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Abstract. Nematic liquid crystals are textured, anisotropic, viscoelas-
tic materials. The remarkable rheological properties of viscoelastic materi-
als are governed by the flow-induced evolution of molecular configuration.
Analogues to liquid crystal flow processes occur in the supramolecular self-
assembly processes of living biological tissues. A good understanding of the
relationships between rheological properties and microstructural evolution of
liquid crystals can provide insights towards a predictive rheology of complex
biomaterials. Silk fibers and other biomaterials have embedded the natu-
ral structure that is more compatible with other biomaterials, and hence
biomedical materials produced from biological inspired microstructures will
also display enhanced compatibilities.
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1. Introduction

The orientational order of liquid crystal polymers offers a unique pathway to
create new nano- and microstructures with unique optical, electromagnetic,
and mechanical properties. Nematic liquid crystals are textured, anisotropic,
viscoelastic materials. The remarkable rheological properties of viscoelastic
materials are governed by the flow-induced evolution of molecular configura-
tions. Furthermore, the frozen-in microstructure that develops in processing
flows dictates the physical properties of the final product. Their mechanical
behavior is greatly influenced by the presence of textures, or spatial distri-
bution of topological defects. Shear-induced nucleation and annihilation of
topological defects in nematic liquid crystals is a phenomenon of both scien-
tific interest and practical importance.
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The objective of this paper is to present a multiscale theory and sim-
ulation for hydrodynamic texture formation in liquid crystalline materials,
useful to the creation of synthetic material structures and the biomimetics of
natural fibers. Fundamental principles for control and optimization of struc-
tures in liquid crystalline materials are provided. Analogues to liquid crystal
flow processes occur in the supramolecular self-assembly processes of living
biological tissues. A good understanding of the relationships between rheo-
logical properties and microstructural evolution of liquid crystals can provide
insights towards a predictive rheology of complex biomaterials.

Silk fibers and other biomaterials have embedded the natural structure
that is more compatible with other biomaterials, and hence biomedical ma-
terials produced from biological inspired microstructures will also display
enhanced compatibilities. Substantial contributions have already made to
understanding of the properties and material processing of liquid crystal bio-
materials liquid crystal-like.

2.Theory and governing equations

We present the Landau-de Gennes theory for nematic liquid crystals and
the parametric equations used to describe liquid crystalline polymers texture
formation. The theory is well suited to simulate texture formation since
defects are non-singular solutions to the governing equations. In this paper
we study a rectilinear simple start-up shear flow with Cartesian coordinates,
as shown in figure 1. The lower plate is fixed and the upper plate starts
moving at t=0 with a known constant velocity V; the plate separation is H.
The z axis is coaxial with the vorticity axis and the shear plane is spanned
by the x-y axes- figure 1.

The microstructure of thermotropic liquid crystal polymers is described
conveniently in terms of a second order, symmetric and traceless tensor order
parameter Q [1]:

Q =

∫
(uu− I/3)fd2r (1)

where u is the unit vector normal to the rod-like molecules, I is second order
unit tensor, and f is the orientation distribution function. The governing
equations for liquid crystal flows follow from the dissipation function ∆:

∆ = ts : A + ckTH · Q̂ (2)

292



D. Grecov - Characterization and multiscale modeling of liquid ...

Figure 1: Definition of the flow geometry and coordinates system for simple
shear flow. The lower plate is at rest and the upper plate moves in the x-
direction with a constant velocity V. H is the gap separation

where ts is the viscoelastic stress tensor, c is the concentration of molecules
per unit volume, k the Boltzmann constant and T the absolute temperature,
A is the symmetric traceless rate of deformation tensor, H is the molecular
field, and Q̂ is the Jaumann derivative of the tensor order parameter, given
by:

Q̂ =
∂Q

∂t
+ (v · ∇)Q−W ·Q + Q ·W (3)

A = 1/2
(
∇v +∇vT

)
(4)

W = 1/2
(
∇v−∇vT

)
(5)

(ckT ) = −
[

∂f

∂Q
−∇ · ∂f

∂∇Q

][s]

(6)

where f is the free energy density given in [2].
The dynamics of the tensor order parameter is given by the following sum

of flow F, short range Hsr , and long range Hlr contributions [2]:

Q̂ = F (Q,∇v) + Hsr (Q, Dr) + Hlr (∇Q) (7)

where Dr is the microstructure dependent rotational diffusivity.

3. Computational methods

The model equations are a set of five coupled non-linear parabolic partial
differential equations. The equations are solved using Galerkin Finite Ele-
ments for spatial discretization and a fourth order Runge-Kutta time adap-
tive method. Convergence and mesh-independence were established in all
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cases using standard methods. Spatial discretization was judiciously selected
taking into account the length scale of our model. The selected adaptive time
integration scheme is able to efficiently take into account the stiffness that
rises due to the disparity between the lenghtscales and between time scales.
The boundary conditions for Q are:

Qs (y∗ = 0) = Qs (y∗ = 1) = Seq

(
nsns −

I

3

)
(8)

ns = (0, 0, 1)) (9)

Seq =
1

4
+

3

4

√
1− 8

3U
(10)

describing fixed director orientation along the vorticity axis , a uniaxial state
with the scalar order parameter equal to its equilibrium value. The initial
state is assumed to be uniaxial and at equilibrium. The initial orientation of
the director is assumed to be random.

4. Numerical results and discussion

Previous work [3] has shown that as the shear rate (Ericksen number) in-
creases, the Landau-deGennes theory predicts the existence of six stable
steady state modes, as follows:

1. Homogeneous mode (H): the director is aligned everywhere along the
vorticity axis (nz=1).

2. Symmetric mode (S): the director reorients uniformly towards the shear
plane, creating a symmetric twist angle profile. Since the reorientation
has a unique sense (say clockwise) no twist wall appear at the center
region.

3. Asymmetric mode (A): the re-orientation direction in the top half-layer
is opposite to the bottom half-layer. The resulting director field exhibits
a twist wall at the center of the gap, and two boundary layers at the
bounding surfaces.

4. Defect lattice mode (DL): The number of re-orientation reversal in-
creases with increasing shear rate, and the director filed display a finite
number of twist inversion walls separated by a nearly constant distance.
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The mode is spatially periodic and the wave-length is the wall-wall dis-
tance. Since the mode is periodic it is denoted defect lattice. In this
mode no coarsening processes (i.e., annihilation) occur. If annihilation
takes place periodicity is destroyed.

5. Defect gas mode (DG): in this mode annihilation processes set in and
walls nucleate and react with other walls, with the bounding surfaces,
and/or they pinch. Since coarsening is a random process it destroys
periodicity and the mode is referred as a defect gas mode. The twist
wall distance is a random variable.

6. Planar mode (P): At the highest shear rates, annihilation by pinching
overcomes defect nucleation, and no twist walls remain at steady state.
The resulting mode is planar and defect free.

It is found [3] that the texture transition cascade is remarkably consistent
with the textural transition of sheared lyotropic tumbling nematic polymers
[4]. Since the governing time scales at high shear rates are the flow time scale,
all transient results are plotted as a function of strain . In the following we
will present results for the last 3 modes.

Figure 2 shows computed gray scale visualizations of director component
nz (0 ≤ y∗ ≤ 1) as a function of strain, corresponding to the three modes :
a) symmetric mode- oriented domain (S), De=0.001; b) defect lattice mode
(DL), De=0.05; c) defect gas mode (DG) mode, De=1.3; d) planar mode
(P) De=1.5. Black represents in plane orientation (nz =0) and light repre-
sents orientation along the vorticity (nz=1) axis. The flow induced textural
transformations considered in this paper are nucleation and annihilation of
twist inversion walls. Twist walls arise whenever two equivalent director
re-orientations under an external flow are possible.

Here they arise because the director is initially oriented along the vorticity
and the director reorientation can follow two dissipatively and elastically
equivalent paths towards the shear plane. Since twist walls represent localized
elastic energy regions, the system will activate annihilation processes.

Thus textural transformations refer to wall nucleations and wall annihi-
lations. The steady state texture of a liquid crystal is given by the balance
of nucleation and coarsening processes. Coarsening events limit the lifetime
of an inversion wall, and a texture can be viewed as a balance between
birth-death events. Coarsening processes of inversion walls under shear can
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Figure 2: Computed gray scale visualization of director component nz (0 ≤
y∗ ≤ 1) as a function of strain: a) symmetric mode(H); b) defect lattice mode
(DL); c) defect gas mode (DG); d) planar mode (P)
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involve: (a) wall-bounding surface reaction, (b) wall-wall annihilation and
(c) pinching [3].

Figure 3(a) shows a computed visualization of director component nz

(0 ≤ y∗ ≤ 1) as a function of strain for R=106, U=4, De=0.03, corresponding
to wall-bounding surface interaction and wall-wall annihilation in the defect
lattice mode.

Figure 3: Computed visualization of director component nz (0 ≤ y∗ ≤ 1) as
a function of strain. Black represents in plane orientation (nz=0) and light
orientation along the vorticity (nz=1): a) wall-bounding surface interaction
and wall-wall interaction in defect lattice mode, De=0.03; c) wall pinching
in planar mode, De=1.4.

Black represents in plane orientation (nz=0) and light orientation along
the vorticity (nz =1). As strain increases one wall is absorbed by the bound-
ing surface leaving behind a single wall in the bulk.

Figure 3(a) is a unique example of a defect-bounding surface interaction.
As strain increases the walls annihilate leaving behind a planar director field.
Figure 3(b) shows a computed visualization of director component nz (0 ≤
y∗ ≤ 1) as a function of strain for R=106, U=4, De=1.4, corresponding to
wall pinching in the planar mode. Black represents in plane orientation (nz
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=0) and light orientation along the vorticity (nz =1). As strain increases the
walls pinch separately leaving behind a planar director field.

5. Conclusions

In summary, the presented multiscale theory and simulation of hydrodynamic
meso and macrotexture formation is able to provide fundamental principles
for control and optimization of structures in polymer-liquid crystal materi-
als. Flow processes nucleate defects under the influence of velocity gradients.
This paper shows that computational modeling of liquid crystal polymer ma-
terials offers an efficient pathway to discover new multiscale microstructures
and provides science-based complex biomaterials and biological inspired mi-
crostructures liquid crystal analogues manufacturing principles.
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