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HIGHER ORDER COEFFICIENT ESTIMATES FOR A SUBCLASS
OF ANALYTIC AND BI-UNIVALENT FUNCTIONS
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ABSTRACT. A bi-univalent function is a univalent function defined on the
unit disc for which the inverse function has a univalent extension to the unit disc.
In this paper, estimates for the initial as well as higher order coefficients |a4| and |as|
of bi-univalent functions belonging to certain class defined by subordination and of
functions for which f and f~! belong to different subclasses of univalent functions
are derived. Generalization of existing known results were also pointed out.
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1. INTRODUCTION

Let A denote the class of analytic functions defined on the open unit disc
D = {z:|z] <1} of the form

f(2) :z+2anz". (1)
n=2

Suppose that S is the subclass of A consisting of univalent functions. Being
univalent, the functions in the class S are invertible; however, the inverse need
not be defined on entire unit disc. The Koebe’s one quarter theorem ensures that
the image of the unit disc under every univalent function contains a disc of radius
1/4. Thus, a function f € S has an inverse defined on a disc contains |w| < 1/4. It
can be easily seen that

fHw) = w — agw? + (245 — az)w? . .., (2)

in some disc of radius atleast 1/4. A function f € A is said to be bi-univalent in I,
if both f and f~! are univalent in D, and is denoted by o.
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Lewin [3] investigated the class ¢ of bi-univalent functions and obtained the
bound for the second coefficient. Several authors have subsequently studied similar
problems in this direction (see [5, 6, 9]). Brannan and Taha [5] considered
certain subclasses of bi-univalent functions, similar to the familiar subclasses of
univalent functions consisting of strongly starlike, starlike and convex functions.
They introduced bi-starlike and bi-convex function and obtained bounds for initial
coefficients. Serap Bulut in [1] investigated the subclass Bg’p of analytic bi-univalent
function and obtain estimates on the first two coefficients |az| and |az|. The class Bg’p
generalize familier classes of bi-starlike, strongly bi-starlike. It should be remarked
that, only very few articles that deal with higher order coefficients (See [13, 14, 16]).

Motivated by the aforementioned works, in this paper, we introduce and
investigate an interesting subclass R, («, ", h, p) of analytic and bi-univalent function
and obtain initial coefficients |as| and |a3| and higher order coefficients |a4| and |as|.
Our results would generalize and improve the results obtained in [1, 5].

For any two analytic functions f and g in D, we say that f is subordinate
to g written as f < g, if there exists a Schwarz function w analytic in D with
w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) (z € D). In particular, if the
function g is univalent in D, the above subordination is equivalent to f(0) = ¢(0)
and f(D) C g(D).

Definition 1. Let the functions h,p : D — C be constrained that
min{R(h(2)),R(p(z))} >0 (2 € D) and h(0) = p(0) = 1. (3)

A function f € o given by (1) is said to be in the class Ry(c, v, h,p), if the
following conditions are holds good.

ay2® f"(2) + (20 + a = )22 f"(2) + 2f'(2) )
22 f12) 1 (o)D) + (-t i) <P Osarsd)

and , (4)

ayw’g” (w) + (2ay + o = Y)w’g" (w) + wy'(w)
g (w) T (o — Py (0) - (1 —aty)gw) PP Osarsl) ]

where g(w) = f~H(w).

We note that, by choosing appropriate values for «,7,h and p, the class
Ry (v, 7y, h,p) reduces to several earlier known subclasses of bi-univalent function.

(1) R,(0,0,h,p) = BLP [1, Definition 3]
(2) Rg(Oé, 0, h,p) = Ro(a7 h,p) [14]
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) R, <0,0, Lt 11__225)2, 1= (11;225) ) = 5%(B) (0 < B < 1) [2, Definition 3.1]
) R, (1,0, L+ (11__:6)2, - (11+_Z2/6) ) = C%(B) (0 < B < 1) [2, Definition 4.1]
) Ro (0,0, (%) ; (11)3 — §5:(8) (0< B < 1) [15
) R, (1,0, T_“z ’ <1lj)ﬁ> = SC2(8) (0< B < 1) [15]

2. COEFFICIENT ESTIMATES

Theorem 1. Let f given by (1) be in the class Ry(c, v, h,p). Then

\a|<mm{w’ 2+ 0)P \/\h"<o>\+\p"<o>\}
: 2R% "\ 2[4R: - 2R

LI [FOR+PO)R | 10) + /O] [IHO)SR: - 26 + 17 @253
‘“3'§mln{[ R S s N e 12

where

l+a—v+2ay)
1+ 20 — 2y + 6ay)
1+ 3a— 37+ 12a)
1+ 4a — 4y + 20a).

= (
(
(
(

Proof. Let f € Ry(a,7,h,p) and g be the analytic extension of f~! to D. It follows
from (4) that

ay2’ f"(2) + (209 + a —7)22 f"(2) + 2f'(2)
ay2? f"(z) + (a =7)zf'(z) + 1 —a +7)f(2)

= h(z) (5)

and

3.,/

ayw’g” (w) + (207 + a — Yw?g"(w) + wy'(w) _
ayw?g"(w) + (a — y)wg' (w) + (1 — a +v)g(w)
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where h(z) and p(w) satisfy the conditions of Definition 1.
Furthermore the functions h(z) and p(w) have the following Taylor series expansions

h(z) =1+hiz+ho2? + ...
p(w) =1+ prw + pow? + ...

respectively.
Now from (5), we have

CLQRl = ]’Ll (7)
2a3Rs = ash1 Ry + ho (8)
3a4R3 = ash1 Ry 4+ achoR1 + hg (9)
4as Ry = agh1 Rs + aghoRo + ashs Ry + hy. (10)
From (6), we have
asRy = —p1 (11)
2(2a% —a3)Ry = —agp1 Ry + p2 (12)
—3(5a3 — bagas + as)Rs = (2a5 — az)p1Ry — agpaR1 +ps  (13)
4(14a3 — 21a3as + 6azay + 3a3 — as)Ry = (—1)[5a3 — basas + as]p1 R3 (14)
+ (243 — a3)paRo — azps Ry + pa.
From (7) and (11), we obtain
hi = —DP1- (15)
asR? = h3 + p3. (16)
From (8) and (12) we get
ho +
2 2 T D2
=< < 17

) that

) and (
W (0)] + [p'(0)[?
<
’CL2| \/ 2R2

] < \/ 1) + p(0)]
=\ 2[R, — 2R
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By using (8) and (12), we obtain

Using (16) and (17) in (18), we have

hi+pt | 1(ha—p2)
_ - 19
3 2R% 4 Ry ( )
and
_ op2 2
as = h2[8R2 2R1] —+ 2R1p2 (20)

4[Ry — 2R?][4Ry)]
We thus find that

WO + P (O)F |, 1]A"(0)] + !p”(O)q

<
jas| < [ OR2 8 Ry

and

las| < [!h”(O)I[SRz - 2R§]2+ \p"(O)IQRq
2[4Ry — 2R7|[4R,]
This completes the proof of theorem.
Remark 1.
(i) By taking v =0 in Theorem 1, gives the estimate in [14].

(ii) For « = 0, v = 0 and o = 1, v = 0 Theorem 1 gives the estimates for
the class starlike and the class convex function, which is given in [1] and [15]

respectively.
Remark 2.
1 1-2 1—(1-2
(i) By taking o = 0, v =0, h(z) = —i_(l_zﬁ)z and p(z) = (l—l—zﬂ)z in

Theorem 1, gives the estimates for starlike function of order B, obtained in [2].

1 g 1-2\"
(i) By takinga =0,y =0, h(z) = (1 i_ i) and p(z) = (1 n z> in Theorem 1,

gives the estimates for strongly starlike function, obtained in [2].

73



M.P. Jeyaraman, S. Padmapriya — Higher Order Coefficient Estimates ...

Remark 3.

(i) For the choice of a = 1,7 =0, h(z) = 1—|-(11_25)Z andp(z)zl_(ll_;jﬁ)z

in Theorem 1, reduces to the estimates for convex function of order c, obtained

g , 14 2\” 1-2\"
(ii) For the choice of « =1, v =0, h(z) = (1 _Z> and p(z) = <1+2> in
Theorem 1, reduced the result obtained in [15].

Theorem 2. If the function f € Rs(c,v,h,p), then the coefficients a,, (n = 4,5)
of [ satisfy

h/ R 5 R 5
s (3 EI (2 & Y (25 ) o

1h/// + /// 1 h/02+/023/2
LI O \+ W02+ HOPP2

612 R2R;

’h// ’ + ’p// )’ Rl 5 " Rl 5 17
h" (0 ket S 0
< \/ (4R, — 2R?) 6Rs | 8, [P0} + 6Rs SR, [P (O)]
1 [h"(0)] + [p"(0)] 1 |W'(0) + p"(0)]*2 R Ry
36 Rs 6v2 (4Ry —2R?)3/2  R3

and

/ 2 / 212 / 2 / 2
\a5|3mm{('h<0> PO g oy 4 PO PO ) ) 1w(0) 4 (o) " (O)]

AR 1R?
S ﬁfm O ko)) + ) + 22 0) 4700+ 7 0 >!>,
" 1 9 " .
(!h 4(1 [;(j(z)](g)! Kia) + I E&y{ Iiz)o];o)![m(a”h,,(o” + Ko@)

" " 1/2 a) o
+'h6<3>;’;( 7(?;’) K@) W7 0)]+ ")) + T w(0) 4 o) + Kl <o>r>}.
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where
1RiRs 1R3 R? 1R}
Ki(a) = = -2 M, -
) ==+ 5R "R iR
1R2 5RR3; 1Ry 1 R2
K —_-1,4° -2 - U
R S TS Ty S R
6 Ry 8RoR, 4Rs  4RsR,
1R,
1 Ry
1
KG(O‘)—E

Kq(a) = 4Ry — 2R3,
Proof. From (9) and (13) we have

1 (hs —ps3)

a9 R1
(ho +p2) + 6 I

6 Ry

sRiRy 5  (hy —p2)

1
— —Qo———=. 21
+ 30/2 R3 + 80,2 R2 ( )

aq =
Using (16) and (17) in (21), we get

pe JRER R 5] | 1 —py) |10+ Ry
2R? | 6R3 8 Ry 6 Rj 3 (2872 RRs
(22)

and

(hg + p2) + 2(h2];2p2)] + - (23)

B ha + p2 {Rl
aq =

[AR> — 2R?] |6Rs
1 (ha+p2)3? RiRy

3[4Ry — 2R33/2 Ry

We thus find that

1 ‘h/(O)Q +p/<0)2‘ Fil 5 " El 5 1
< + + | = — — 0
‘a4| - 2\/ 2R% 6R3 8RRy |h (O)‘ 6R3 8RRy ’p ( )|

1)+ p"O)] 1 W02+ p(02P2
36 R 62 R?Rs ?
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|n”(0) 4+ p"(0 Ry 9 " Ry 5 "
Q) — - 0
jaa] < 2\/ (4R5 — 2R2 6rs T smy ) MO (G, 5wy ) PO
1 |h/// ’_’_|p///< )‘ 1 ’h”(O)—i—p”(O)‘?’/z R1R2

36 R3 6\/§ (4R2 —2R%)3/2 Rs
Using (10) and (14), we obtain

1 R? 1R} 1
as = R1R3azaq + §a§R§ - a% 3R—4 + ZR—4 al 5+ fh4 (24)
and
as = ag‘Kl(a) + a%[Kg(oa)hg + Ks(a)p2] + as[Ka()](hs — p3) (25)

+ K5(a)(h2 — p2)* + Ko ()ha.
Using (16) and (17), we get

1/AO\2 | N\ 212 1{0\2 | (N2
jas) < PO E DO e o O3 B e, oy o)) + Ky 7(0)]

4R} 4R?

# YO PO oy 00+ 7001+ 2 00)+ 57007+ Z5 7 0)
and

2 // 2 " //
s < P o) + PR B )l )] + Ka()ls )]

‘h"(O) +p,/(0)|1/2 " 1" K5( ) " 1" 2 KG( ) "

s e K@)+ )]+ S 0) + 2 O + S o)
which gives a required estimate.
For a =0,v =0, h(z) = 14—(11225)2 and p(z) = 1_(11_i__z2ﬁ>z, Theorem 2

gives the following estimate for starlike function of order §.

Corollary 3. If f € Si(5), then

la4| < min {;1(1 —B)? + 2(1 —B)+ 2(1 - B)3, 4\3/5(1 —B)%? + %(1 — 5)}

8

sl < min{ [ 300 = 9)1 + 50 8%+ 501 - 9 + 1= 5P+ 51— 5)].

[;1—m2+ﬁfu—ﬁﬁﬂ+§u—ﬁﬁ+;u—ﬁf+ia—ﬁi}.

76



M.P. Jeyaraman, S. Padmapriya — Higher Order Coefficient Estimates ...

B B
1 1-—
For the choice of @« = 0, v = 0, h(z) = 1i_j> and p(z) = <1+z)
Theorem 2 gives the following estimate of strongly starlike function of order S.

Corollary 4. If f € SS%(B), then

Ia4\§min{§ﬁs+gﬂ+gﬂ3 o5, 4\[/33+ S+ B}

< — — — — - — -
|a5\_mm{[3,8 +36+ B + B+ ﬂ+486 +48B ;

S CE N CENR 24 }
For the choices of a =1, 7 =0 h(z) = M and p(z) = 1_(114__5@7

Theorem 2 gives the following estimate for convex function of order S3.

Corollary 5. If f € CX(5), then

al Smin{ 31 52+ G- )+ 50 5P, S -5+ 05

sl < min{ [ 20— 9)1 (1= 9P+ (0= 5P+ 50— 5P+ 150 8)]
s o —ﬁ>2+é<1—6>3/2+230(1—/3>2+110<1—6>]}-
. 1+2\° 1-2\"
For the choices of a = 1, v = 0, h(z) = T and p(z) = <l—|—z>

Theorem 2 gives the following estimate of strongly convex of order f3.

Corollary 6. If f € SCX(5), then
1 1 1 1
< |23 23 23 1
|as| < [35 +58° 580+ 186]
7 4 8 4 8 4 4 2 3 4 1 4 2
< | = — — _ - _
las| < {56 T T E T T Tt 240/3

For the choice of 7 = 0 in Theorem 2 gives the estimate obtained in [14].
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3. SECOND HANKEL DETERMINANT

The ¢*"* Hankel determinant (denoted by H,(n)) forg = 1,2,3,... andn =1,2,3,...
of the function f is the ¢ x ¢ determinant given by H,(n) = det(an+itj—2). Here
an+i+j—2 denotes the entry for the it row and jth column of the matrix. The second
Hankel determinant Hy(2) = agas — a% for the class of functions whose derivative
has positive real part, the classes of starlike and convex functions with respect to
symmetric points have been studied in [3, 4]. The upperbound for the functional
H»(2) for bi-starlike and bi-convex functions of order /5 obtained in [8].

For the recent works on second Hankel determinant of certain subclass of analytic
and biunivalent function (see [6, 9, 13]). In this section, we obtain second Hankel
determinant for function in the class R,(«,~, h,p).

To establish our results, we recall the following.

Lemma 7. [17] If p € P, then |Py| < 2 for each k € N, where P is the family of
all functions p analytic in D for which Re p(z) > 0, p(z) = 1+ p1z + po2z® +--- for
z € D.

Lemma 8. [18] If the function p € P, then

2p2 = pi + (4 - p})

Aps = pi +2(4 = phprz — pr(4 = p)a® + 2(4 = pi) (1 = [a]*)s,
for some x, s with |z| <1 and |s| < 1.

Theorem 9. Let f given by (1) be in the class Ry(c,v, h,p), then

R, Q<op<- 9
16P+4Q+ R, Q>0,P>—=
2 8
agsay — azl < Q
(07') Q S OaPZ _Z
4PR — Q? Q
Sl P<-—=,
\ 4P ’ Q > 0’ - 8
where
) S N
- R 8R2R2 3RiR; R} 16R?

1
[2R2R2 3R1R3  2R2

_Ré
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Proof. Let f € Ry(a,h,p), 0 < a < 1. Then from (5), (18) and (21), we have
1 hiRy 1 h2(hy — p2)
_2_1th 1
WUTB T SRR 8 KR,
1h3(ho +p2) | 1hi(hs —ps)

6 R1R3 6 RlRS
hi 1 (hg —p2)?
i L o p) (26)
R} 16 Rj
According to Lemma 8, we write
2he = hi + (4 — h})
2ps = p? +y(4 - p?)
4 — h?
(h2—p2)_< 5 1)(95—?4) (27)
and
4hg = h3 +2(4 — h3)(hiz) — hi(4 — hD)a? +2(4 — h2)(1 — |z]?)=
4ps = pi +2(4 — hi)(py) — p1(4 — h])y? +2(4 = B (1 — [y|*)w.
Therefore, we have
h3 hi(4 — h?
hs —ps = ?1 +hi(4—h3)(z+y) - %(352 +9°)
(4 - h)
+ =1 = |22 = (1= fy*)w] (28)
and
4—h3
et pe =1+ (U1 4, (29)

for some z,y and z,w with |z| <1, |y| <1, |w| <1, |2| < 1.
Using (27), (28) and (29), then triangle inequality and letting |z| = A, |y| = p
from the last equality, we obtain

lazas — a3| < T+ To(A + 1) + T5(A\* + p?) + Tu(A + p)* = F(\, ),
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where
= _411R11R3 * ;)R};;g * 1;%} i éw
T~ | T+ im) A — ADs+ o)
- [ MU0 112’“;‘1 D (af?+ o)
7y = O 41y

We need to maximize the function F'(A, ) in the closed square S = {(A, p)
A, i€ [0,1]} for h € [0,2]. We must investigate the maximum of the function F in
the case h =0, h =2 and h € (0, 2).

Let h = 0 then

1
A+ p)? <max{F\p:\peS)=—.

E(X

4R2

For h = 2, The function F'(\, p) is constant as follows

1 Ry 1
FO.w) = (4R1R3 " 3RiR, R4) (16)
B 4 16 Ry 16
N <R1R3 * 3R}R; * R‘f) '
Now, let h € (0,2). In this case, we must investigate the maximum of the function
F according to h € (0,2) taking into account the sign of A = F)\\F},, — Ffu.

Since A = 4T3(T5 + 2T}), T3 < 0 and T3 + 2Ty > 0 for every h € (0,2), A < 0;
that is, the function F'(A, u) cannot have a local maximum in the interior of the
square S.

Now, we investigate the maximum of F' on the boundary of the square S.

For A =0 and p € [0,1] (the case u =0, A € [0, 1] investigated).
Similarly, we write

F(0,p1) = Ty + Top + (T3 + Ta)p® = G(p)

It is clear that 75 + Ty < 0 and 75 + T > 0 for some values of h € (0, 2).

In the case T5 + Ty < 0, the function G(u) cannot have a local maximum in the
interval (0, 1), but G(0) = T1 and G(1) =T + T3 + T3 + T} in the extremes of the
interval [0, 1].
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Let T3 + T4 > 0 for some values of h € (0,2). Then, the function G(u) is an
increasing function and the maximum occurs at p = 1.
Therefore,

maX{G(,u) VRS [0, 1]} = G(l) =T +1o+T5+1y.

For A =1 and p € [0,1] (the case =1 and A € [0, 1] investigated).
Similarly, we write

F(l, u) = (Tg + T4)/L2 + (TQ + 2T4)M + (Tl + 15+ T35+ T4) = H(M)
Similar to the above, we write
maX{F(l, ;L) YRS [0, 1]} = H(l) =T+ 215 + 2T3 + 4Ty.

Thus, G(1) < H(1), the maximum of the function F'(\, u) occurs at the point
(1,1) and
max{F (A, pu) : \,pe S} =F(1,1) = H(1)

on the boundary of the square S.
Define the function ¢ : (0,2) — R as follows:

¢(h) =T + 215 + 2T5 + 4T, = F(1,1).

Substituting the values of 17,75, T3 and T} in the expression of ¢, we obtain

Ry 1 1 1 1 7.,
h) = — — T
o(h) [3R:{’R3 8R2Ry; 3RiRs3 * R} * 16R§]
T R X
2R2Ry;  3Ri1Rs 2R3 R;
= Pt? 4+ Qt + R, where t = hZ.
Thus we have
R, @<o0r<-2
maxo(h) = { 16P +4Q + B, (Q>0,P> ~)(or) (@ <0,P> %)
4PR — Q? Q
— % P< -,
v E (@>0,P<~-7)
( Q
i, lazar — 3] < Q16P+4Q + R, (@ 20,P > ~S)(or) (Q<0,P> _%)
4PR — Q? Q
il P< -2,
L 4P (@>0,P<-%)

which completes the proof.

81



M.P. Jeyaraman, S. Padmapriya — Higher Order Coefficient Estimates ...

Acknowledgements. The authors are thankful to the referee for their insightful
suggestions. The work of the first author was supported by the grant given under
minor research project 21-22, Tamilnadu state council for higher education.

REFERENCES

[1] Serap Bulut, Coefficient estimates for a class of analytic and bi-univalent
functions, Novi Sad. J. Math. 43, 2 (2013), 59-65.

[2] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions,
Mathematical analysis and its applications (Kuwait, 1985), 53-60, KFAS Proc. Ser.,
3, Pergamon, Oxford 1988. See also Studia Univ. Babes-Bolyai Math. 31, 2 (1986),
70-77.

[3] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc. 18 (1967), 63-68.

[4] D.A. Brannan, J.G. Clunie (Eds.), Aspects of contemporary complex analysis
(Proceedings of the NATO Advanced Study Institute held at the University of
Durham, July 20, 1979, Academic Press, Newyork and London (1980).

[5] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, In: S.M.
Mazhar, A. Hamoui, N.S. Faour, (eds.), Mathematical Analysis and its Applications,
Kuwait, February 18-21 (1985).

[6] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and
bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.

[7] Q-H. Xu, Y.-C. Gui, H.M. Srivastava, Coefficient estimates for a certain
subclass of analytic and biunivalent functions, Appl. Math. Lett. 25 (2012), 990-994.

[8] Murat Caglar, Erhan Deniz, Hari Mohan Srivastava, Second Hankel
determinant for certain subclasses of bi-univalent functions, Turkish Journal of
Mathematics 41 (2017), 694-706.

[9] J.W. Noonan, D.K. Thomas, On the second Hankel determinant of a neatly
mean p-valent functions, Trans. Am. Math. Soc. 223 (1976), 337-346.

[10] Halit Orhan, Nanjundan Mahesh, Jagadeesan Yamini, Bounds for the second
Hankel dterminant of certain bi-univalent functions, Turkish Journal of Mathematics
40 (2016), 679-687.

[11] Sahsene Altinkaya and Sibel Yalsin, Coefficient Estimates for two new
subclasses of bi-univalent functions with respect to symmetric points, Journal of
Function Spaces, 2015.

[12] R.M. Ali, S.KK. Lee, V. Ravichandran et al., Coefficient estimates for bi-
univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012),
344-251.

82



M.P. Jeyaraman, S. Padmapriya — Higher Order Coefficient Estimates ...

[13] V. Kumar, S. Kumar, V. Ravichandran, Third Hankel determinant for certain
classes of analytic functions, International Conference On Recent Advances in Pure
and Applied Mathematics (2018), 223-231.

[14] M.P. Jeyaraman, S. Padmapriya, Estimates for Higher Order Coefficients and
Second Order Hankel Determinant of Certain bi-univalent Functions, Adv. and Appl.
in Math. Sci. 22(3) (2023), 717-734.

[15] Liangpend Xiong, Xiasli Liu, Some extension of coefficient problems for Bi-
univalent Ma-Minda starlike and convex functions, Filomat, 29, 7 (2015), 1645-1650.

[16] V. Ravichandran, Shelly Verma, Bound for the fifth coefficient of certain starlike
functions, C.R. Acad. Sci. Paris. Ser. I, 353 (2015), 505-510.

[17] C. Pommerenke, Univalent functions, Vandenhoech and Rupercht, Gottingen
(1975).

[18] U. Grenander, G. Szegd, Toeplitz forms and their applications, California,
Monographs in Mathematical Sciences, Berkeley, CA, USA, University of California
Press (1958).

M.P. Jeyaraman

Department of Mathematics,
Presidency College,

Chennai, 600 005

email: jeyaraman_mp@yahoo.co.in

S. Padmapriya

Department of Mathematics,

SRM Institute of Science and Technology,
Ramapuram Campus, Chennai 600 089
email: padmapriya.14@gmail.com

83



	Introduction
	Coefficient Estimates
	Second Hankel Determinant

