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Abstract. The purpose of this research is to introduce a class of strong α∗−I−
open sets, which is strictly positioned between the class of all α− I− open and class
all S.P ∗−I− open and S.S∗−I− open subsets of X. Connections with other classes
of sets are provided. Furthermore, we defined the strong α∗−I− interior and strong
α∗− I− closure operators and demonstrated their different characteristics using the
newly introduced idea.
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1. Introduction and Preliminaries

Kuratowski pioneered the study of ideal topological spaces [19]. Janković and Ham-
lett [16] conducted the research in a local and methodical manner, including some
new findings, enhancements to previously published findings, and applications. Hatir
and Noiri [13] introduced the idea of α−I− open, semi−I− open, and β−I− open
sets in ideal topological spaces. Ekici recently introduced the concepts of β∗ − I−
open and pre∗ − I− open sets [7]. Aqeel and Bin Kuddah (see [2],[3]) presented the
concepts of S.S∗ − I− open sets and S.P ∗ − I− open sets in 2019. In this work
we define the concepts of strong α∗ − I− open sets and strong α∗ − I− closed sets.
Several traits and qualities are investigated.

(X, τ) (just X) is used throughout this research to represent a topological space
on which no separation axiom is assumed unless clearly mentioned. The closure
and interior of a subset A in a topological space X are given by cl(A) and int(A),
respectively.

Definition 1. [19] An ideal I on X is defined as a nonempty collection of subsets
of X satisfying the following two conditions:
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1. If A ∈ I and B ⊂ A, then B ∈ I,

2. If A ∈ I and B ∈ I, then A ∪B ∈ I.

(X, τ, I) denote of an ideal topological space which means a topological space
(X, τ) with an ideal I on X.

Definition 2. [24] For a space (X, τ, I) and a subset A of X,
A∗(I, τ) = {x ∈ X : U ∩A /∈ I, for each U ∈ τ(X)} where τ(X) = {U ∈ τ : x ∈ U}
is called the local function of A with respect to I and τ . We simply write A∗ instead
of A∗(I, τ) in case there is no chance for confusion.

Definition 3. [16] cl∗(A) = A ∪ A∗ defines a Kuratowski closure operator for a
topology τ∗ (also denoted by τ∗ when there is no chance for confusion finer than τ).

Among the results published in [17, 13, 2, 5, 7, 3, 21, 1, 14, 9, 12, 10, 18, 15, 11]
we mention the following results in the form of definition 1.4.

Definition 4. A subset A of an ideal topological space (X, τ, I) is called:

1. I− open, if A ⊂ int(A∗),

2. semi− I− open, if A ⊂ cl∗(int(A)),

3. strong semi∗ − I− open, if A ⊂ cl∗(int∗(A)),

4. pre− I− open, if A ⊂ int(cl∗(A)),

5. pre∗ − I− open, if A ⊂ int∗(cl(A)),

6. strong pre∗ − I− open, if A ⊂ int∗(cl∗(A)),

7. α− open, if A ⊂ int(cl(int(A))),

8. α− I− open, if A ⊂ int(cl∗(int(A))),

9. β− open, if A ⊂ cl(int(cl(A))),

10. β − I− open, if A ⊂ cl(int(cl∗(A))),

11. β∗ − I− open, if A ⊂ cl(int∗(cl(A))),

12. strong β − I− open, if A ⊂ cl∗(int(cl∗(A))),

13. b− I− open, if A ⊂ cl∗(int(A)) ∪ int(cl∗(A)),

14. weakly semi− I− open, if A ⊂ cl∗(int(cl(A))),
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15. weakly pre− I− open, if A ⊂ scl(int(cl
∗(A))),

16. fI− set, if A ⊂ (int(A))∗,

17. Iβ− set, if int(A) = cl(int(cl∗(A))),

18. almost strong I− open, if A ⊂ cl∗(int(A∗)),

19. ∗− perfect, if A = A∗,

20. S − I− set, if int(A) = cl∗(int(A)),

21. strong SβI− set, if int(A) = cl∗(int(cl∗(A))) .

Definition 5. [6] In an ideal topological space (X, τ, I), I is said to be codence if
τ ∩ I = ϕ.

Lemma 1. [16] Let (X, τ, I) be an ideal space, where I is codence, then the following
hold:

1. cl(A) = cl∗(A), for every ∗− open set A,

2. int(A) = int∗(A), for every ∗− closed set A.

We mention the results presented in [8, 4, 2, 23, 13] in the form of lemma 1.7.

Lemma 2. For a subset A of an ideal topological space (X, τ, I), the following are
hold:

1. PIint(A) = A ∩ int(cl∗(A)),

2. S.P ∗Icl(A) = A ∪ cl∗(int∗(A)),

3. S.P ∗Iint(A) = A ∩ int∗(cl∗(A)),

4. S.S∗Icl(A) = A ∪ int∗(cl∗(A)),

5. S.S∗Iint(A) = A ∩ cl∗(int∗(A)),

6. wsIint(A) = A ∩ cl∗(int(cl(A))),

7. wsIcl(A) = A ∪ int∗(cl(int(A))),

8. βIcl(A) = A ∪ int(cl(int∗(A))).

Lemma 3. [24] For two subsets, A and B of a space (X, τ, I), the following are
hold:
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1. If A ⊂ B, then A∗ ⊂ B∗,

2. If U ∈ τ , then U ∩A∗ ⊂ (U ∩A)∗.

Lemma 4. [22] Let (X, τ, I) be an ideal space and A be a ∗ − dense in itself subset
of X. Then A∗ = cl(A∗) = cl(A) = cl∗(A).

Corollary 5. [20] For each A ⊂ (X, τ, I) we have :
(∪cl∗(Aα) : α ∈ ▽) ⊂ cl∗(∪Aα : α ∈ ▽)).

Theorem 6. [20] For two subsets, A and B of a space (X, τ, I), the following
properties are hold:

1. If A ⊆ B, then cl∗(A) ⊆ cl∗(B),

2. cl∗(cl∗(A)) ⊆ cl∗(A),

3. cl∗(A ∩B) ⊆ cl∗(A) ∩ cl∗(B),

4. cl∗(A ∪B) = cl∗(A) ∪ cl∗(B),

5. A ⊆ cl∗(A) ⊆ cl(A).

Lemma 7. [25] Let A and B be subsets of (X, τ, I) and int∗(A) denote the interior
of A with respect to τ∗, the following properties are hold:

1. If A ⊆ B, then int∗(A) ⊆ int∗(B),

2. If A is an open in (X, τ, I), then A = int(A) and A = int∗(A),

3. int(A) ⊆ int∗(A) ⊆ A,

4. int∗(A ∩B) = int∗(A) ∩ int∗(B),

5. int∗(A) ∪ int∗(B) ⊂ int∗(A ∪B).

2. Strong α∗ − I− Open Sets and Strong α∗ − I− Closed Sets

Motivated by the definition 4 of [3,6,8] we aim here at defining new type of sets are
strong α∗ − I− open set ,strong α∗ − I− closed set and at investigating several of
their properties and relationships to other sets .

Definition 6. Given a space (X, τ, I) and A ⊂ X, A is called strong α∗− I − open
set (briefly S.α∗ − I− open) if A ⊂ int∗(cl∗(int∗(A))). We denote by

S.α∗IO(X) = {A ⊂ X : A ⊂ int∗(cl∗(int∗(A)))}
.
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Definition 7. A subset A of a space (X, τ, I) is said to be strong α∗ − I− Cclosed
set (briefly S.α∗ − I− closed) if its complement is a S.α∗ − I− open set. We denote
that all S.α∗ − I− closed sets by S.α∗IC(X).

The following diagram holds for any subset A of a space (X, τ, I).

open(closed)

α− I − open(closed) S.S∗ − I − open(closed)

S.α∗ − I − open(closed) β∗ − I − open(closed)

S.P ∗ − I − open(closed)

Figure 1: The implication between some generalizations of open(resp.closed) sets.

Remark 1. The convers of the implication in diagram 1 are not true in general as
shown in the following examples.

Example 1. Let X = {a, b, c}, τ = {ϕ,X, {a}} and I = {ϕ, {a}, {c}, {a, c}}. Then
if we take

1. A = {c} is a β∗ − I− open set, but A = {c} /∈ S.α∗IO(X),

2. A = {b} ∈ S.α∗IO(X), but A = {b} /∈ τ .

Example 2. Let X = {a, b, c, d}, τ = {ϕ,X, {d}, {a, c}, {a, c, d}} and I = {ϕ, {c}, {d}, {c, d}}.
we notice that A = {a, b} ∈ S.α∗IO(X), but A is not α− I− open set.

Example 3. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}} and I = {ϕ, {a}, {d}, {a, d}}.
Then A = {c, d} ∈ SP ∗IO(X), but A = {c, d} /∈ S.α∗IO(X).

Example 4. Let X = {a, b, c}, τ = {ϕ,X, {a}, {c}, {a, c}} and I = {ϕ, {b}}. Then A =
{a, b} ∈ SS∗IO(X), but A = {a, b} /∈ S.α∗IO(X).

Remark 2. The strong α∗ − I− open sets and I− open sets are independent notions, we
show that from the next example.

Example 5. From example 3 we obtain

1. A = {a} ∈ S.α∗IO(X) while A /∈ IO(X),

2. A = {c} ∈ IO(X), but A /∈ S.α∗IO(X).
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Remark 3. The strong α∗ − I− closed sets and pre− closed sets are independent notions,
we show that from the next example.

Example 6. From example 3 we obtain

1. A = {b} ∈ PC(X) while A /∈ S.α∗IC(X),

2. A = {a} /∈ PC(X), but A ∈ S.α∗IC(X).

Theorem 8. Let (X, τ, I) be a space, then B is a S.α∗ − I− open set if and only if there
exists a S.α∗ − I− open set A such that A ⊂ B ⊂ int∗(cl∗(A)).

Proof. Let B be a S.α∗− I− open, then B ⊂ int∗(cl∗(int∗(B))), we put A = int∗(B) which
is ∗− open hence A is a S.α∗ − I− open and

A = int∗(B)
⊂ B
⊂ int∗(cl∗(int∗(B)))
= int∗(cl∗(A)).

conversely, if A is a S.α∗ − I− open set such that A ⊂ B ⊂ int∗(cl∗(A)), then A ⊂
int∗(cl∗(int∗(A))) and int∗(A) ⊂ int∗(B). Hence

B ⊂ int∗(cl∗(A))
⊂ int∗(cl∗(int∗(cl∗(int∗(A)))))
⊂ int∗(cl∗(cl∗(int∗(A))))
⊂ int∗(cl∗(int∗(A)))
⊂ int∗(cl∗(int∗(B))).

which shows that B is a S.α∗ − I− open set.

Corollary 9. A subset B of a space (X, τ, I) is a S.α∗ − I− open set if and only if there
exists a ∗− open set A such that A ⊂ B ⊂ cl∗(int∗(A)).

Proof. Comes directly from theorem 8.

Theorem 10. Let (X, τ, I) be a space then, A is a S.α∗ − I− open set if and only if A is
both S.P ∗ − I− open and S.S∗ − I− open set.

Proof. Necessity, this is obvious.
Sufficiency, Let A be a S.P ∗ − I− open set and S.S∗ − I− open set, then we have

A ⊂ int∗(cl∗(A))
⊂ int∗(cl∗(cl∗(int∗(A))))
⊂ int∗(cl∗(int∗(A))).

Hence A is a S.α∗ − I− open set.

Theorem 11. A subset A of a space (X, τ, I) is said to be a S.α∗ − I− closed set if and
only if cl∗(int∗(cl∗(A))) ⊂ A.
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Proof. Let A be a S.α∗ − I− closed set of (X, τ, I), then (X − A) is a S.α∗ − I− open set
and hence (X −A) ⊂ int∗(cl∗(int∗(X −A))) = X − cl∗(int∗(cl∗(A))).
Therefore, we obtain cl∗(int∗(cl∗(A)) ⊂ A.
Conversely, let cl∗(int∗(cl∗(A))) ⊂ A, then (X − A) ⊂ int∗(cl∗(int∗(X −A))) and hence
(X −A) is a S.α∗ − I− open set. Therefore, A is a S.α∗ − I− closed.

Theorem 12. Let (X, τ, I) be a space where I be codense, then A is a S.α∗ − I− closed if
and only if cl∗(int(cl∗(A))) ⊂ A.

Proof. Let A be a S.α∗ − I− closed set of X, then
A ⊃ cl∗(int∗(cl∗(A))) = cl∗(int(cl∗(A))).
Conversely, let A be any subset of X such that A ⊃ cl∗(int(cl∗(A))).
This implies that A = cl∗(int∗(cl∗(A))), i.e., A is a S.α∗ − I− closed set.

Theorem 13. A subset A of a space (X, τ, I) is a S.α∗ − I− closed if and only if there
exists a S.α∗ − I− closed set B such that B ⊃ A ⊃ cl∗(int∗(B)).

Proof. Let A be a S.α∗ − I− closed set of a space (X, τ, I), then A ⊃ cl∗(int∗(cl∗(A))). We
put B = cl∗(A) be a ∗ − closed set. i.e, B is a S.α∗ − I − closed and

B = cl∗(A)
⊃ A
⊃ cl∗(int∗(cl∗(A)))
⊃ cl∗(int∗(B)).

Conversely, if B is a S.α∗ − I− closed set such that B ⊃ A ⊃ cl∗(int∗(B)), then
B ⊃ cl∗(int∗(cl∗(B))) and cl∗(B) ⊃ cl∗(A). Since

B ⊃ A ⊃ cl∗(int∗(B))
⊃ cl∗(int∗(cl∗(int∗(cl∗(B)))))
⊃ cl∗(int∗(int∗(cl∗(B))))
= cl∗(int∗(cl∗(B)))
⊃ cl∗(int∗(cl∗(A))).

Hence A is a S.α∗ − I− closed set.

Corollary 14. a subset A of a space (X, τ, I) is a S.α∗ − I− closed set if and only if there
exists a ∗− closed set B such that B ⊃ A ⊃ cl∗(int∗(B)).

Proof. Comes directly from theorem 13.

The following Theorms,Corollaries and remarks introduce properties of S.α∗ − I− open
set and S.α∗ − I− closed set and their relation with some other sets.

Remark 4. The strong α∗ − I− open sets and b − I− open sets are independent notions,
we show that from the next examples.

Example 7. From example 4 if we take A = {a, b}, then we get A is a b− I− open, but it
is not S.α∗ − I− open.
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Example 8. From example 1 if we take A = {b}, then we get A is not b− I− open, but it
is a S.α∗ − I− open.

Corollary 15. Let (X, τ, I) be a space. If A is a S.α∗ − I− open set, then cl∗(A) is a
S.S∗ − I− open set.

Proof. Let A be a S.α∗ − I− open. Then A ⊂ int∗(cl∗(int∗(A))) and

cl∗(A) ⊂ cl∗(int∗(cl∗(int∗(A))))
⊂ cl∗(cl∗(int∗(cl∗(A))))
⊂ cl∗(int∗(cl∗(A))).

This implies that cl∗(A) is a S.S∗ − I− open.

Corollary 16. Let (X, τ, I) be a space. If A is a S.α∗ − I− open, then int∗(A) is
a S.P ∗ − I− open set.

Proof. Let A be a S.α∗ − I− open, then A ⊂ int∗(cl∗(int∗(A))) and
int∗(A) ⊂ int∗(int∗(cl∗(int∗(A)))) ⊂ int∗(cl∗(int∗(A))).
This implies that int∗(A) is a S.P ∗ − I− open.

The following theorem shows that the union of S.α∗ − I− open sets gives a S.α∗ − I−
open set, while the intersection of a S.α∗ − I− open set and an open set gives a S.α∗ − I−
open set.

Theorem 17. Let (X, τ, I) be a space, A and B are subsets of X. the following are hold:

1. If U ∈ S.α∗IO(X, τ), for each γ ∈ ∆, then
⋃
{Uγ : γ ∈ ∆} ∈ S.α∗IO(X, τ) and If

U ∈ S.α∗IC(X, τ), for each γ ∈ ∆, then
⋂

{Uγ : γ ∈ ∆} ∈ S.α∗IC(X, τ),

2. If A ∈ S.α∗IO(X, τ), and B ∈ τ , then A ∩B ∈ S.α∗IO(X, τ) and If
A ∈ S.α∗IC(X, τ) and B ∈ τ c, then A ∪B ∈ S.α∗IC(X, τ),

3. If A ∈ S.α∗IO(X) and B is a S.β − I− open set, then A ∪ B is a β∗ − I− open set
and If A ∈ S.α∗IC(X) and B is a S.β− I− closed set, then A∩B is a β∗− I− closed
set.

Proof. We only need to prove the case of opennes.

1. Since Uγ ∈ Sα∗IO(X, τ), we have Uγ ⊂ itn∗(cl∗(int∗(Uγ))), for each γ ∈ ∆. Then
we obtain ⋃

γ∈∆ Uγ ⊂
⋃

γ∈∆ int∗(cl∗(int∗(Uγ)))

⊂ int∗(
⋃

γ∈∆ cl∗(int∗(Uγ)))

= int∗(cl∗(
⋃

γ∈∆ int∗(Uγ)))

⊂ int∗(cl∗(int∗(
⋃

γ∈∆ Uγ)))

This shows that
⋃

γ∈∆ Uγ ∈ S.α∗IO(X, τ).
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2. Let A ∈ S.α∗IO(X, τ) and B ∈ τ . Then A ⊂ int∗(cl∗(int∗(A))) and
B = int(B) ⊂ int∗(B). Thus, we obtain

A ∩B ⊂ int∗(cl∗(int∗(A))) ∩ int∗(B)
⊂ int∗(cl∗(int∗(A)) ∩B)
= int∗(((int∗(A))∗ ∪ int∗(A)) ∩B)
= int∗(((int∗(A))∗ ∩B) ∪ (int∗(A) ∩B))
⊂ int∗((int∗(A ∩B))∗ ∪ (int∗(A) ∩B))
⊂ int∗((int∗(A ∩B))∗ ∪ int∗(A ∩B))
= int∗(cl∗(int∗(A ∩B))).

Hence A ∩B is a S.α∗ − I− open.

3. Let A is a S.α∗ − I− open set, then A ⊂ int∗(cl∗(int∗(A))), B is a S.β − I− open,
then B ⊂ cl∗(int(cl∗(B))). Now

A ∪B ⊂ int∗(cl∗(int∗(A))) ∪ cl∗(int(cl∗(B)))
⊂ cl∗(int∗(cl∗(A))) ∪ cl∗(int∗(cl∗(B)))
⊂ cl(int∗(cl(A))) ∪ cl(int∗(cl(B)))
= cl(int∗(cl(A)) ∪ int∗(cl(B)))
⊂ cl(int∗(cl(A) ∪ cl(B)))
= cl(int∗(cl(A ∪B))).

Hence A ∪B is a β∗ − I− open set.

Theorem 18. Let (X, τ, I) be a space, where I is codense then the following hold:

1. Every S.α∗ − I− open set is a β − I− open set,

2. Every S.α∗ − I− open set is a pre− I− open set,

3. Every S.α∗ − I− open set is a weakly semi− I− open set.

Proof. 1. Let A is a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ cl∗(int∗(cl∗(A)))
= cl∗(int(cl∗(A)))
⊂ cl(int(cl∗(A))).

Hence A is a β − I− open set.

2. Let A is a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ int∗(cl∗(cl∗(A)))
= int∗(cl∗(A))
= int(cl∗(A)).

Hence A is a pre− I− open set.
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3. Let A is a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ cl∗(int∗(cl∗(A)))
= cl∗(int(cl∗(A)))
⊂ cl∗(int(cl(A))).

Hence A is a weakly semi− I− open set.

Remark 5. The reverse of theorem 18 is not true in general as shown in the following
example.

Example 9. Let X = {a, b, c, d}, τ = {ϕ,X, {c}, {a, b, d}} and I = {ϕ, {a}}, then we get

1. A = {b} is a β − I− open set, but A /∈ S.α∗IO(X),

2. A = {a, b} ∈ PIO(X) set, but A /∈ S.α∗IO(X),

3. A = {c, d} is a weakly semi− I− open set, but it A /∈ S.α∗IO(X).

Theorem 19. Let (X, τ, I) be a space and A ⊂ X be a ∗− closed set. Then A is
a S.α∗ − I− open set if and only if A is a S.P ∗ − I− open set.

Proof. let A be a S.α∗ − I− open set, then A is a S.P ∗ − I− open set.
conversely, let A be a S.P ∗ − I− open set, then A ⊂ int∗(cl∗(A)).
Since A is a ∗− closed set, then int∗(cl∗(A)) = int∗(A).
Now A = int∗(A) ⊂ int∗(cl∗(int∗(A))). Which shows A is a S.α∗ − I− open set.

Theorem 20. Let (X, τ, I) be a space, and A ⊂ X, then the followings hold:

1. A is a S.α∗ − I− open set, if it is both strong β − I− open set and strong SβI− set,

2. A is a S.α∗ − I− open set, if it is both semi− I− open set and S − I− set.

Proof. 1. Let A be a strong β − I− open set, then A ⊂ cl∗(int(cl∗(A))). Since A is a
strong SβI− set, then int(A) = cl∗(int(cl∗(A))).
Now A = int(A) ⊂ int∗(cl∗(int∗(A))). Hence A is a S.α∗ − I -open set.

2. Let A be a semi− I− open set, then A ⊂ cl∗(int(A)). Since A is a S − I− set, then
int(A) = cl∗(int(A)).Now A = int(A) ⊂ int∗(cl∗(int∗(A))).
Hence A is a S.α∗ − I− open set.

Theorem 21. Let (X, τ, I) be a space. A is a S.α∗ − I− open set if it is both pre∗ − I−
open set and closed set (resp. A is a S.α∗ − I− closed set if it is both pre∗ − I− closed set
and open set).
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Proof. According to the duality of closeness and opennes, we only need to prove the case of
S.α∗ − I− open.
Let A is a pre∗ − I− open set, then A ⊂ int∗(cl(A)). Since A is a closed set,then

A ⊂ int∗(cl(A))
= int∗(A)
⊂ int∗(cl∗(int∗(A))).

Hence A is a S.α∗ − I− open set.

Theorem 22. Let (X, τ, I) be a space and A ⊂ X be α− open set and β− closed set. Then
A is a S.α∗ − I− open set.

Proof. Let A is an α− open set, then A ⊂ int(cl(int(A))), since A is a β− closed set, then
A ⊃ int(cl(int(A))) ⇒ A = int(cl(int(A))) ⇒ int(A) = int(cl(int(A))).
Now A = int(A) ⊂ int∗(cl∗(int∗(A))). Hence A is a S.α∗ − I− open set.

Theorem 23. Let (X, τ, I) be an ideal topological space, A ⊂ X and A is a S.α∗− I− open
set, then the followings hold:

1. S.S∗Icl(A) = int∗(cl∗(A)),

2. S.P ∗Icl(A) = cl∗(int∗(A)).

Proof. Let A be a S.α∗ − I− open set in X. Then we have:

1. A ⊂ int∗(cl∗(int∗(A))) ⊂ int∗(cl∗(A)).

Thus we have S.S∗Icl(A) = int∗(cl∗(A)).

2. A ⊂ int∗(cl∗(int∗(A))) ⊂ cl∗(int∗(A)).

Hence S.P ∗Icl(A) = cl∗(int∗(A)).

Remark 6. The reverse of theorem 23 is not true in general as shown in the following
examples.

Example 10. From example 3 if A = {b}, then S.S∗Icl(A) = int∗(cl∗(A)), but A /∈
S.α∗IO(X).

Example 11. From example 4 if A = {b, c}, then S.P ∗Icl(A) = cl∗(int∗(A)), but A /∈
S.α∗IO(X).

Theorem 24. Let (X, τ, I) be a space, A ⊂ X and A is a S.α∗ − I− closed set then the
followings hold:

1. S.S∗Iint(A) = cl∗(int∗(A)),

2. S.P ∗Iint(A) = int∗(cl∗(A)).
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Proof. Let A be a S.α∗ − I− closed set in X. Then we have

1. A ⊃ cl∗(int∗(cl∗(A))) ⊃ cl∗(int∗(A)).

Thus we have S.S∗Iint(A) = cl∗(int∗(A)).

2. A ⊃ cl∗(int∗(cl∗(A))) ⊃ int∗(cl∗(A)).

Hence S.P ∗Iint(A) = int∗(cl∗(A)).

Remark 7. The reverse of theorem 24 is not true in general as shown in the following
examples.

Example 12. From example 3 if A = {a, b}, then S.S∗Iint(A) = cl∗(int∗(A)), but
A /∈ S.α∗IC(X).

Example 13. From example 4 if A = {c}, then S.P ∗Iint(A) = int∗(cl∗(A)), but
A /∈ S.α∗IC(X).

Theorem 25. Let (X, τ, I) be a space. If A is ∗− perfect,and A is S.α∗− I− open set ,then
the following hold:

1. A is an α− open set,

2. A is an almost strong I− open set,

3. A is a semi− I− open set.

Proof. 1. Let A be a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
= int(cl∗(int(A))

⊂ int(cl(int(A))).

This implies A is an α− open set.

2. Let A be a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ cl∗(cl∗(int∗(A)))
= cl∗(int(A))
= cl∗(int(A∗).

Hence A is an almost strong I− open set.

3. Let A be a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ cl∗(int∗(A))
= cl∗(int(A)).

This implies A is a semi− I− open set.
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Theorem 26. Let (X, τ, I) be a space and A ⊂ A∗ and A∗ is a S.α∗ − I− closed set. Then
X − cl∗(A) is a S.α∗ − I− open set.

Proof. Given A ⊂ A∗, then A∗ = cl(A) = cl∗(A). Also A∗ is a S.α∗ − I− closed set,
X −A∗ is S.α∗ − I− open set.Therefore, X − cl∗(A) is a S.α∗ − I− open set.

Theorem 27. Let (X, τ, I) be a space. Then A∪ (X −A∗) is a S.α∗ − I− closed set if and
only if A∗ −A is a S.α∗ − I− open set .

Proof. Suppose A ∪ (X −A∗) is a S.α∗ − I− closed set. Since
X − (A∗ −A) = A ∪ (X −A∗), then A∗ −A is a S.α∗ − I− open set.
Converse part is obviously true.

Theorem 28. Let (X, τ, I) be a space and A ⊂ X, then

1. If A is a S.P ∗ − I− closed set and S.α∗ − I− open set, then A is a ∗− open set,

2. If A is a fI− set which is α− open set, then A is a S.α∗ − I− open set.

Proof. 1. Let A is a S.P ∗ − I − closed set and S.α∗ − I − open set, then
cl∗(int∗(A)) ⊂ A and A ⊂ int∗(cl∗(int∗(A))). Now A ⊂ int∗(A) = int∗(A).
Hence A is a ∗− open set.

2. Let A is a fI− set, then A ⊂ (int(A))∗ and so int(A) ⊂ (int(A))∗ and cl(int(A)) =
cl∗(int(A)). Since A is an α− open set, then

A ⊂ int(cl(int(A)))
= int(cl∗(int(A)))
⊂ int∗(cl∗(int∗(A))).

Hence A is a S.α∗ − I− open set .

Remark 8. The converse of the results in theorem 28 are not true in general, as shown by
the following examples.

Example 14. From example 2 if we take

1. A = {a} ∈ τ∗ and A ∈ S.α∗IO(X), but A /∈ SP ∗IC(X) set,

2. A = {a, b} ∈ S.α∗IO(X) , but it is not α− open set or fI− set.

Example 15. From example 3 if we take

1. A = {a} then A ∈ S.α∗IO(X) and A is an α− open set, but A is not fI− set,

2. A = {b, c, d} then A ∈ S.α∗IO(X) and A is afI − set, while A is not α− open .

Theorem 29. Let (X, τ, I) be a space. If A is a ∗− perfect, then every S.α∗ − I− open set
is a weakly pre− I− open set.
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Proof. Let A be a S.α∗ − I− open set, then

A ⊂ int∗(cl∗(int∗(A)))
⊂ int∗(cl∗(int∗(A ∪A∗)))
= int(cl∗(int(cl∗(A))))
⊂ int(cl(int(cl∗(A))))
= scl(int(cl

∗(A))).

Hence A is a weakly pre− I− open set.

Theorem 30. Let (X, τ, I) be a space and A ⊂ X, if A is an Iβ− set, then
every β − I− open set is a S.α∗ − I− open set.

Proof. Let A is a β − I− open set, then A ⊂ cl(int(cl∗(A))). Since A is an Iβ− set, then
cl(int(cl∗(A))) = int(A). Hence

A ⊂ cl(int(cl∗(A)))
= int(A)
⊂ int∗(cl∗(int∗(A))).

which shows that A is a S.α∗ − I− open set.

3. Strong α∗ − I− Interior and strong α∗ − I− Closure Operators

This section introduces the definitions of Strong α∗−I− Interior and strong α∗−I− Closure
Operators and some of their properties.

Definition 8. The strong α∗ − I− interior of a subset A of a space (X, τ, I) denoted by
S.α∗Iint(A) is defined by union of all strong α∗ − I− open sets of X contained A.

S.α∗Iint(A) = {∪B : B ⊂ A,B is an S.α∗ − I − open set}.

The following theorem provides an equivalent definition for definition 8.

Theorem 31. For a subset A of a space (X, τ, I), S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A)))

Proof. If A is any subset of X, then

A ∩ int∗(cl∗(int∗(A))) ⊂ int∗(cl∗(int∗(A)))
= int∗(cl∗(int∗(int∗(A))))
= int∗(cl∗(int∗(A ∩ int∗(A))))
⊂ int∗(cl∗(int∗(A ∩ int∗(cl∗(int∗(A)))))).

Hence A ∩ int∗(cl∗(int∗(A))) is a S.α∗ − I− open set contained in A.
Therefore , A ∩ int∗(cl∗(int∗(A))) ⊂ S.α∗Iint(A).
On other hand, since S.α∗Iint(A) is S.α∗ − I− open set, then

S.α∗Iint(A) ⊂ int∗(cl∗(int∗(S.α∗IInt(A))))
⊂ int∗(cl∗(int∗(A))).

,so S.α∗Iint(A) ⊂ A ∩ int∗(cl∗(int∗(A))).
Therefore, S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A))).
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Lemma 32. Let (X, τ, I) be a space and A ⊂ X, then A is a S.α∗ − I− open set if and
only if S.α∗Iint(A) = A

Proof. Let A is a S.α∗ − I− open set, then A ⊂ int∗(cl∗(int∗(A))).
Hence

S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A)))
= A.

Conversely, since S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A))) and by hypothesis
S.α∗Iint(A) = A, we get A ⊂ int∗(cl∗(int∗(A))).
This implies that A is a S.α∗ − I− open set.

Definition 9. The strong α∗ − I− closure of a subset A of a space (X, τ, I) denoted by
S.α∗Icl(A) is defined by intersection of all strong α∗ − I− closed sets of X containing A.

S.α∗Icl(A) = {∩B : B ⊃ A,B is an S.α∗ − I − closed set}.

Lemma 33. Let A ⊂ (X, τ, I), then

1. X − S.α∗Iint(A) = S.α∗Icl(X −A),

2. X − S.α∗Icl(A) = S.α∗Iint(X −A).

Proof. 1. Since S.α∗Iint(A) = {∪B : B ⊂ A,B is a S.α∗ − I − open set}, then

X − S.α∗Iint(A) = X − {∪B : B ⊂ A,B is a S.α∗ − I − open set}
= {∩X −B : X −B ⊃ X −A,X −B is a S.α∗ − I − closed set}
= {∩F : F ⊃ X −A,F is a S.α∗ − I − closed set}
= S.α∗Icl(X −A).

2. Since S.α∗Icl(A) = {∩B : B ⊃ A,B is a S.α∗ − I − closed set}, then

X − S.α∗Icl(A) = X − {∩B : B ⊃ A,B is a S.α∗ − I − closed set}
= {∪X −B : X −B ⊂ X −A,X −B is a S.α∗ − I − open set}
= {∪F : F ⊂ X −A,F is a S.α∗ − I − open set}
= S.α∗Iint(X −A).

The following theorem provides an equivalent definition for definition 9.

Theorem 34. For A ⊂ (X, τ, I), S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A)))

Proof. If A is any subset of X, then

A ∪ cl∗(int∗(cl∗(A))) ⊃ cl∗(int∗(cl∗(A)))
= cl∗(int∗(cl∗(cl∗(A))))
= cl∗(int∗(cl∗(A ∪ cl∗(A))))
⊃ cl∗(int∗(cl∗(A ∪ cl∗(int∗(cl∗(A)))))).
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Thus A ∪ cl∗(int∗(cl∗(A))) is a S.α∗ − I − closed set containing A. Thus
S.α∗Icl(A) ⊂ A ∪ cl∗(int∗(cl∗(A))).
On other hand, since S.α∗Icl(A) is a S.α∗ − I − closed set, we have

S.α∗Icl(A) ⊃ cl∗(int∗(cl∗(S.α∗Icl(A))))
⊃ cl∗(int∗(cl∗(A))).

,so S.α∗Icl(A) ⊃ A ∪ cl∗(int∗(cl∗(A))). Therefore, S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A))).

Theorem 35. Let A ⊂ (X, τ, I), then A is a S.α∗−I−closed set if and only if S.α∗Icl(A) =
A.

Proof. Let A is a S.α∗ − I − closed set, then A ⊃ cl∗(int∗(cl∗(A))).
Hence S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A))) = A.
Conversely, since S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A))) and by hypothesis
S.α∗Icl(A) = A, we get A ⊃ cl∗(int∗(cl∗(A))).
This implies that A is a S.α∗ − I − closed set.

Theorem 36. For A ⊂ (X, τ, I), if I is codense, then the following properties hold:

1. βIcl(A) ⊂ S.α∗Icl(A),

2. S.α∗Iint(A) ⊂ pIint(A),

3. S.α∗Iint(A) ⊂ wsIint(A),

4. wsIcl(A) ⊂ S.α∗Icl(A).

Proof. 1. Since βIcl(A) = A ∪ int(cl(int∗(A))), then

βIcl(A) = A ∪ int(cl∗(int∗(A)))
= A ∪ int∗(cl∗(int∗(A)))
⊂ A ∪ cl∗(int∗(cl∗(A))).

Hence βIcl(A) ⊂ S.α∗Icl(A).

2. Since Sα∗Iint(A) = A ∩ int∗(cl∗(int∗(A))), then

S.α∗IInt(A) ⊂ A ∩ int∗(cl∗(A))
= A ∩ int(cl∗(A))
= pIint(A).

Hence S.α∗Iint(A) ⊂ pIint(A).

3. Since S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A))), then

S.α∗Iint(A) ⊂ A ∩ cl∗(int∗(cl∗(A)))
= A ∩ cl∗(int(cl∗(A)))
⊂ A ∩ cl∗(int(cl(A)))
= wsIint(A)

Hence S.α∗Iint(A) ⊂ wsIint(A).
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4. since wsIcl(A) = A ∪ int∗(cl(int(A))), then

wsIcl(A) ⊂ A ∪ int∗(cl(int∗(A)))
= A ∪ int∗(cl∗(int∗(A)))
⊂ A ∩ cl∗(int∗(cl∗(A)))
= S.α∗Icl(A)

Hence wsIcl(A) ⊂ S.α∗Icl(A).

Theorem 37. For A ⊂ (X, τ, I), the following properties hold.

1. cl∗(S.α∗Icl(A)) = cl∗(A),

2. int∗(S.α∗Iint(A)) = int∗(A).

Proof. 1. we know that S.α∗Icl(A) ⊃ A, this implies that
cl∗(S.α∗Icl(A)) ⊃ cl∗(A).
On other hand,

cl∗(S.α∗Icl(A)) = cl∗(A ∪ cl∗(int∗(cl∗(A))))
= cl∗(A) ∪ cl∗(cl∗(int∗(cl∗(A))))
= cl∗(A) ∪ cl∗(int∗(cl∗(A)))
= cl∗(A ∪ int∗(cl∗(A)))
⊂ cl∗(A ∪ cl∗(cl∗(A)))
= cl∗(A ∪ cl∗(A))
= cl∗(cl∗(A))
= cl∗(A).

This implies that cl∗(S.α∗Icl(A)) = cl∗(A).

2. we know that S.α∗Iint(A) ⊂ A, this implies that int∗(S.α∗IInt(A)) ⊂ int∗(A).
On other hand,

int∗(S.α∗Iint(A)) = int∗(A ∩ int∗(cl∗(int∗(A))))
= int∗(A) ∩ int∗(int∗(cl∗(int∗(A))))
= int∗(A) ∩ int∗(cl∗(int∗(A)))
= int∗(A ∩ cl∗(int∗(A)))
⊃ int∗(A ∩ int∗(int∗(A)))
= int∗(A ∩ int∗(A))
= int∗(int∗(A))
= int∗(A).

This implies that int∗(S.α∗Iint(A)) = int∗(A).

Theorem 38. For A ⊂ X of a space (X, τ, I), the following properties are hold.

1. If A is a S.P ∗ − I− open set in X, then S.α∗Icl(A) = cl∗(int∗(cl∗(A))),
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2. If A is a S.P ∗ − I− closed set in X, then S.α∗Iint(A) = int∗(cl∗(int∗(A))).

Proof. 1. Let A is a S.P ∗ − I− open set, then we have

A ⊂ int∗(cl∗(A))
⊂ cl∗(int∗(cl∗(A))).

This implies that
S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A)))

= cl∗(int∗(int∗(A))).

2. Let A is a S.P ∗ − I− closed set, then we have

A ⊃ cl∗(int∗(A))
⊃ int∗(cl∗(int∗(A))).

This implies that

S.α∗IIint(A) = A ∩ int∗(cl∗(int∗(A)))
= int∗(cl∗(int∗(A))).

Remark 9. The reverse of theorem 38 is not true in general as shown by the following
example.

Example 16. From example 4 if

1. A = {a, b}, then S.α∗Icl(A) = cl∗(int∗(cl∗(A))), but A /∈ SP ∗IO(X),

2. A = {a}, then S.α∗IInt(A) = int∗(cl∗(int∗(A))), but A /∈ SP ∗IC(X).

Theorem 39. For A ⊂ (X, τ, I), the following properties are hold.

1. If A is a S.β − I− open set in X, then S.α∗Icl(A) = cl∗(int∗(cl∗(A))),

2. If A is a S.β − I− closed set in X, then S.α∗Iint(A) = int∗(cl∗(int∗(A))).

Proof. 1. Let A is a S.β − I− open set, then we have

A ⊂ cl∗(int(cl∗(A)))
⊂ cl∗(int∗(cl∗(A))).

This implies that
S.α∗Icl(A) = A ∪ cl∗(int∗(cl∗(A)))

= cl∗(int∗(int∗(A))).

2. Let A is a S.β − I− closed set, then we have

A ⊃ int∗(cl(int∗(A)))
⊃ int∗(cl∗(int∗(A))).

This implies that

S.α∗Iint(A) = A ∩ int∗(cl∗(int∗(A)))
= int∗(cl∗(int∗(A))).
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Remark 10. The reverse of theorem 39 is not true in general as shown by the following
example.

Example 17. From example 1 if

1. A = {b}, then S.α∗Icl(A) = cl∗(int∗(cl∗(A))), but A is not S.β − I− open set,

2. A = {a}, then S.α∗Iint(A) = int∗(cl∗(int∗(A))), but A is not S.β − I− closed set.
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