )−K, 0} = (S(T )−K)+, (14)

where the constant K is called the strike price.
The risk-neutral price of such an option is

C(0) = e−rT EQ(max{S(T )−K, 0}) = e−rT EQ((S(T )−K)+). (15)

Replacing the stock price by (12), we get

C(0) = e−rT EQ((S(0)eZ(T ) −K)+). (16)

It is known from practice that the evaluation of the stock price S(t) is made at
discrete times 0 = t0 < t1 < t2 < . . . < ts = T . We consider time intervals of equal
length ∆t, i.e., ti = ti−1 + ∆t, i = 1, . . . , s. We notice that

Xi = Z(ti)− Z(ti−1) = Z(ti−1 + ∆t)− Z(ti−1) ∼ Z(∆t), i = 1, . . . , s,

are independent and identically distributed NIG random variables with the same
distribution as Z(t1). Dropping the discounted factor from the risk-neutral option
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price, we get the expected payoff under the Esscher transform measure of the Euro-
pean Call option

EQ((S(0)eZ(T ) −K)+) = E((S(0)e
∑s

i=1 Xi −K)+). (17)

We want to evaluate the expected payoff (17). In order to do this, we rewrite
the expectation (17) as a multidimensional integral on Rs

I =
∫

Rs

(
S(0)e

∑s
i=1 x(i) −K

)
+︸ ︷︷ ︸

E(x)

dH(x) =
∫

Rs

E(x)dH(x) =
∫

Rs

E(x)
s∏

i=1

hi(x(i))dx,

(18)
where H(x) =

∏s
i=1 Hi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Hi(x(i)) denotes the

distribution function of the so-called log-returns induced by Z(t1), with the corre-
sponding density function hi(x(i)). These log increments are independent and NIG
distributed, having the common probability density function

fNIG(x;µ, β, α, δ) =
α

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)δK1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
, (19)

where K1(x) is the modified Bessel function of third type of order 1 (see [26]).
Notice that in integral (18) singularities appear on the upper integration bound-

ary, i.e., limx(i)→∞E(x) = ∞, for i = 1, . . . , s.
In order to approximate the integral (18), we transform it to an integral on [0, 1]s,

using an integral transformation, as follows.
We consider the family of independent double-exponential distributions with the

same parameter λ > 0, having the density functions hλ,i(x) = hλ(x) = λ/2 exp(−λ|x|),
i = 1, . . . , s. The distribution functions Hλ,i = Hλ : R → (0, 1), i = 1, . . . , s, are
given by

Hλ(x) =
{

1
2eλx , x < 0
1− 1

2e−λx , x ≥ 0,
(20)

and their inverses H−1
λ,i = H−1

λ : (0, 1) → R, i = 1, . . . , s, are defined by

H−1
λ (x) =

{
1
λ log (2x) , 0 < x < 1

2
− 1

λ log (2− 2x) , 1
2 ≤ x < 1.

(21)

Next, we consider the substitutions x(i) = H−1
λ (z(i)), i = 1, . . . , s.

The integral (18) becomes

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 H−1

λ (z(i)) −K
)

+

s∏
i=1

hi(H−1
λ (z(i))

hλ(H−1
λ (z(i))

dz. (22)
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N.C. Roşca - A combined MC and QMC method with applications to option ...

The integral I can be expressed as

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 H−1

λ (z(i)) −K
)

+︸ ︷︷ ︸
f(z)

dG(z) =
∫

[0,1]s
f(z)dG(z), (23)

where G : (0, 1)s → [0, 1], defined by

G(z) =
s∏

i=1

(Hi ◦H−1
λ )(z(i)), ∀z = (z(1), . . . , z(s)) ∈ (0, 1)s, (24)

is a distribution function on (0, 1)s, with independent marginals Gi = Hi ◦ H−1
λ ,

i = 1, . . . , s.
The integral (23) is an improper integral because the function f has singularities

on the right boundary of the interval [0, 1]s, i.e.,

lim
z(i)→1

f(z(1), . . . , z(s)) = ∞, (25)

for i = 1, . . . , s.
In the following, we compare numerically our combined method with the MC and

QMC methods. As a measure of comparison, we use the absolute errors produced
by these three methods in the approximation of integral (23).

The MC estimate is defined as follows:

ĪMC =
1

NM

NM∑
k=1

f(xk), (26)

where xk = (x(1)
k , . . . , x

(s)
k ), k = 1, . . . , NM , are independent identically distributed

random points on [0, 1]s, with the common distribution function G defined in (24).
In order to generate such a point xk, we proceed as follows. We first generate a

random point αk = (α(1)
k , . . . , α

(s)
k ), where the component α

(i)
k is a point uniformly

distributed on [0, 1], for i = 1, . . . , s. Then, for each component α
(i)
k , i = 1, . . . , s,

we apply the inversion method [5] and we obtain that G−1
i (α(i)

k ) = (Hλ ◦H−1
i )(α(i)

k )
is a point with the distribution function Gi. As the s-dimensional distribution
with the distribution function G has independent marginals, it follows that xk =
(G−1

1 (α(1)
k ), . . . , G−1

s (α(s)
k )) is a point with the distribution function G on [0, 1]s.

We notice that we need to know the inverse of the distribution function of a NIG
distributed random variable or, at least an approximation of it. As the inverse
function is not explicitly known, an approximation of it is needed in our simulations.
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In order to obtain an approximation of the inverse, we use the Matlab function
”niginv” as implemented by R. Werner, based on a method proposed in [26].

The QMC estimate is defined as follows:

ĪQMC =
1

NM

NM∑
k=1

f(xk), (27)

where x = (xk)k≥1 is a sequence with low G-discrepancy in [0, 1]s, with xk =
(x(1)

k , . . . , x
(s)
k ), k ≥ 1.

In order to generate such a sequence, we apply a method proposed by Hlawka
and Mück [12, 13]. Their method is based on the following result.

Theorem 15. ([11]) Consider a distribution on [0, 1]s, with distribution function
G and density function g(u) =

∏s
j=1 gj(u(j)), ∀u =

(
u(1), . . . , u(s)

)
∈ [0, 1]s. Assume

that the marginal density functions gj, j = 1, . . . , s, are continuous on [0, 1]. Fur-
thermore, assume that gj(t) 6= 0, for almost every t ∈ [0, 1] and for all j = 1, . . . , s.
Denote by Mg = supu∈[0,1]s g(u). Let α = (α1, . . . , αN ) be a set of points in [0, 1]s.
Generate the set of points β = (β1, . . . , βN ), with

β
(j)
k =

1
N

N∑
r=1

[
1 + α

(j)
k −Gj

(
α(j)

r

)]
=

1
N

N∑
r=1

1
[0,α

(j)
k ]

(
Gj

(
α(j)

r

))
,

for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of a.
Then the generated set of points has a G-discrepancy of

DN,G(β1, . . . , βN ) ≤ (2 + 6sMg)DN (α1, . . . , αN ).

During our experiments, we used the SQRT point set α = (α1, . . . , αNM ) in
[0, 1]s, defined by [25]

αk = ({k√p1}, {k
√

p2}, . . . , {k
√

ps}), k = 1, . . . , NM,

where p1, p2, . . . , ps are the first s prime numbers. The defined SQRT point set α is
with low discrepancy in [0, 1]s.

In this case, all the values β
(j)
k , k = 1, . . . , NM , j = 1, . . . , s, generated with

the Hlawka-Mück method, are of the form i
NM , i = 0, . . . , NM . In particular, some

values β
(j)
k might assume a value of 1. A value of 1 is a singularity of function f(z),

as illustrated in (25). Hence, the sequence constructed with Hlawka-Mück method
is not directly suited for unbounded problems. To overcome this problem, we define
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a new point set β̄ = (β1, . . . , βNM ), in which a value of 1 for β
(j)
k is replaced by

1− 1
NM . In other words,

β
(j)
k =

{
β

(j)
k , β

(j)
k 6= 1

1− 1
NM , β

(j)
k = 1,

(28)

for k = 1, . . . , NM and j = 1, . . . , s.
This slight modification of the sequence is shown to have a minor influence, as

the transformed set does not lose its low G-discrepancy and can be used for QMC
integration [15].

In the following, we apply our combined method to estimate the integral (23).
In order to do this, we need to populate the space Ω. For this, we first generate a
set A that contains the first 30 prime numbers

A = {2, 3, 5, 7, . . . , 113}.

Next, we construct all the subsets with s elements of the set A. There are r = Cs
30

such subsets of A. For each subset Ai = {pi,1, . . . , pi,s}, we consider the SQRT point
set αi = (α1,i, . . . , αN,i), defined by

αk,i = ({k√pi,1}, . . . , {k
√

pi,s}), k = 1, . . . , N.

The defined SQRT point sets αi, i = 1, . . . , r, are with low discrepancy in [0, 1]s.
Further, we construct the space Ω of point sets with low G-discrepancy in [0, 1]s,

Ω = {β1, . . . , βr}, where βi, i = 1, . . . , r, is of the form

βi = (β1,i, . . . , βN,i),

with βk,i =
(
β

(1)
k,i , . . . , β

(s)
k,i

)
∈ [0, 1]s, k = 1, . . . , N .

An arbitrary point set βi, i = 1, . . . , r, is obtained from the point set αi, using the
Hlawka-Mück method. In this case, all the values β

(j)
k,i , k = 1, . . . , N , j = 1, . . . , s,

generated with the Hlawka-Mück method, are of the form l
N , l = 0, . . . , N . In

particular, some values β
(j)
k,i might assume a value of 1. Since, a value of 1 is a

singularity of the function f(z), we define a new point set βi = (β1,i, . . . , βN,i), in

which a value of 1 for β
(j)
k,i is replaced by 1− 1

N , i.e.,

β
(j)
k,i =

{
β

(j)
k,i , β

(j)
k,i 6= 1

1− 1
N , β

(j)
k,i = 1,

(29)

for i = 1, . . . , r, k = 1, . . . , N and j = 1, . . . , s.
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Next, we select the integers i1, . . . , iM at random from the uniform distribution
on {1, . . . , r} and consider the corresponding point sets with low G-discrepancy
βi1 , . . . , βiM .

We calculate the following estimate:

ĪRSNU =

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

. (30)

In our numerical experiments, we consider that the parameters of the NIG-
distributed log-returns under the equivalent martingale measure given by the Esscher
transform are the ones that are given in [15]

µ = 0.00079 ∗ 5, β = −15.1977, α = 136.29, δ = 0.0059 ∗ 5. (31)

We notice that these parameters are relevant for daily observed stock price log-
returns [34]. As the class of NIG distributions is closed under convolution, we can
derive weekly stock prices by using a factor of 5 for the parameters µ and δ. Further,
we suppose that the initial stock price is S(0) = 100, the strike price is K = 100
and the risk-free annual interest rate is r = 3.75%. We choose the parameter of the
double-exponential distribution λ = 95.2271.

The option is sampled at weekly time intervals. We also let the option to have
maturities of 3 weeks. Hence, our problem is a 3-dimensional integral over the payoff
function.

We consider the ”exact” option price to be the average of 10 MC simulations,
with N = 100000 for the initial integral (18).

We give the results for the case when M = 5. The following table contains the
value of N and the absolute values of the errors |I − ĪMC |, |I − ĪQMC |, |I − ĪRSNU |.

N |I − ĪMC | |I − ĪQMC | |I − ĪRSNU |
1500 0.035780 0.003482 0.001617
1600 0.027438 0.005332 0.001305
1700 0.012101 0.004052 0.000238
1800 0.030410 0.004104 0.001907
1900 0.023049 0.004610 0.001543
2000 0.014081 0.003958 0.001808
2500 0.020786 0.003679 0.000085
3000 0.026064 0.003032 0.001723
3500 0.020570 0.003279 0.000702

Table 1: European Call Option: Case s = 3 and M = 5.
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The numerical results, presented in Table 1, indicate that our RSNU estimate
converges faster than the MC and QMC estimates. The error in our combined
method is smaller than the error in MC method by approximately a factor of 10.
The error in our method gives approximately a factor of 3 improvement over the
error in QMC method.

5. Application to finance: Evaluation of Asian Options

In this section, we apply our combined method to evaluate the so-called (discrete
sampled) Asian option, driven by the asset dynamics S(t), as defined in (12). The
general framework remains the same as in the previous section, only the payoff
function is changed. The payoff of an Asian call option is defined by

CT (S) =
(1

s

s∑
i=1

S(ti)−K
)

+
= max

{1
s

s∑
i=1

S(ti)−K, 0
}

, (32)

with 0 = t0 < t1 < t2 < . . . < ts = T . The constant K ≥ 0 is called the strike price.
Thus, we get the following integration problem:

I =
∫

Rs

( S(0)
s

s∑
i=1

e
∑i

j=1 x(j)

−K
)

+︸ ︷︷ ︸
A(x)

dH(x) =
∫

Rs

A(x)dH(x), (33)

where H(x) =
∏s

i=1 Hi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Hi(x(i)) denotes the
distribution function of the so-called log-returns induced by Z(t1), with the corre-
sponding density function hi(x(i)). These log increments are independent and NIG
distributed, having the common density function defined in (19).

In a similar way to the previous section, we transform the integral (33) to an
integral on [0, 1]s. We get the following integration problem on [0, 1]s:

I =
∫

[0,1]s

(S(0)
s

s∑
i=1

e
∑i

j=1 H−1
λ (z(j)) −K

)
+︸ ︷︷ ︸

f(z)

dG(z) =
∫

[0,1]s
f(z)dG(z), (34)

where G : (0, 1)s → [0, 1], defined by

G(z) =
s∏

i=1

(Hi ◦H−1
λ )(z(i)), ∀z = (z(1), . . . , z(s)) ∈ (0, 1)s, (35)
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is a distribution function on (0, 1)s, with independent marginals Gi = Hi ◦ H−1
λ ,

i = 1, . . . , s. The inverse function H−1
λ is defined in (21).

The integral I is an improper integral because the function f has singularities
on the right boundary of the interval [0, 1]s, i.e., limz(i)→1 f(z(1), . . . , z(s)) = ∞ for
i = 1, . . . , s.

In the following, we compare numerically our combined method, with the MC
and QMC methods, in terms of absolute errors.

We suppose that the parameters of the NIG-distributed log-returns under the
equivalent martingale measure given by the Esscher transform are the same as in
(31). We assume that the initial stock price is S(0) = 100, the strike price is K = 100
and the risk-free annual interest rate is r = 3.75%. We choose the parameter of the
double-exponential distribution λ = 95.2271.

The Asian call option is sampled weekly. We also let the option to have maturities
of 3 weeks. Hence, our problem is a 3-dimensional integral over the payoff function.

In a similar way to the previous section, we compute the estimates ĪMC , ĪQMC

and ĪRSNU , given by (26), (27) and (30), respectively.
The ”true” price is obtained as the average of 10 MC simulations, with N =

100000. We give the results for the case when M = 7. The following table contains:
the value of N and the absolute values of the errors |I−ĪMC |, |I−ĪQMC |, |I−ĪRSNU |.

N |I − ĪMC | |I − ĪQMC | |I − ĪRSNU |
1500 0.025739 0.003467 0.001190
1600 0.022690 0.003075 0.000178
1700 0.019234 0.003445 0.001081
1800 0.023788 0.003057 0.001627
1900 0.022007 0.003400 0.001782
2000 0.019711 0.002724 0.001939
2500 0.016860 0.003133 0.001595
3000 0.015537 0.002580 0.000333
3500 0.009145 0.002504 0.000810

Table 2: Asian Call Option: Case s = 3 and M = 7.

From Table 2, we notice that the proposed RSNU estimate converges faster than
the MC and QMC estimates. The error in our combined method is smaller than the
error in MC method by approximately a factor of 10. The error in our method gives
approximately a factor of 3 improvement over the error in QMC method.

232
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[22] G. Ökten, B. Tuffin, V. Burago, A central limit theorem and improved er-
ror bounds for a hybrid-Monte Carlo sequence with applications in computational
finance, Journal of Complexity, 22 (2006), no. 4, 435-458.

[23] A.B. Owen, Randomly permuted (t,m,s)-nets and (t,s)-sequences, In Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Harald Niederreiter
et al., eds.), Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299-317.

[24] A.B. Owen, Monte Carlo Variance of Scrambled Net Quadrature, SIAM
Journal of Numerical Analysis, 34 (1997), 1884-1910.

[25] G. Pagès, Y.J. Xiao, Sequences with low discrepancy and pseudo-random
numbers: theoretical results and numerical tests, J. Statist. Comput. Simulat., 56
(1997), no. 2, 163-188.

[26] K. Prause, The Generalized Hyperbolic Model: Estimation, Financial Deriva-
tives and Risk Measures, Ph.D. Dissertation, Albert-Ludwigs-Universitat, Freiburg,
1999.
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