ON α -LEVEL TOPOLOGICAL GROUPS

HAVAL MAHMOOD MAHAMAD SALIH AND ARSHAM BORUMAND SAEID

ABSTRACT. In this paper by using the notion of fuzzy topological group we introduced the notion of α -level topological groups and extend the results of [2] to the corresponding theorems in α -level topological groups. We stated and proved some theorems which determine the properties of this notion.

2000 Mathematics Subject Classification: 54A40, 20N25, 22A99.

Keywords: Fuzzy topology, α -level topology, (fuzzy) topological group, α -level topological group.

1. INTRODUCTION

In 1965, Zadeh introduced the notion of fuzzy sets and fuzzy set operation [9]. Subsequently, Chang [1], applied basic concepts of general topology to fuzzy sets and introduced fuzzy topology. Also studied the theory of fuzzy topological spaces. In [4], Foster introduced the notion of fuzzy topological groups.

In this paper by using the notion of fuzzy topological group we introduced the notion of α -level topological group and we characterize some basic properties of α -level topological groups and proved that if \widetilde{A}_{α} is a subgroup of α -level topological group G and $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha})$ is a subgroup of G and if \widetilde{A}_{α} is a normal subgroup of α -level topological group G and $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{A}_{\alpha})$, then $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{A}_{\alpha}) \otimes cl(\widetilde{A}_{\alpha}) \otimes cl(\widetilde{A}_{\alpha}) \otimes cl(\widetilde{A}_{\alpha})$.

2. Preliminaries Notes

In this paper, we used some notations in order to simplify our work. As G is a group with multiplication and e is identity element.

We consider the set of all fuzzy subset of X is denoted by FP(X). A fuzzy set \tilde{k}_c is called constant if for all $c \in [0, 1]$, the membership function of it, is defined $M_{\tilde{k}_c}(x) = c$, for all $x \in X$.

7

Given $\widetilde{A} \in FP(X)$ and $\alpha \in I$ (where I = [0, 1]), the α -level set of fuzzy set \widetilde{A} is the subset of X which is defined by

$$\widetilde{A}_{\alpha} = \{ x \in X \mid M_{\widetilde{A}}(x) > \alpha \}.$$

We recall the Lowen's definitions of a fuzzy topological space.

Definition 2.1. [8] A fuzzy topology is a family \tilde{T} of fuzzy sets in X, which satisfies the following conditions:

1- $\tilde{k}_c \in \tilde{T}$, for all $c \in [0, 1]$,

2- If $\widetilde{A}, \widetilde{B} \in \widetilde{T}$, then $\widetilde{A} \cap \widetilde{B} \in \widetilde{T}$,

3- If $\widetilde{A}_i \in \widetilde{T}$, for all $i \in \Lambda$, then $\bigcup_{i \in \Lambda} \widetilde{A}_i \in \widetilde{T}$.

The pair (X, \tilde{T}) is a fuzzy topological space (FTS). Every member of \tilde{T} is called a \tilde{T} -open fuzzy set in (X, \tilde{T}) (or simply open fuzzy set) and complement of an open fuzzy set is called a closed fuzzy set.

Definition 2.2. [7] The topological space $(X, l_{\alpha}(\tilde{T}))$ is called α -level space of X, where $l_{\alpha}(\tilde{T}) = \{\tilde{A}_{\alpha} \mid \tilde{A} \in \tilde{T}\} \subseteq 2^{X}$. The α -level topology of fuzzy topological space (X, \tilde{T}) , where $\alpha \in [0, 1]$, is a topology on X.

Example 2.3. Suppose that (G, .) is a group where $G = \{-1, 1\}$. Let $\widetilde{T} = \{\widetilde{\emptyset}, \widetilde{A}, \widetilde{B}, \widetilde{A} \cap \widetilde{B}, \widetilde{A} \cup \widetilde{B}, G\}$, where $\widetilde{A} = \{(1, 0.4), (-1, 0.6)\}$ and $\widetilde{B} = \{(1, 0.6), (-1, 0.5)\}$. Since $\widetilde{A}_{\alpha} = \{x \in X \mid M_{\widetilde{A}}(x) > \alpha\}$, we get that $\widetilde{A}_{0.5} = \{-1\}, \widetilde{B}_{0.5} = \{1\}, (\widetilde{A} \cup \widetilde{B})_{0.5} = G$ and $(\widetilde{A} \cap \widetilde{B})_{0.5} = \emptyset$ from above definition we have $l_{0.5}(\widetilde{T}) = \{\emptyset, \{-1\}, \{1\}, G\}$ is 0.5-level space.

Definition 2.4. [3] A fuzzy topology \widetilde{T} on a group G is said to be fuzzy topological group if the mappings:

$$g: (G \times G, \widetilde{T} \times \widetilde{T}) \to (G, \widetilde{T})$$
$$g(x, y) = xy$$

and

$$g: (G,T) \to (G,T)$$
$$h(x) = x^{-1}$$

are fuzzy continuous.

Definition 2.5. [6] A subset B of a group G is called symmetric if $B = B^{-1}$.

3. α -Level Topological Groups

Definition 3.1. Let (G, \widetilde{T}) be a fuzzy topological group. $(G, l_{\alpha}(\widetilde{T}))$ is called α -level topological group if the mapping

$$g: (G \times G, l_{\alpha}(\tilde{T}) \times l_{\alpha}(\tilde{T})) \to (G, l_{\alpha}(\tilde{T}))$$
$$g(x, y) = xy$$

and

$$g: (G, l_{\alpha}(\widetilde{T})) \to (G, l_{\alpha}(\widetilde{T}))$$
$$h(x) = x^{-1}$$

are continuous.

Example 3.2. In Example 2.3, $(G, l_{0.5}(\tilde{T}))$ is 0.5-level topological group.

We state some equivalent condition for definition of α -level topological group

Theorem 3.3. Let G be a group having α -level topology \widetilde{T} . Then $(G, l_{\alpha}(\widetilde{T}))$ is α -level topological group if and only if the mapping

$$l: (G \times G, l_{\alpha}(\widetilde{T}) \times l_{\alpha}(\widetilde{T})) \to (G, l_{\alpha}(\widetilde{T}))$$
$$l(x, y) = xy^{-1}$$

is α -level continuous.

Proof. Let $l(x,y) = xy^{-1}$. Then continuity of l follows from the continuity of f and g. The converse follows from the fact that $x = xe^{-1}$ and $xy = x(y^{-1})^{-1}$.

Theorem 3.4. Let G be a group having α -level topology \widetilde{T} . Then $(G, l_{\alpha}(\widetilde{T}))$ is α -level topological group if and only if

1- For every $x, y \in G$ and each open set \widetilde{W}_{α} containing xy, there exist open sets \widetilde{U}_{α} containing x and \widetilde{V}_{α} containing y such that $\widetilde{U}_{\alpha}\widetilde{V}_{\alpha} \subseteq \widetilde{W}_{\alpha}$

2- For every $x \in G$ and each open set \tilde{V}_{α} contains x^{-1} , there exists an open set \tilde{U}_{α} contains x such that $\tilde{U}_{\alpha}^{-1} \subseteq \tilde{V}_{\alpha}$.

Proof. Obvious.

Theorem 3.5. Let $(G, l_{\alpha}(\widetilde{T}))$ be an α -level topological group and $a, b \in G$. Then

9

1- The translation maps

$$r_a: (G, l_\alpha(\widetilde{T})) \to (G, l_\alpha(\widetilde{T}))$$

 $r_a(x) = xa$

and

$$l_a: (G, l_\alpha(\widetilde{T})) \to (G, l_\alpha(\widetilde{T}))$$

 $l_a(x) = ax$

2- The inversion map

$$f: (G, l_{\alpha}(\widetilde{T})) \to (G, l_{\alpha}(\widetilde{T}))$$
$$f(x) = x^{-1}$$

3- The map

$$\phi: (G, l_{\alpha}(\widetilde{T})) \to (G, l_{\alpha}(\widetilde{T}))$$

 $\phi(x) = axb$

are homeomorphisms.

Proof. Obvious.

Corollary 3.6. Let $(G, l_{\alpha}(\widetilde{T}))$ be an α -level topological group, $\widetilde{A}_{\alpha}, \widetilde{B}_{\alpha} \subseteq G$ and $q \in G$. Then

1. If \widetilde{A}_{α} is an open set, then $\widetilde{A}_{\alpha}g$, $g\widetilde{A}_{\alpha}$, $g\widetilde{A}_{\alpha}g^{-1}$ and $\widetilde{A}_{\alpha}^{-1}$ are open sets. 2. If \widetilde{A}_{α} is a closed set, then $\widetilde{A}_{\alpha}g$, $g\widetilde{A}_{\alpha}$, $g\widetilde{A}_{\alpha}g^{-1}$ and $\widetilde{A}_{\alpha}^{-1}$ are closed sets. 3. If \widetilde{A}_{α} is an open set, then $\widetilde{A}_{\alpha}\widetilde{B}_{\alpha}$ and $\widetilde{B}_{\alpha}\widetilde{A}_{\alpha}$ are open set.

4. If \widetilde{A}_{α} is a closed set and \widetilde{B}_{α} is a finite set, then $\widetilde{A}_{\alpha}\widetilde{B}_{\alpha}$ and $\widetilde{B}_{\alpha}\widetilde{A}_{\alpha}$ are closed set.

Proof. (1, 2) Since r_a , l_a , f and ϕ are homeomorphism, then each of them is α -open and α -closed mapping.

(3, 4) $\widetilde{A}_{\alpha}\widetilde{B}_{\alpha} = \bigcup \{\widetilde{A}_{\alpha}\widetilde{b} \mid \widetilde{b} \in \widetilde{B}_{\alpha}\}$ is a union of open sets and hence $\widetilde{A}_{\alpha}\widetilde{B}_{\alpha}$ is an open set similarly for $B_{\alpha}A_{\alpha}$.

Definition 3.7. An α -level topological group $(G, l_{\alpha}(\widetilde{T}))$ is called an α -homogeneous if for any $a, b \in G$, there exists an α -level homeomorphism

$$f: G \to G$$
$$f(a) = b.$$

Theorem 3.8. An α -level topological group is an α -homogeneous space.

Proof. Let $(G, l_{\alpha}(\tilde{T}))$ be an α -level topological group and $x_1, x_2 \in G$ take $a = x_1^{-1}x_2$, then $f(x) = r_a(x) = xa = xx_1^{-1}x_2$ implies $f(x_1) = x_2$.

Theorem 3.9. A non trivial α -level topological group has no fixed point properties.

Proof. Let $(G, l_{\alpha}(\tilde{T}))$ be an α -level topological group and $a \in G$ with $a \neq e$. Now the map $r_a : G \to G$ is an α -level continuous. In contrary, suppose that $r_a(x) = x$, for some $x \in G$. Then xa = x we can conclude that a = e, which is a contradiction, then r_a has no fixed point, hence G has no fixed point properties

Theorem 3.10. Every open subgroup of α -level topological group is a closed set.

Proof. Let $(G, l_{\alpha}(\widetilde{T}))$ be an α -level topological group and \widetilde{H}_{α} be an open subgroup of G. Then $G - \widetilde{H}_{\alpha} = \bigcup \{g\widetilde{H}_{\alpha} \mid g \notin \widetilde{H}_{\alpha}\} = \cap \{r_g(x) \mid g \notin \widetilde{H}_{\alpha}\}$, which is an open set, therefore \widetilde{H}_{α} is a closed set.

Theorem 3.11. Every closed subgroup of finite index of an α -level topological group is an open set.

Proof. If \tilde{H}_{α} is a closed set of finite index, then its complement is the union of finite number of coset, each of them is closed set, hence \tilde{H}_{α} is an open set.

Theorem 3.12. Every subgroup of an α -level topological group is α -level topological group.

Proof. Let \widetilde{H}_{α} be a subgroup of an α -level topological group $(G, l_{\alpha}(\widetilde{T}))$. It is clear that \widetilde{H}_{α} is also group, $(\widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}})$ is relative α -level space. It is enough to show that

$$\alpha: (\widetilde{H}_{\alpha} \times \widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}} \times l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}}) \to (\widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}})$$

defined by $\alpha(x, y) = xy$ and

$$h: (\widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}}) \to (\widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}})$$

define by $h(y) = y^{-1}$ are α -level continuous.

Let $\widetilde{W}_{\widetilde{H}_{\alpha}}$ be any open set containing xy. Then $\widetilde{W}_{\widetilde{H}_{\alpha}} = \widetilde{H}_{\alpha} \cap \widetilde{W}_{\alpha}$, for some $\widetilde{W}_{\alpha} \in l_{\alpha}(\widetilde{T})$. Then $xy \in \widetilde{W}_{\alpha}$, since G is an α -level topological group, there exist open sets \widetilde{U}_{α} and \widetilde{V}_{α} of x and y respectively such that $\widetilde{U}_{\alpha}\widetilde{V}_{\alpha} \subseteq \widetilde{W}_{\alpha}$, then the intersection $\widetilde{U}_{\widetilde{H}_{\alpha}} = \widetilde{H}_{\alpha} \cap \widetilde{U}_{\alpha}$ and $\widetilde{V}_{\widetilde{H}_{\alpha}} = \widetilde{H}_{\alpha} \cap \widetilde{V}_{\alpha}$ are open sets containing x and y respectively in the space H_{α} .

Note that $\widetilde{U}_{\widetilde{H}_{\alpha}}\widetilde{V}_{\widetilde{H}_{\alpha}} = (\widetilde{H}_{\alpha} \cap \widetilde{U}_{\alpha})(\widetilde{H}_{\alpha} \cap \widetilde{U}_{\alpha}) \subseteq \widetilde{W}_{\alpha}$ as well as $\widetilde{U}_{\widetilde{H}_{\alpha}}\widetilde{V}_{\widetilde{H}_{\alpha}} \subseteq \widetilde{H}_{\alpha}$ so that $\widetilde{U}_{\widetilde{H}_{\alpha}}\widetilde{V}_{\widetilde{H}_{\alpha}} \subseteq \widetilde{H}_{\alpha} \cap \widetilde{W}_{\alpha} = \widetilde{W}_{\alpha}$. Similarly we can prove that

$$h: (\tilde{H}_{\alpha}, l_{\alpha}(\tilde{T})_{\widetilde{H}_{\alpha}}) \to (\tilde{H}_{\alpha}, l_{\alpha}(\tilde{T})_{\widetilde{H}_{\alpha}})$$

defined by $h(y) = y^{-1}$ is continuous. Therefore $(\widetilde{H}_{\alpha}, l_{\alpha}(\widetilde{T})_{\widetilde{H}_{\alpha}})$ is an α -level topological group.

Theorem 3.13. Let $(G, l_{\alpha}(\widetilde{T}))$ be an α -level topological group, \widetilde{A}_{α} and \widetilde{B}_{α} are subset of G. Then

1- $cl(a\widetilde{A}_{\alpha}a^{-1}) = acl(\widetilde{A}_{\alpha})a^{-1}$, where $a \in G$,

2- If $cl(\tilde{A}_{\alpha}) \times cl(\tilde{B}_{\alpha}) \subseteq cl(\tilde{A}_{\alpha} \times \tilde{B}_{\alpha})$, then $cl(\tilde{A}_{\alpha})cl(\tilde{B}_{\alpha}) \subseteq cl(\tilde{A}_{\alpha}\tilde{B}_{\alpha})$ and $cl(\tilde{A}_{\alpha})cl(\tilde{B}_{\alpha}^{-1}) \subseteq cl(\tilde{A}_{\alpha}\tilde{B}_{\alpha})$ $cl(A_{\alpha}B_{\alpha}^{-1}).$

Proof. 1) From Corollary 3.6, we know that $acl(\widetilde{A}_{\alpha})a^{-1}$ is a closed set, since $cl(a\widetilde{A}_{\alpha}a^{-1})$ is the smallest closed set containing $a\widetilde{A}_{\alpha}a^{-1}$, then $cl(a\widetilde{A}_{\alpha}a^{-1}) \subseteq acl(\widetilde{A}_{\alpha})a^{-1}$.

Consider $f: (G, l_{\alpha}(T)) \to (G, l_{\alpha}(T))$ which is defined by $f(x) = axa^{-1}$, then f is α -level homeomorphism, implies $f(cl(A_{\alpha})) \subseteq cl(f(A_{\alpha}))$, thus $cl(aA_{\alpha}a^{-1}) =$ $acl(A_{\alpha})a^{-1}.$

2) Since the map $g: (G \times G, l_{\alpha}(\widetilde{T}) \times l_{\alpha}(\widetilde{T})) \to (G, l_{\alpha}(\widetilde{T}))$ which is defined by $g(x,y) = xy^{-1}$ is α -level continuous. By hypothesis $cl(\widetilde{A}_{\alpha}) \times cl(\widetilde{B}_{\alpha}) \subseteq cl(\widetilde{A}_{\alpha} \times \widetilde{B}_{\alpha})$, then $f(cl(A_{\alpha}), cl(B_{\alpha})) \subseteq f(cl(A_{\alpha} \times B_{\alpha}))$. Since f is α -level continuous, $f(cl(A_{\alpha} \times B_{\alpha}))$. $\widetilde{B}_{\alpha})) \subseteq cl(f(\widetilde{A}_{\alpha},\widetilde{B}_{\alpha})), \text{ thus } cl(\widetilde{A}_{\alpha})cl(\widetilde{B}_{\alpha})^{-1} \subseteq cl(\widetilde{A}_{\alpha}\widetilde{B}_{\alpha}^{-1}),$

 $\begin{aligned} cl(\widetilde{B}_{\alpha}^{-1}) &= \cap \{\widetilde{F}_{\alpha} \mid \widetilde{F}_{\alpha} \text{ is closed and } \widetilde{B}_{\alpha}^{-1} \subseteq \widetilde{F}_{\alpha} \} \\ &= \cap \{\widetilde{F}_{\alpha} \mid \widetilde{F}_{\alpha}^{-1} \text{ is closed and } \widetilde{F}_{\alpha}^{-1} \subseteq \widetilde{B}_{\alpha} \} = cl(\widetilde{B}_{\alpha})^{-1}. \end{aligned}$ We get that $cl(\widetilde{B}_{\alpha}^{-1}) = cl(\widetilde{B}_{\alpha})^{-1}$, hence $cl(\widetilde{A}_{\alpha})cl(\widetilde{B}_{\alpha})^{-1} \subseteq cl(\widetilde{A}_{\alpha}\widetilde{B}_{\alpha})^{-1}$. Similarly, we have $cl(A_{\alpha})cl(B_{\alpha}) \subseteq cl(A_{\alpha}B_{\alpha}))$.

Theorem 3.14.

1- If H_{α} is a subgroup of an α -level topological group $(G, l_{\alpha}(T))$ and $cl(H_{\alpha}) \times$ $cl(H_{\alpha}) \subseteq cl(H_{\alpha} \times H_{\alpha}))$, then $cl(H_{\alpha})$ is a subgroup.

2- If H_{α} is a normal subgroup of an α -level topological group $(G, l_{\alpha}(T))$ and $cl(H_{\alpha}) \times cl(H_{\alpha}) \subseteq cl(H_{\alpha} \times H_{\alpha})), \text{ then } cl(H_{\alpha}) \text{ is a normal subgroup.}$

Proof.

(1) Since \widetilde{H}_{α} is subgroup, then $\widetilde{H}_{\alpha}\widetilde{H}_{\alpha} \subseteq \widetilde{H}_{\alpha}$, thus $cl(\widetilde{H}_{\alpha}\widetilde{H}_{\alpha}) \subseteq cl(\widetilde{H}_{\alpha})$. By Theorem 3.13, $cl(\widetilde{H}_{\alpha})cl(\widetilde{H}_{\alpha}) \subseteq cl(\widetilde{H}_{\alpha}\widetilde{H}_{\alpha})$, we get that

$$cl(H_{\alpha})cl(H_{\alpha}) \subseteq cl(H_{\alpha}))$$
 (1)

since \tilde{H}_{α} is a subgroup $\tilde{H}_{\alpha} = \tilde{H}_{\alpha}^{-1}$ and hence $cl(\tilde{H}_{\alpha}) = cl(\tilde{H}_{\alpha}^{-1})$, also we get that

$$cl(\tilde{H}_{\alpha}^{-1}) = cl(\tilde{H}_{\alpha})^{-1} \quad (2)$$

from (1) and (2) we get that $cl(\tilde{H}_{\alpha})$ is a subgroup of G.

(2) Let \tilde{H}_{α} be a normal subgroup of G. Then $x\tilde{H}_{\alpha}x^{-1} = \tilde{H}_{\alpha}$, therefore $cl(x\tilde{H}_{\alpha}x^{-1}) = cl(\tilde{H}_{\alpha})$, hence $xcl(\tilde{H}_{\alpha})x^{-1} = cl(\tilde{H}_{\alpha})$, for every $x \in G$. We get that $cl(\tilde{H}_{\alpha})$ is a normal subgroup of G.

Lemma 3.15. Let $(G, l_{\alpha}(\widetilde{T}))$ and $(H, l_{\alpha}(\widetilde{T}))$ be two α -level topological groups and f a homomorphism of $\underset{\widetilde{G}}{G}$ into H. Then

1- For any subsets A_{α} and B_{α} of H,

$$cl(f^{-1}(\widetilde{A}_{\alpha}))cl(f^{-1}(\widetilde{B}_{\alpha})) \subseteq cl(f^{-1}(\widetilde{A}_{\alpha}\widetilde{B}_{\alpha})).$$

2- For any subsets \widetilde{A}_{α} and \widetilde{B}_{α} of G,

$$cl(f(\widetilde{A}_{\alpha}))cl(f(\widetilde{B}_{\alpha})) \subseteq cl(f(\widetilde{A}_{\alpha}\widetilde{B}_{\alpha})).$$

3- For any symmetric subset \widetilde{A}_{α} of G, $cl(f(\widetilde{A}_{\alpha}))$ is symmetric in H and hence

$$cl(f(\widetilde{A}_{\alpha}^{-1})) = (cl(f(\widetilde{A}_{\alpha})))^{-1}.$$

4- For any symmetric subset \widetilde{A}_{α} of H, $cl(f(\widetilde{A}_{\alpha}^{-1}))$ is symmetric in G and hence

$$cl(f(\widetilde{A}_{\alpha}^{-1})) = (cl(f(\widetilde{A}_{\alpha}^{-1})))^{-1}.$$

Proof. Obvious.

Theorem 3.16. Let $(G, l_{\alpha}(\widetilde{T}))$ be an α -level topological group and \widetilde{A}_{α} be compact subset of G. Then $\widetilde{A}_{\alpha}^{-1}$, \widetilde{A}_{α} , \widetilde{A}_{α} and $\widetilde{A}_{\alpha}a^{-1}$ are also compact.

Proof. Obvious.

Remark 3.17. It is clear every α -level topological group is topological group. We can obtain from α -level topological space fuzzy topological space, in [7] Lowen,

13

shows that if (X, T) is a topological space, then $(X, \omega(T))$ is a fuzzy topological space where $\omega(T) = \{A \mid A : X \to [0, 1] \text{ is lower semi-continues } \}.$

ACKNOWLEDGEMENTS. The second author is partially supported by the "Research Center on Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran".

References

 C. L. Chang, Fuzzy topological spaces, J. Math, Anal Appl., 24 (1968), 182-190.

[2] I. Chon, Some properties of fuzzy topological group, Fuzzy sets and Systems, 123 (2001), 197-201.

[3] N. R. Das, P. Das, Neighborhood systems in fuzzy topological space, Fuzzy sets and Systems, 116 (2001), 401-408.

[4] D. H. Foster, *Fuzzy topological group*, J. Math. Anal. Appl., 67 (1979), 549-564.

[5] P. J. Higgin, An introduction to topological groups, London Math. Soc., Lecture note ser. Vol.15, Cambridge Univ. Press, London, 1974.

[6] Taqdir Husain, *Introduction to topological groups*, R. E. Kreger pub Co. Philadelphia and London, 1981.

[7] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Annl. Appl., 64 (1978), 446-454.

[8] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math, Anal. Appl., 56 (1976), 621-633.

[9] L. A. Zadeh, *Fuzzy sets*, Infrom. Control, 8 (1965), 338-353.

Haval Mahmood Mahamad Salih Department of Math. University of Salahaddin Erbil, Iraq email:*haval@uni-sci.org*

Arsham Borumand Saeid Department of Math. Shahid Bahonar University of Kerman Kerman, Iran email:*arsham@mail.uk.ac.ir*