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Abstract. The aim of this note is to describe the restriction map from
the moduli space of stable rank 2 bundle with small c2 on a jacobian X of di-
mension 2, to the moduli space of stable rank 2 bundles on the corresponding
genus 2 curve C embedded in X.
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1. Introduction

Let C a smooth curve of genus 2 and X his jacobian wich is a smooth
projective algebraic surface. We denote by M(2, C, i) for i = 1 or 2 the moduli
space of rank 2 bundle on X with c1 = C and c2 = i. Also we denote by
M(2, K) the moduli space of rank 2 bundle on C with determinant K i.e. the
canonical class of C. Obviously, for any E ∈ M(2, C, i) the restriction E|C is
a rank 2 bundle on C with determinant K.

The natural questions wich appear are the followings: is E|C a stable
(or at least semi-stable) bundle on C and if yes, what is the induced map
M(2, C, i) −→ M(2, K) ? As we shall see, the answer depend on i: for i = 1,
the restriction is semi-stable, but for i = 2 and E generic in M(2, C, 2) the
restriction is stable. Also, in the second case we can describe for some non-
generic bundles E what is the restriction E|C .
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2. Previously known results

For X the jacobian of a genus 2 curve C, we denote by F0 = O(C)⊗J0,
where J0 is the sheaf of ideals of the origin of X. Also, using F0 we can
construct a unique extension 0 −→ OX −→ F−1 −→ F0 −→ 0 wich has
c1 = OX(C) and c2 = 1. The first result we need is the following, proved in
[2]:

Theorem 2.1. For any rank 2 bundle E on X with c1 = OX(C) and
c2 = 1 there are uniques x, y ∈ X such that E ' Tx

∗F−1 ⊗ Py, where
Tx

∗ is the pull-back by the x-translation and Py is the line bundle on X

wich correspond to y by the canonical isomorphism X −→ X̂ defined by the
principal polarisation C. As consequence the moduli space is isomorphic with
X ×X.

It is very easy to verify that the condition for E the have det(E) = OX(C)
is that x = −2y; so we have the following:

Remark 2.2 The moduli space of rank 2 bundles on X with c1 = OX(C)
and c2 = 1 is isomorphic with X.

For the moduli space on C we need the following theorem proved in [3]:

Theorem 2.3 Let F a semi-stable rank 2 bundle on C with determinant
equal with the canonical class of C, and x0 a Weierstrass point of C. Let
DF = {ξ ∈ Pic1(C) | H0(ξ ⊗ F ⊗O(−x0)) 6= 0}. With these notations, DF

is a divisor of the linear system | 2C | on Pic1(C) and the map F −→ DF is
an isomorphism between the moduli space of rank two bundles with canonical
determinant and P3.

For the case c2 = 2 we need the following result proved in [1] and [4]:

Theorem 2.4. M(2, C, 2) is isomorphic with X×Hilb3(X), and for any
E ∈ M(2, C, 2) there exist an unique exact sequence of the form:

0 −→ Tx
∗OX(−C) −→ H −→ E −→ 0

where H is an homogenous rank 3 bundle on X.
By [2] a generic homogenous rank 3 bundle has the form Pa⊕Pb⊕Pc with

a 6= b 6= c and it is clear that the condition for E the have det(E) = OX(C)
is that x = −a− b− c; so we have the following:
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Remark 2.5.The moduli space of rank 2 bundles on X with c1 = OX(C)
and c2 = 2 is birational with Sym3(X).

3. The restriction theorems

Using the previous notations we have the followings:

Theorem 3.1 For generic y ∈ X the restriction E|C of E ' T−2y
∗F−1⊗Py

is semi-stable but not stable. The rational restriction map X − − → P3 is
the quotient by the natural involution of X and the image is the Kummer
surface.

Theorem 3.2 For generic E ∈ Hilb3(X) the restriction E|C is stable.
The restriction E|C, viewed in P3 =| 2C | is the unique divisor of | 2C | wich
contain the 3 points a, b, c of the corresponding H. Also, the fiber over a
point C ′ ∈| 2C | is birational with Hilb3(C ′).

The main idea in the proof of the previous theorems is to obtain an
explicit description of DE|C for generic E in the corresponding moduli space.
In the first case for generic y ∈ X and E ' T−2y

∗F−1 ⊗ Py we obtain that
DE|C is the union of the two translate of C by y and −y. For c2 = 2 and
generic E, DE|C is the hyperplane wich pass by the 3 points wich determine
the homogenous bundle H associated with E by 2.3 above. The full details
will appear elsewere.
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