G - N-QUASIGROUPS AND FUNCTIONAL EQUATIONS ON QUASIGROUPS

Adrian Petrescu

ABSTRACT. Based on G-n-quasigroups we give straightforward methods to solve the functional equations of generalized associativity, cyclic associativity and bisymmetry on quasigroups.

2000 Mathematics Subject Classification: 39B52, 20N05, 20N15.

In this paper we solve functional equations of generalized associativity (1), cyclic associativity (2) and bisymmetry (or mediality) (3).

$$\alpha_1(\alpha_2(x,y),z) = \alpha_3(x,\alpha_4(y,z)) \tag{1}$$

$$\alpha_1(x, \alpha_2(y, z)) = \alpha_3(y, \alpha_4(z, x)) = \alpha_5(z, \alpha_6(x, y))$$
(2)

$$\alpha_1(\alpha_2(x,y), \alpha_3(z,u)) = \alpha_4(\alpha_5(x,z), \alpha_6(y,u))$$
(3)

where x, y, z, u are taken from an arbitrary set A and α_i are quasigroup operations on A.

The method used is an example of the application of our results developed in [3].

All three equations have been investigated by Aczél, Belousov and Hosszú [1] and Belousov [2]. The used methods to solve these equations have an involved part: the proof that all quasigroups (A, α_i) are isotopic to the same group (A, +). Our method reduces the proofs to a routine calculation.

For notions and notations see [3].

1. The Equation of Generalized Associativity

Theorem 1. The set of all solutions of the functional equation of generalized associativity over the set of quasigroup operations on an arbitrary set A is described by the relations

$$\alpha_1(x,y) = F_1(x) + F_2(y), \\
\alpha_2(x,y) = F_1^{-1}(F_3(x) + F_4(y)), \\
\alpha_3(x,y) = F_3(x) + F_5(y), \\
\alpha_4(x,y) = F_5^{-1}(F_4(x) + F_2(y)),$$
(4)

where (A, +) is an arbitrary group and F_1, \ldots, F_5 are arbitrary substitutions of the set A.

Proof. It is obvious that all (A, α_i) defined by relations (4) are quasigroups isotopic to group (A, +). Substituting these values of the functional variables in (1) we obtain for the both sides the same expression.

Conversely, let $\alpha_1, \ldots, \alpha_4$ be four quasigroup operations on A and forming a solution of the functional equation (1). We define $\alpha : A^3 \to A$ by

$$\alpha(x, y, z) = \alpha_1(\alpha_2(x, y), z) = \alpha_3(x, \alpha_4(y, z))$$
(5)

It is easy to prove that (A, α) is a 3-quasigroup. Moreover, cf. Theorem 6. [3] (A, α) is a *G*-quasigroup, i.e. $\alpha(x, y, z) = T_1(x) + T_2(y) + T_3(z)$, where (A, +) is a group and T_i are translations by $a = (a_1^3) \in A^3$ in (A, α) . The zero element of (A, +) is $0 = T_1(a_1) = T_2(a_2) = T_3(a_3)$.

Putting $z = a_3$ in (5) we obtain

$$\alpha_1(\alpha_2(x,y),a_3) = \alpha_3(x,\alpha_4(y,a_3)) = T_1(x) + T_2(y)$$
(6)

Since (A, α_1) and (A, α_4) are quasigroups, the mappings $f(x) = \alpha_1(x, a_3)$ and $g(x) = \alpha_4(x, a_3)$ are substitutions of A.

From (6) we get

$$\alpha_2(x,y) = f^{-1}(T_1(x) + T_2(y))$$

and

$$\alpha_3(x,y) = T_1(x) + T_2(g^{-1}(y)).$$

If in equality (5) we put $x = a_1$ then we get

$$\alpha_1(\alpha_2(a_1, y), z) = \alpha_3(a_1, \alpha_4(y, z)) = T_2(y) + T_3(z)$$
(7)

The mappings $h(x) = \alpha_2(a_1, x)$ and $u(x) = \alpha_3(a_1, x)$ are substitutions of A $((A, \alpha_2)$ and (A, α_3) are quasigroups). Therefore, from (7) we have

$$\alpha_1(y,z) = T_2(h^{-1}(y)) + T_3(z)$$

and

$$\alpha_4(y,z) = u^{-1}(T_2(y) + T_3(z)).$$

Now, from

$$f(h(x)) = \alpha_1(h(x), a_3) = \alpha_1(\alpha_2(a_1, x), a_3) = \alpha(a_1, x, a_3) = T_2(x)$$

we obtain $T_2 \circ h^{-1} = f$ and from

$$u(g(x)) = \alpha_3(a_1, g(x)) = \alpha_3(a_1, \alpha_4(x, a_3)) = \alpha(a_1, x, a_3) = T_2(x)$$

we get $T_2 \circ g^{-1} = u$.

Taking into account the above results we have

$$\alpha_1(x,y) = f(x) + T_3(y), \quad \alpha_2(x,y) = f^{-1}(T_1(x) + T_2(y)), \\
\alpha_3(x,y) = T_1(x) + u(y), \quad \alpha_4(x,y) = u^{-1}(T_2(x) + T_3(y)).$$
(8)

Thus, it follows from (8) that any solution of the equation (1) has the form (4).

2. The Equation of Generalized Cyclic Associativity

Theorem 2. The set of all solutions of the functional equation of generalized cyclic associativity over the set of quasigroup operations on an arbitrary set A is described by the relations

$$\begin{aligned}
\alpha_1(x,y) &= F_1(x) + F_2(y), \quad \alpha_2(x,y) = F_2^{-1}(F_3(x) + F_4(y)), \\
\alpha_3(x,y) &= F_3(x) + F_5(y), \quad \alpha_4(x,y) = F_5^{-1}(F_4(x) + F_1(y)), \\
\alpha_5(x,y) &= F_4(x) + F_6(y), \quad \alpha_6(x,y) = F_6^{-1}(F_1(x) + F_3(y))
\end{aligned} \tag{9}$$

where (A, +) is an arbitrary commutative group and F_1, \ldots, F_6 are arbitrary substitutions of the set A.

Proof. Let $\alpha_1, \ldots, \alpha_6$ be six quasigroup operations on A and forming a solution of equation (2). We define $\alpha : A^3 \to A$ by

$$\alpha(x, y, z) = \alpha_1(x, \alpha_2(y, z)) = \alpha_3(y, \alpha_4(z, x)) = \alpha_5(z, \alpha_6(x, y))$$
(10)

It is obvious that (A, α) is a 3-quasigroup.

From $\alpha(x, y, z) = \alpha_1(x, \alpha_2(y, z))$ it follows immediately that condition $D_{2,3}$ holds in (A, α) , $\alpha(x, y, z) = \alpha_3(y, \alpha_4(z, x))$ implies that condition D_{1-3} holds in (A, α) and from $\alpha(x, y, z) = \alpha_5(z, \alpha_6(x, y))$ we obtain that condition $D_{1,2}$ holds in (A, α) . Therefore, cf. Theorem 9 [3] (A, α) is a G_a -quasigroup, i.e. $\alpha(x, y, z) = T_1(x) + T_2(y) + T_3(z)$, where (A, +) is a commutative group, T_i are translations by an arbitrary element $a = (a_1^3) \in A^3$ in (A, α) and $T_1(a_1) = T_2(a_2) = T_3(a_3) = 0$ - zero element of (A, +).

From (10), for $x = a_1$ we obtain

$$\alpha_1(a_1, \alpha_2(y, z)) = \alpha_3(y, \alpha_4(z, a_1)) = \alpha_5(z, \alpha_6(a_1, y)) = T_2(y) + T_3(z).$$

Therefore

$$\begin{aligned} &\alpha_2(y,z) = f^{-1}(T_2(y) + T_3(z)), &\text{where} \quad f(x) = \alpha_1(a_1,x), \\ &\alpha_3(y,z) = T_2(y) + T_3(g^{-1}(z)), &\text{where} \quad g(x) = \alpha_4(x,a_1), \\ &\alpha_5(z,y) = T_3(z) + T_2(h^{-1}(y)), &\text{where} \quad h(x) = \alpha_6(a_1,x). \end{aligned}$$

Putting $z = a_3$ in (10) we get

$$\alpha_1(x, \alpha_2(y, a_3)) = \alpha_5(a_3, \alpha_6(x, y)) = T_1(x) + T_2(y).$$

In consequence

$$\begin{aligned} \alpha_1(x,z) &= T_1(x) + T_2(u^{-1}(y)), & \text{where} \quad u(x) = \alpha_2(x,a_3), \\ \alpha_6(x,y) &= v^{-1}(T_1(x) + T_2(y)), & \text{where} \quad v(x) = \alpha_5(a_3,x). \end{aligned}$$

If in (10) we put $y = a_2$ then we obtain $\alpha_3(a_2, \alpha_4(z, x)) = T_1(x) + T_3(z)$ hence $\alpha_4(z, x) = w^{-1}(T_1(x) + T_3(z))$ where $w(x) = \alpha_3(a_2, x)$. Now,

$$\begin{aligned} f(u(x)) &= \alpha_1(a_1, \alpha_2(x, a_3)) = T_2(x), & \text{i.e.} \quad f = T_2 \circ u^{-1}, \\ w(g(x)) &= \alpha_3(a_2, \alpha_4(x, a_1)) = T_3(x), & \text{i.e.} \quad w = T_3 \circ g^{-1} \text{ and} \\ v(h(x)) &= \alpha_5(a_3, \alpha_6(a_1, x)) = T_2(x), & \text{i.e.} \quad v = T_2 \circ h^{-1}. \end{aligned}$$

In conclusion,

$$\begin{aligned}
\alpha_1(x,y) &= T_1(x) + f(y), \quad \alpha_2(x,y) = f^{-1}(T_2(x) + T_3(y)) \\
\alpha_3(x,y) &= T_2(x) + w(y), \quad \alpha_4(x,y) = w^{-1}(T_1(x) + T_3(y)), \\
\alpha_5(x,y) &= v(x) + T_3(y), \quad \alpha_6(x,y) = v^{-1}(T_1(x) + T_2(y))
\end{aligned}$$
(11)

Thus, it follows from (11) that any solution of the equation (2) has the form (9).

The converse is obvious.

3. The Equation of Generalized Bisymmetry

Theorem 3. The set of all solutions of the functional equation of generalized bisymmetry over the set of quasigroup operations on an arbitrary set A is described by the relations

$$\begin{aligned}
\alpha_1(x,y) &= F_1(x) + F_2(y), & \alpha_2(x,y) = F_1^{-1}(F_3(x) + F_4(y)), \\
\alpha_3(x,y) &= F_2^{-1}(F_5(x) + F_6(y)), & \alpha_4(x,y) = F_7(x) + F_8(y), \\
\alpha_5(x,y) &= F_7^{-1}(F_3(x) + F_5(y)), & \alpha_6(x,y) = F_8^{-1}(F_4(x) + F_6(y)),
\end{aligned}$$
(12)

where (A, +) is an arbitrary commutative group and F_1, \ldots, F_8 are arbitrary substitutions of the set A.

Proof. Let $\alpha_1, \ldots, \alpha_6$ be six quasigroup operations on A and forming a solution of equation (3). We define $a: A^4 \to A$ by

$$\alpha(x, y, z, u) = \alpha_1(\alpha_2(x, y), \alpha_3(z, u)) = \alpha_4(\alpha_5(x, z), a_6(y, u))$$
(13)

It is obvious that (A, α) is 4-quasigroup. According to Theorem 11 [3] (A, α) is a G_a -quasigroup, i.e.

 $\alpha(x, y, z, u) = T_1(x) + T_2(y) + T_3(z) + T_4(u)$, where (A, +) is a commutative group with zero element $0 = T_1(a_1) = T_2(a_2) = T_3(a_3) = T_4(a_4)$, T_i being translations by $a = (a_1^4) \in A^4$ in (A, α) .

Putting $z = a_3$ and $u = a_4$ in (13) we get

$$\alpha_1(\alpha_2(x,y),\alpha_3(a_3,a_4)) = \alpha_4(\alpha_5(x,a_3),\alpha_6(y,a_4)) = T_1(x) + T_2(y)$$
(14)

Since (A, α_1) , (A, α_5) and (A, α_6) are quasigroups the mappings $f(x) = \alpha_1(x, \alpha_3(a_3, a_4))$, $f_1(x) = \alpha_5(x, a_3)$ and $f_2(x) = \alpha_6(x, a_4)$ are substitutions of the set A. From (14) we obtain $\alpha_2(x, y) = f^{-1}(T_1(x) + T_2(y))$ and $\alpha_4(x, y) = T_1(f_1^{-1}(x)) + T_2(f_2^{-1}(y))$. For $x = a_1$ and $y = a_2$ in (13) we have

$$\alpha_1(\alpha_2(a_1, a_2), \alpha_3(z, u)) = T_3(z) + T_4(u)$$

and thus

$$\alpha_3(z,u) = g^{-1}(T_3(z) + T_4(u)), \text{ where } g(x) = \alpha_1(\alpha_2(a_1, a_2), x).$$

If we put $y = a_2$ and $z = a_3$ in (13) then we get

$$\alpha_1(\alpha_2(x, a_2), \alpha_3(a_3, u)) = T_1(x) + T_4(u)$$

Hence $\alpha_1(x, u) = T_1(g_1^{-1}(x)) + T_4(g_2^{-1}(u))$. Putting $y = a_2$ and $u = a_4$ in (13) we obtain $\alpha_4(\alpha_5(x, z), \alpha_6(a_2, a_4)) = T_1(x) + T_3(z)$ and then $\alpha_5(x, z) = h^{-1}(T_1(x) + T_3(z))$ where $h(x) = \alpha_4(x, \alpha_6(a_2, a_4))$.

Finally, if we put $x = a_1$ and $z = a_3$ in (13) then we have

$$\alpha_4(\alpha_5(a_1, a_3), \ \alpha_6(y, u)) = T_2(y) + T_4(u)$$

and thus $\alpha_6(y, u) = h_1^{-1}(T_2(y) + T_4(u))$ for $h_1(x) = \alpha_4(\alpha_5(a_1, a_3), x)$.

Now, $f(g_1(x)) = \alpha_1(g_1(x), \alpha_3(a_3, a_4)) = \alpha_1(\alpha_2(x, a_2)), \alpha_3(a_3, a_4)) = T_1(x)$ implies that $T_1 \circ g_1^{-1} = f$,

$$g(g_2(x)) = \alpha_1(\alpha_2(a_1, a_2), g_2(x)) = \alpha_1(\alpha_2(a_1, a_2), \alpha_3(a_3, x)) = T_4(x)$$

implies that $T_4 \circ g_2^{-1} = g$,

$$h(f_1(x)) = \alpha_4(f_1(x), \alpha_6(a_2, a_4)) = \alpha_4(\alpha_5(x, a_3), \alpha_6(a_2, a_4)) = T_1(x)$$

implies that $T_1 \circ f_1^{-1} = h$ and

$$h_1(f_2(x)) = \alpha_4(\alpha_5(a_1, a_3), f_2(x)) = \alpha_4(\alpha_5(a_1, a_3), \alpha_6(x, a_4)) = T_2(x)$$

implies that $T_2 \circ f_2^{-1} = h_1$.

Taking into account the above results we have

$$\begin{aligned}
\alpha_1(x,y) &= f(x) + g(y), & \alpha_2(x,y) = f_1^{-1}(T_1(x) + T_2(y)), \\
\alpha_3(x,y) &= g^{-1}(T_3(x) + T_4(y)), & \alpha_4(x,y) = h(x) + h_1(y), \\
\alpha_5(x,y) &= h^{-1}(T_1(x) + T_3(y))), & \alpha_6(x,y) = h_1^{-1}(T_2(x) + T_4(y)).
\end{aligned}$$
(15)

Thus, it follows from (15) that any solution of the equation (3) has the form (12).

The converse is clear.

References

[1] J. Aczél, V.D. Belousov and M. Hosszú, *Generalized Associativity and Bisymmetry on Quasigroups*, Acta Math. Sci. Hung. 11 (1960), 127-136.

[2] V.D. Belousov, *Equation of general mediality*, Math. Issled. 39 (1976), 21-31.

[3] A. Petrescu, G - n-quasigroups (in this volume).

Author:

Adrian Petrescu Department of Mathematics and Informatics Faculty of Sciences and Letters "Petru-Maior" University of Târgu-Mureş Romania e-mail: apetrescu@upm.ro