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ON AN ALGORITHM FOR A DOUBLE-RESOLVABILITY
TEST

Svetlana Topalova, Stela Zhelezova

Abstract. To find all doubly resolvable designs with definite param-
eters, we construct the design resolutions in lexicographic order point by
point. To partial solutions with more than 2/3 of the points we apply a
double-resolvability test, namely we try to construct an orthogonal resolu-
tion. The test reduces significantly the number of partial solutions, and is
very important for the efficiency of the whole computation. We develop and
compare two algorithms for a double-resolvability test. The first one implies
construction of the orthogonal resolution block by block (BB), while the sec-
ond one does it class by class (CC). We present experimental results on the
performance of both algorithms. Applying them, we also classify for the first
time doubly resolvable 2-(16,4,2) and 2-(8,4,18) designs.

1.Introduction

For the basic concepts and notations concerning combinatorial designs
and their resolvability refer, for instance, to [1], [2], [4], [7], [13].

A 2-(v, k, λ) design is a collection of k-element subsets (blocks) of a set of
v elements (points), such that each pair of points is contained in exactly λ
blocks.

Let b denote the number of the blocks of the design, and r − the number
of blocks in which a given point is contained. An incidence matrix of the
design is a matrix of v rows and b columns which contains a 1 in the ith row
and jth column iff the ith point is contained in the jth block, and 0 if not.
The design is completely determined by its incidence matrix.

Two designs are isomorphic if there exists a one-to-one correspondence
between the point and block sets of the first design and the point and block
sets of the second design, and if this one-to-one correspondence does not
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change the incidence, i.e. if the incidence matrix of the first design can be
obtained from the incidence matrix of the second one by permuting rows and
columns.

An automorphism is an isomorphism of the design to itself, i.e. a permu-
tation of the points that transforms the blocks into blocks.

One of the most important properties of a design is its resolvability. The
design is resolvable if it has at least one resolution.

A resolution is a partition of the blocks into parallel classes such that
each point is in exactly one block of each parallel class. A parallel class
contains v/k blocks and a resolution R consists of r = (b ∗ k/v) parallel
classes R1, ...,Rr.

Two resolutions are isomorphic if there exists an automorphism of the
design transforming each parallel class of the first resolution into a parallel
class of the second one.

Two resolutions are orthogonal if any two parallel classes, one from the
first, and the other from the second resolution, have at most one common
block. If a design has at least two orthogonal resolutions, it is doubly resolv-
able. The resolutions, which are orthogonal to the resolution R, are called
its orthogonal partners or partner resolutions.

A Kirkman square with index λ, latinicity µ, block size k, and v points,
KSk(v;µ,λ) is a t × t array (t = λ(v − 1)/µ(k − 1)) defined on a set V
such that: every point of V is contained in precisely µ cells of each row and
column; each cell of the array is either empty or contains a k-subset of V;
the collection of blocks obtained from the non-empty cells of the array is a
2-(v,k,λ) design. For µ=1, the existence of a KSk(v;µ,λ) is equivalent to the
existence of a doubly resolvable 2-(v,k,λ) design. In this case the size of the
square array t is equivalent to the number of parallel classes of the doubly
resolvable design and any two orthogonal resolutions determine a Kirkman
square and vice versa.

The existence question for KSk(v; µ, λ) has been completely settled for
k = 2 and µ = 1 [9]. The existence of KS3(v; 1, 2) for all v ≡ 3(mod)12 is
proved in [10]. There are some particular results for k ≥ 3, µ = 1 in [3], [5],
[6], [8], [11], [12], [14].

Our final aim is to construct and classify up to isomorphism all doubly
resolvable designs with definite parameters. For this purpose we construct
the design resolutions in lexicographic order point by point [11], [12], [14].
If some of the points of the design are missing, we can find resolutions and
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mutually orthogonal resolutions of the corresponding structure. We shall call
this structure partial solution.

After adding each point we apply a test for equivalence of the partial
solution to a previously generated one, and a double-resolvability test. The
double-resolvability test is actually an attempt to construct one orthogonal
to the current one resolution. As this is often not possible, the test reduces
significantly the number of partial solutions, and thus makes it possible to
classify doubly resolvable designs with parameters for which the classification
of all non isomorphic resolutions is a difficult task, and has not been done yet.
If the design is not doubly resolvable, and we take less than 2/3 of its points,
we usually obtain a doubly resolvable partial solution. So we apply the test
to partial solutions with more than 2/3 of the points. The efficiency of the
double-resolvability test is very important for the efficiency of the whole task.

In the present work we describe and compare two algorithms - one, which
constructs the orthogonal resolution block by block (BB) and one which does
it class by class (CC). We present experimental data on their performance.

Using these algorithms, we classify 2-(16,4,2) and 2-(8,4,18) doubly re-
solvable designs.

2.Description of the BB and CC algorithms

Both algorithms realize a backtrack search for a resolution of the design,
which is orthogonal to the current one. The search stops if one such resolu-
tion is constructed, or if all possibilities have been tested and no orthogonal
resolution can be constructed. The search is less efficient on partial solu-
tions, because some of the blocks contain less than k points, and some may
contain no points at all, and thus there are more ways to combine the blocks
in orthogonal resolution classes.

2.1.The Block by Block construction (BB)

We sort the blocks of the design in lexicographic order. The first point is
in the first r blocks. Thus without loss of generality we assume that the ith
block is in the ith parallel class of the orthogonal resolution for i = 1, 2, ..., r.
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Next we start adding the missing blocks to the first class of the orthogonal
resolution, then to the second,..., and finally to the rth one.

Since an orthogonal parallel class should contain all points, at each step
we try to add only blocks containing the first missing point in the class,
and we check that the blocks in each orthogonal class are disjoint and from
different classes of the initial resolution [11].

A partial solution might have empty blocks, so we stop adding blocks to
an orthogonal parallel class when all points of the partial solution are already
in it.

2.2.The Class by Class construction (CC)

The initial resolution of the design has n = b/r blocks in each of the r
parallel classes. At first we find all possibilities for an orthogonal class by
choosing disjoint blocks from different parallel classes of the initial resolution
until all points are covered. An orthogonal class has a block from n of the
initial parallel classes and no block from the other r − n, so we obtain it in
the following format: (a1, a2, ..., ar), where ai ∈ {1, 2, 3, . . . , n} is the number
of a block within the ith parallel class (i = 1, 2, ..., r) of the initial resolution,
or ai = 0 if the orthogonal class has no block of the ith parallel class of
the initial resolution. Equality of two elements ai and aj, i 6= j is possible,
because blocks can be in the same position in different parallel classes.

When we apply this on partial solutions, there might be empty blocks,
so instead of the number of an empty block within a parallel class, we also
write 0. Thus there might be more than r − n zeros - at most r − n +
the number of the empty blocks. The zero already has two meanings here:
no block from this parallel class, or an empty block in this class. If all points
are covered, but there are more than r − n zero entries, all of them from
classes without empty blocks, this orthogonal resolution class possibility is
invalid and should be rejected.

After finding all possibilities for an orthogonal to the initial resolution
parallel class, we try to choose r of them to form the orthogonal resolution,
or respectively the corresponding Kirkman square.

To restrict the search we sort the blocks of the design with respect to
the number of the possible parallel classes, in which they appear. Then
we construct the orthogonal resolution class by class, adding at each step
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classes with the still not covered block, which has the smallest frequency of
appearance.

3.Comparison of the BB and CC algorithms

We experimented both algorithms in the classification of doubly resolvable
designs with definite parameters. The results are presented in the next table.
The first column shows the design parameters, the second the number of
parallel classes in the resolution, and the third the number of blocks. The
fourth column presents the classification results, i.e. the number of non
isomorphic resolutions, which have orthogonal partners, followed by ∗ if the
result is published here for the first time. The last two columns show the time,
which is needed to complete the classification using the BB and, respectively
CC algorithm on a 2.6 GHz CPU.

Table 1: Classification results and the computation time by both algorithms

design r b resolutions with orthogonal partners new CC BB
2-(16,4,2) 10 40 1 * 6h 10h
2-(9,3,3) 12 36 5 2s 6s
2-(8,4,6) 14 28 1 1s 1s
2-(9,3,4) 16 48 83 9h43min 5h40min
2-(6,3,8) 20 40 1 1s 1s
2-(8,4,9) 21 42 1 1s 1s
2-(12,6,10) 22 44 1 30s 30s
2-(8,4,12) 28 56 4 1s 1s
2-(8,4,15) 35 70 4 11s 7s
2-(10,5,16) 36 72 5 12s 11s
2-(8,4,18) 42 84 13 * 1h29min 1h10min

The initial construction of all possibilities for an orthogonal resolution
class takes some time before CC actually starts constructing the orthogonal
resolution, so if we only check for the existence of one orthogonal resolution,
the results above show that CC works faster for relatively small numbers r
of the parallel classes, i.e. small size of the corresponding Kirkman square.
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Both algorithms can also be used to construct all orthogonal partners of
a resolution. In this case CC is much faster.

4.New classification results

Using these algorithms, we classify up to isomorphism 2-(16,4,2) and 2-
(8,4,18) doubly resolvable designs. The results are presented in Table 2,
where the number of all non isomorphic doubly resolvable designs with these
parameters is given in the last column.

Table 2: New results

design r b resolutions with orth. partners doubly resolvable designs
2-(16,4,2) 10 40 1 1
2-(8,4,18) 42 84 13 13
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