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Abstract. In this paper, the authors introduce and investigate a subclass of
analytic functions Em

(β,λ,φ,γ)(Hσ, α, δ, µ, ℓ), satisfying certain subordinate condition
associated with Gegenbauer polynomials. For the subclass introduced, we derive
initial coefficients |a2| and |a3| and also obtain the classical Fekete-Szegë problem
for functions in the subclass. Finally, our findings show relevant connections between
our results and those in some earlier known investigations and obviously improve
them.
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1. Introduction and Preliminaries

The usual class of normalized analytic functions is denoted by A and it consists of
the functions of the form

f(z) = z +
∞∑
n=2

anz
n, z ∈ U, (1)

for which the normalization condition is f(0) = f ′(0) − 1 = 0. Also, the class of
functions defined in (1) that are univalent in U is denoted by S such that S ⊂ A.
Suppose we are given the function f(z) of the form (1) and g(z) = z +

∑∞
n=2 anz

n,
for which z ∈ U, we say that the function f(z) is subordinate to g(z) in U (i.e,
f(z) ≺ g(z) z ∈ U) if there exists a Schwarz function ω which is analytic in U with
ω(0) = 0 and |ω(z)| < 1 (z ∈ U) such that

f(z) = g(ω(z)) (z ∈ u). (2)
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In particular, when g ∈ S,

f ≺ g (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

This is known as subordination principle and the details can be found in [[12], [14],
[21], [37]]. Let S∗ and K denote the class of starlike functions f ∈ S and and
the class of convex functions f ∈ S respectively such that S∗ and K satisfies the
conditions:

Re

(
zf

′
(z)

f(z)

)
> 0 ≡ Re

(
zf

′
(z)

f(z)

)
≺ 1 + z

1− z
, (3)

and

Re

(
1 +

zf
′′
(z)

f ′(z)

)
> 0 ≡ Re

(
1 +

zf
′′
(z)

f ′(z)

)
≺ 1 + z

1− z
. (4)

Furthermore, a function f ∈ A satisfying the conditions

zf
′
(z)

f(z)
≺ 1 + z

1− z

and

1 +
zf

′′
(z)

f ′(z)
≺ 1 + z

1− z
(5)

is said to be starlike of order β and convex of order β respectively for 0 < β ≤ 1.
In geometric functions theory, the arithmetic means of some functions and ex-

pressions are frequently used in mathematics. For instance, Mocanu [21] introduced
the class of α-convex functions (0 ≤ α ≤ 1) by making use of the arithmetic means
as follows:

Mα =

{
f ∈ A : ℜ

[
(1− α)

(
zf

′
(z)

f(z)

)
+ α

(
1 +

zf
′′
(z)

f ′(z)

)]
> 0 z ∈ U

}
. (6)

We note that by varying the value of α in (6), the classes of starlike and convex
functions are obtained as some special cases of (6). Thus, the arithmetic bridge
between starlikeness and convexity is determined by the class of α-convex functions
defined in (6). In a similar context, the class of µ-starlike functions (0 ≤ µ ≤ 1)
consisting of the functions f ∈ A introduced by Lewandoski et al.[18] that satisfy
the inequality

ℜ
[(

zf
′
(z)

f(z)

)µ(
1 +

zf
′′
(z)

f ′(z)

)1−µ]
> 0 (z ∈ U)

also determines the arithmetic bridge between starlikeness and convexity.
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According to Duren [12], the coefficient problem or inequality is all about the
determination of the region of Cn−1 occupied by the points (a2, · · · , an) for all f ∈ S.
Attempt to deduce such precise analytic information from the geometric hypothesis
of univalence is not only exceedingly challenging but also arduous. However, co-
efficient problem has been redeveloped in the more distinctive way of making an
estimate of |an|, the modulus of the nth coefficient. Already in 1916, Bieberbach
surmised that the nth coefficient of a univalent function is less or equal to that of the
Koebe function. In fact, his actual conjecture is that |a2| ≤ 2 as a simple corollary
to the area theorem, which is due to Gromwall. Mathematically speaking, he says:
For each function f ∈ S, |an| ≤ n for n = 2, 3, · · · . Unless f is the Koebe function
or one of its rotations, strict inequality holds for all n. Closely related to coefficient
problem is the famous, well known and classical Fekete-Szegö problem (also known
as the Fekete-Szegö functional) whose origin is the disproof of the surmise (theory)
of Littlewood and Parley on the bound on the coefficient of odd univalent functions.
In which case for odd univalent functions, Littlewood and Parley in 1932 proved that
for each n the modulus |cn| is less than an absolute constant A and the true bound
is given by A = 1. For each f ∈ S, Fekete and Szegö obtained the sharp bound [13]:

|a3 − ξa22| ≤ 1 + 2
e− 2ξ

(1−ξ) , 0 ≤ ξ ≤ 1.

Expectedly, the Fekete-Szegö problem has continued to receive attention until now,
even in the many subclasses of S. Consequently, as a result of frantic enquiry, many
other functionals have risen after it, each finding application in certain problems of
the geometric functions. For example, when ξ = 1, it is important to mention a
more general problem of this type, which is the Hankel determinant problem.

Gegenbauer polynomials (or ultraspherical polynomials) Cσ
n(x) are orthogonal

polynomials on the interval [−1, 1] with respect to the weight function (1− x2)σ−
1
2

in mathematics. They generalize Legendre polynomials and Chebyshev polynomials,
and are special cases of Jacobi polynomials [38]:

Cσ
n(x) =

(2σ)n

(σ + 1
2)n

P
(σ− 1

2
,σ− 1

2
)

n {x}.

They are named after Leopold Gegenbauer and can be defined in terms of their
generating function [36]:

1

(1− 2xt− t2)n
=

∞∑
n=0

C(σ)
n (x) tn. (7)

Another form of definition for the Gegenbauer polynomial of degree n is

Cσ
n(x) =

1

n

[
2x(n+ σ − 1)Cσ

n−1(x)− (n+ 2σ − 2)Cσ
n−1(x)

]
(8)
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with the initial values

Cσ
0 (x) = 1, Cσ

1 (x) = 2σx and Cσ
2 (x) = 2σ(1 + σ)x2 − σ. (9)

Gegenbauer polynomials are particular solutions of the Gegenbauer differential equa-
tion [38]:

(1− x2)y′′ − (2σ + 1)xy′ + n(n+ 2σ)y = 0.

When σ = 1
2 , the equation reduces to the Legendre equation, and the Gegenbauer

polynomials reduces to the Legendre polynomials. When σ = 1, the equation reduces
to the Chebyshev differential equation, and the Gegenbauer polynomials reduces
to the Chebyshev polynomials of the second kind [9, 41]. It is worth mentioning
that many studies have been conducted on different classes defined by many au-
thors that are associated with Chebyshev polynomials and leading to various results
([6],[8],[16],[24],[25],[26],[29],[33]). For further information on orthogonal polyno-
mials generally, interested readers are referred to [10]. Various results which has
connection with Gegenbauer polynomials have appeared in the Literature. They
include but not limited to ([4], [17], [28]).

Definition 1 (Class F(β,λ)(H,α, δ, µ)). [15] Let 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2, 0 ≤ µ ≤
1, 0 ≤ β ≤ λ ≤ 1, and t ∈ (12 , 1]. We say that f ∈ A of the form (1) belong to
f ∈ F(β,λ)(H,α, δ, µ) if

α

[
zG′(z)

G(z)

]δ
+ (1− α)

[
zG′(z)

G(z)

]µ [
1 +

zG′′(z)

G′(z)

]1−µ

≺ H(z, t) =
1

1− 2tz + z2
(10)

where z ∈ U and G(z) = λβz2f
′′
(z) + (λ− β)f

′
(z) + (1− λ+ β)f(z).

Definition 2 (Opoola Differential Operator). [22] Let f(z) defined in (1) be in A.
Then

Dm(φ, γ, ℓ)f(z) = z +
∞∑
n=2

[1 + (n+ φ− γ − 1)ℓ]m an z
n (11)

is the Opoola differential operator. We note that in (11), 0 ≤ φ ≤ γ, ℓ ≥ 0 and
n ∈ N0 = N ∪ {0}. It should also be noted that

1. When φ = γ, and ℓ = 1, Dm(φ, γ, ℓ)f(z) is the Salagean differential operator
[34].

2. When φ = γ, then Dm(φ, γ, ℓ)f(z) is the Al-Oboudi differential operator [3].

Now, in view of (1) and by making use of (7) and (11), we define a new subclass
of analytic functions in U with the following subordination condition:
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Definition 3 (Class Em
(β,λ,φ,γ)(Hϕ, α, δ, µ, ℓ)). Let 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2, 0 ≤ µ ≤

1, 0 ≤ β ≤ λ ≤ 1, 0 ≤ φ ≤ γ, ℓ ≥ 0, m ∈ N0 = N ∪ {0}, t ∈ [12 , 1] and for non-zero
real constant ϕ. We say that f ∈ A of the form (1) belong to Em

(β,λ,φ,γ)(Hϕ, α, δ, µ, ℓ)
if

α

[
zK ′(z)

K(z)

]δ
+ (1− α)

[
zK ′(z)

K(z)

]µ [
1 +

zK ′′(z)

K ′(z)

]1−µ

≺ Hσ(z, t) (12)

where z ∈ U, K(z) = λβ z2F ′′(z) + (λ − β) z F ′(z) + (1 − λ + β)F (z), F (z) =

Dm(φ, γ, ℓ)f(z) and Hσ(z, t) =
1

(1− 2tz + z2)σ
.

2. Main Results

2.1. Coefficient bounds for the function class Em
(β,λ,φ,γ)(Hσ, α, δ, µ, ℓ)

Theorem 1 (Coefficient Estimates). Let the function f(z) given by (1) be in the
class Em

(β,λ,φ,γ)(Hϕ, α, δ, µ, ℓ). Then

|a2| ≤
2σt

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m
(13)

and

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)][2(3λβ + λ− β) + 1)][1 + (2 + φ− γ)ℓ]m

×
{(1 + ϕ)[αδ + (1− α)(2− µ)]2 − ϕ

[
[αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

]
2[αδ + (1− α)](2− µ)]2

4t2 − 1

}
.

(14)

Proof. Let the function f(z) given by (1) be in the class Em
(β,λ,φ,γ)(Hσ, α, δ, µ, ℓ).

From (12), we have

α

[
zK ′(z)

K(z)

]δ
+(1−α)

[
zK ′(z)

K(z)

]µ [
1+

zK ′′(z)

K ′(z)

]1−µ

= 1+Cσ
1 (t)w(z)+Cσ

2 (t)w
2(z)+· · ·

(15)
for some analytic functions

w(z) = d1z + d2z
2 + d3z

3 + · · · (z ∈ U), (16)
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such that w(0) = 0, |w(z)| < 1 (z ∈ U).
For such functions, it is well known that

|dj | ≤ 1 (j ∈ N) (17)

and for all v ∈ C
|d2 − vd21| ≤ max{1, |v|}. (18)

Therefore from (15) and (16) we have

α

[
zK ′(z)

K(z)

]δ
+ (1− α)

[
zK ′(z)

K(z)

]µ [
1 +

zK ′′(z)

K ′(z)

]1−µ

= 1 + Cσ
1 (t) d1 z + [Cσ

1 (t) d2 + Cσ
2 (t) d

2
1] z

2 + · · ·
(19)

where K(z) = λβ z2F ′′(z) + (λ− β) z F ′(z) + (1− λ+ β)F (z).
From the LHS of (19) we have the following:

α
[z K ′(z)

K(z)

]δ
= α+ αδ(2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m a2 z+[
2 αδ(6λβ + 2λ− 2β + 1)[1 + (2 + φ− γ)ℓ]m a3

+
αδ(δ − 3)

2
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

]
z2 + · · · ,

(20)

[z K ′(z)

K(z)

]µ
= 1 + µ(2λβ + λ− β + 1) a2[1 + (1 + φ− γ)ℓ]m z

+
[
2 µ(6λβ + 2λ− 2β + 1)[1 + (2 + φ− γ)ℓ]m a3

+
µ(µ− 3)

2
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

]
z2 + · · ·

(21)

and

[
1 +

z K ′′(z)

K ′(z)

]1−µ
= 1 + 2(1− µ)(2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m a2 z

+ 2(1− µ)
[
3(6λβ + 2λ− 2β + 1)[1 + (2 + φ− γ)ℓ]m a3

+ (µ− 2)(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

]
z2 + · · · .

(22)
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Such that

(1− α)
[z G′(z)

G(z)

]µ [
1 +

z G′′(z)

G′(z)

]1−µ
=

(1− α)

[
1 + (2− µ)(2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m a2 z

+
[
2(3− 2µ)(6λβ + 2λ− 2β + 1)[1 + (2 + φ− γ)ℓ]m a3

+
µ2 + 5µ− 8)

2
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

]
z2 + · · ·

]
(23)

Thus, the LHS of (19) becomes

= 1 + [αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m a2 z

+
[
2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m a3

+
1

2
[αδ(δ − 3) + (µ2 + 5µ− 8)(1− α)](2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

]
z2

+ · · ·
(24)

Hence, equating (24) to the right hand side of (19) and comparing the coefficients,
we have

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m a2 = Cσ
1 (t) d1 (25)

and

1

2
[αδ(δ − 3) + (µ2 + 5µ− 8)(1− α)](2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m a22

+ 2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m a3

= Cσ
1 (t) d2 + Cσ

2 (t) d
2
1.

(26)

From (9), (17) and (25) we have

a2 =
Cσ
1 (t) d1

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m
(27)

|a2| ≤
2σt

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m
(28)
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By using (25), we can rewrite the equality (26) as follows

2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m a3

= Cσ
1 (t) d2 + Cσ

2 (t) d
2
1 −

1

2
[αδ(δ − 3) + (1− α)(µ2 + 5µ− 8)]

× (2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

×
[ Cσ

1 (t) d1
[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m

]2
.

(29)

If we consider (9) and (17) in (29), we obtain

2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m a3 = 2σt{
d2 −

1

2σt

(
1− (1 + ϕ)[αδ + (1− α)(2− µ)]2 − ϕ[αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)(2− µ)]2
4t2

)
σd21

}
(30)

So that

a3 =
2σt

2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (1 + φ− γ)ℓ]m

×
{
d2 −

1

2t

(
1− (1 + ϕ)[αδ + (1− α)(2− µ)]2 − ϕ[αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)(2− µ)]2
4t2

)
d21

}
.

(31)

Using (17) in (31) we have

|a3| ≤
2σt

2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (1 + φ− γ)ℓ]m

×max

{
1,

1

2t

∣∣∣∣1− (1 + σ)[αδ + (1− α)(2− µ)]2 − σ[αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)(2− µ)]2
4t2

∣∣∣∣}.

(32)

By using Mathematica (version 8.0), we find that

(1 + σ)[αδ + (1− α)(2− µ)]2 − σ[αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)(2− µ)]2
≥ 1 (33)

for 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2, 0 ≤ µ ≤ 1 and any real constant σ.
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Consequently, we obtain

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (1 + φ− γ)ℓ]m

×
{
(1 + σ)[αδ + (1− α)(2− µ)]2 − σ[αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)(2− µ)]2
4t2

}
.

(34)

Taking σ = 1 in Theorem 1, we obtain the following Corollary:

Corollary 2. Let the function f(z) given by (1) be in the class Em
(β,λ,φ,γ)(H1, α, δ, µ, ℓ).

Then

|a2| ≤
2t

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m

and

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)][2(3λβ + λ− β) + 1)][1 + (2 + φ− γ)ℓ]m

×
{2[αδ + (1− α)(2− µ)]2 −

[
[αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

]
2[αδ + (1− α)](2− µ)]2

4t2 − 1

}
.

Remark 1. The estimates |a2| and |a3| in Corollary 2 are the coefficient estimates
that will be obtained if we use the Chebyshev polynomials instead of Gegenbauer
polynomials.

Taking σ = 1
2 in Theorem 1, we obtain the following Corollary:

Corollary 3. Let the function f(z) given by (1) be in the class Em
(β,λ,φ,γ)(H 1

2
, α, δ, µ, ℓ).

Then

|a2| ≤
t

[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)[1 + (1 + φ− γ)ℓ]m

and

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)][2(3λβ + λ− β) + 1)][1 + (2 + φ− γ)ℓ]m

×
{3[αδ + (1− α)(2− µ)]2 −

[
[αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

]
4[αδ + (1− α)](2− µ)]2

t2 − 1

}
.
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Remark 2. The estimates |a2| and |a3| in Corollary 3 are the coefficient estimates
that will be obtained if we use the Legendre polynomials instead of Gegenbauer poly-
nomials.

Taking φ = γ in Theorem 1, we obtain the following Corollary:

Corollary 4. Let the function f(z) given by (1) be in the class Em
(β,λ)(Hσ, α, δ, µ, ℓ).

Then

|a2| ≤
2ϕt

(1 + ℓ)m[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)

and

|a3| ≤
1

2(1 + 2ℓ)m[αδ + (1− α)(3− 2µ)][2(3λβ + λ− β) + 1)]

×
{(1 + ϕ)[αδ + (1− α)(2− µ)]2 − ϕ

[
[αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

]
2[αδ + (1− α)](2− µ)]2

4t2 − 1

}
.

Remark 3. The estimates |a2| and |a3| in Corollary 4 are the coefficient estimates
that will be obtained if we use the Al-Oboudi differential Operator instead of the
Opoola differential operator as F (z) in this paper.

Taking φ = γ, ℓ = 1 in Theorem 1, we obtain the following Corollary:

Corollary 5. Let the function f(z) given by (1) be in the class Em
(β,λ)(Hσ, α, δ, µ, 1).

Then

|a2| ≤
2ϕt

2m[αδ + (1− α)(2− µ)](2λβ + λ− β + 1)

and

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)]3m[2(3λβ + λ− β) + 1)]

×
{(1 + ϕ)[αδ + (1− α)(2− µ)]2 − ϕ

[
[αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

]
2[αδ + (1− α)](2− µ)]2

4t2 − 1

}
.

Remark 4. The estimates |a2| and |a3| in Corollary 5 are the coefficient estimates
that will be obtained if we use the Salagean differential Operator instead of the Opoola
differential operator that was used in this paper.

Taking λ = 0, β = 0,m = 0, σ = 1 in Theorem 1, we obtain the following
Corollary:
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Corollary 6. Let the function f(z) given by (1) be in the class E(H1, α, δ, µ). Then

|a2| ≤
2t

αδ + (1− α)(2− µ)

and

|a3| ≤
1

2[αδ + (1− α)(3− 2µ)]

×
{
2[αδ + (1− α)(2− µ)]2 − [αδ(δ − 3)− (1− α)](µ2 + 5µ− 8)

2[αδ + (1− α)](2− µ)]2
4t2 − 1

}
.

Remark 5. The estimate of |a3| which is obtained in Corollary 6 is better than the
corresponding estimate in [40].

Taking α = 0, λ = 0, β = 0,m = 0, σ = 1 in Theorem 1, we obtain the following
Corollary:

Corollary 7. Let the function f(z) given by (1) be in the class L(µ, t). Then

|a2| ≤
2t

(2− µ)

and

|a3| ≤
(16− 3µ+ µ2)t2

(3− 2µ)(2− µ)2
− 1

2(3− 2µ)
.

Remark 6. The estimate of |a3| which is obtained in Corollary 7 is better than the
corresponding estimate in [2].

Taking α = 1− η, δ = 1, µ = 0, β = 0,m = 0, σ = 1 in Theorem 1, we obtain the
following Corollary:

Corollary 8. Let the function f(z) given by (1) be in the class Gη
λ(t). Then

|a2| ≤
2t

(1 + η)(1 + λ)

and

|a3| ≤
1

2(1 + 2η)(1 + 2λ)

[
4t2(η2 + 5η + 2)

(1 + η)2
− 1

]
.

Remark 7. The estimate of |a3| which is obtained in Corollary 8 is better than the
corresponding estimate in [5].
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Taking α = 1 − η, δ = 1, µ = 0, λ = 0, β = 0,m = 0, σ = 1 in Theorem 1, we
obtain the following Corollary:

Corollary 9. Let the function f(z) given by (1) be in the class K(η, t). Then

|a2| ≤
2t

(1 + η)

and

|a3| ≤
1

2(1 + 2η)

[
4t2(η2 + 5η + 2)

(1 + η)2
− 1

]
.

Remark 8. The estimate of |a3| which is obtained in Corollary 9 is better than the
corresponding estimate in [1].

Taking α = 1, δ = 1,m = 0, σ = 1 in Theorem 1, we obtain result of [7] the
following Corollary:

Corollary 10. Let the function f(z) given by (1) be in the class N(λ, β, t). Then

|a2| ≤
2t

2λβ + λ− β + 1

and

|a3| ≤
8t2 − 1

2[6λβ + 2λ− 2β + 1]
.

Taking µ = 0, α = 0, λ = 0, β = 0,m = 0, σ = 1 in Theorem 1, we obtain result
of
[11] the following Corollary:

Corollary 11. Let the function f(z) given by (1) be in the class H(t). Then

|a2| ≤ t

and

|a3| ≤
4t2

3
− 1

6
.

Taking α = 0, δ = 1µ = 1, λ = 1, β = 1,m = 0, σ = 1 in Theorem 1, we obtain
the following Corollary:

Corollary 12. Let the function f(z) given by (1) be in the class E1,1(H, 0, 1, 1).
Then

|a2| ≤ t

and

|a3| ≤
4t2

7
− 1

14
.
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2.2. Fekete–Szegö inequality for the function class Em
(β,λ,φ,γ)(Hσ, α, δ, µ, ℓ).

Fekete-Szegö inequality is one of the famous problem related to coefficients of uni-
valent analytic functions. Several works on it have appeared in Literature ([6, 7, 8],
[13], [16], [23], [26], [27], [30, 31, 32], [33], [35]). Just to mention view.

Theorem 13. Let the function f(z) given by (1) be in the class Em
(β,λ,φ,γ)(Hσ, α, δ, µ, ℓ).

Then, for some ξ ∈ R,

|a3 − ξa22| ≤

{
2σt
M for ξ ∈ [ξ1, ξ2],

2σt
M

∣∣∣2σ(1+ϕ)t2−ϕ
2σt − Rσt

B − ξ 2σtM
B(2λβ+λ−β+1)2[1+(1+φ−γ)ℓ]2m

∣∣∣ for ξ /∈ [ξ1, ξ2]

(35)

where ξ1 =
{

2((1+σ)B−R)t2−(1+2t)B
4σ2t2M

}
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m,

ξ2 =
{

2((1+σ)B−R)t2−(1−2t)B
4σ2t2M

}
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

such that

B = [αδ + (1− α)(2− µ)]2,

M = 2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m,

R = [αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

Proof. Let f ∈ Em
(β,λ,φ,γ)(Hϕ, α, δ, µ, ℓ) and

B = [αδ + (1− α)(2− µ)]2,

M = 2[αδ + (1− α)(3− 2µ)][2(3λβ + 2λ− 2β) + 1][1 + (2 + φ− γ)ℓ]m,

R = [αδ(δ − 3) + (1− α)](µ2 + 5µ− 8)

From (25) and (26) for some ξ ∈ R, we can easily see that

|a3 − ξa22| =
Cσ
1 (t)

K

∣∣∣∣d2 +{
Cσ
2 (t)

Cσ
1 (t)

− R

2B
Cσ
1 (t)−

ξ
Cσ
1 (t)M

B(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

}
d21

∣∣∣∣ (36)

Then, in view of (17), we conclude that

|a3 − ξa22| ≤
Cσ

1 (t)

M
max

{
1,

∣∣∣∣Cσ
2 (t)

Cσ
1 (t)

− R

2B
Cσ

1 (t)− ξ
Cσ

1 (t)M

B(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

∣∣∣∣}
(37)
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Finally, by using (9) in (37), we get

|a3 − ξa22| ≤
2σt

M
max

{
1,

∣∣∣∣2σ(1 + ϕ)t2 − σ

2σt
− σtR

B
− ξ

2σtM

B(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

∣∣∣∣}
(38)

Because t > 0, we have{
1,

∣∣∣∣2σ(1 + ϕ)t2 − σ

2σt
− σtR

B

− ξ
2σtM

B(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

∣∣∣∣} ≤ 1

⇔
{
2((1 + σ)B −R)t2 − (1 + 2t)B

4σ2t2M

}
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

≤ ξ ≤
{
2((1 + ϕ)B −R)t2 − (1− 2t)B

4ϕ2t2M

}
(2λβ + λ− β + 1)2[1 + (1 + φ− γ)ℓ]2m

⇔ ξ1 ≤ ξ ≤ ξ2.

(39)

Thus, the proof of the theorem is complete.

Taking α = 1, δ = 1,m = 0, σ = 1 in Theorem 13, we obtain result in [7] in the
following Corollary:

Corollary 14. Let the function f(z) given by (1) be in the class N(λ, β, t).
Then for some ξ ∈ R.

|a3 − ξa22| ≤

{ t
6λβ+2λ−2β+1 for ξ ∈ [ξ1, ξ2],

t
6λβ+2λ−2β+1

∣∣∣8t2−1
2t − ξ 4t(6λβ+2λ−2β+1)

(2λβ+λ−β+1)2

∣∣∣ for ξ /∈ [ξ1, ξ2]

where

ξ1 =
(8t2 − 2t− 1)(2λβ + λ− β + 1)2

8t2(6λβ + 2λ− 2β + 1)

and

ξ2 =
(8t2 + 2t− 1)(2λβ + λ− β + 1)2

8t2(6λβ + 2λ− 2β + 1)

Taking λ = 0, β = 0,m = 0, σ = 1 in Theorem 13, we obtain result of [33] in the
following Corollary:
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Corollary 15. Let the function f(z) given by (1) be in the class F (H,α, δ, µ).
Then for some ξ ∈ C,

|a3 − ξ a22| ≤
t

αδ + (1− α)(3− 2µ)
×max

{
1,∣∣∣∣2t(2ξ[αδ + (1− α)(3− 2)]

[αδ + (1− α)(2− µ)]2
− 3αδ + (1− α)(8− 5µ)− α(δ2 − µ2)− µ2

2[αδ + (1− α)(2− µ)]2

)
− 4t2 − 1

2t

∣∣∣∣}
Taking α = 1 − η, δ = 1, µ = 0, β = 0,m = 0, σ = 1 in Theorem 13, we obtain

result of
[5] the in following Corollary:

Corollary 16. Let the function f(z) given by (1) be in the class Gη
λ(t).

Then for some ξ ∈ R.

|a3 − ξa22| ≤

{ t
(1+2η)(1+2λ) for ξ ∈ [ξ1, ξ2],

t
(1+2η)(1+2λ)

∣∣∣4t2−1
2t − 2(1+3η)t

(1+η)2
− ξ 4t(1+2η)(1+2λ)

(1+η)2(1+λ)2

∣∣∣ for ξ /∈ [ξ1, ξ2]

where

ξ1 =

{
4(η2 + 5η + 2)t2 − (1 + 2t)(1 + η)2

8(1 + 2η)(1 + 2η)t2

}
(1 + λ)2

and

ξ2 =

{
4(η2 + 5η + 2)t2 − (1− 2t)(1 + η)2

8(1 + 2η)(1 + 2η)t2

}
(1 + λ)2

Taking α = 1 − η, δ = 1, µ = 0, λ = 0, β = 0,m = 0, ϕ = 1 in Theorem 13, we
obtain result of
[1] in the following Corollary:

Corollary 17. Let the function f(z) given by (1) be in the class K(η, t).
Then for some ξ ∈ R.

|a3 − ξa22| ≤

{ t
1+2η for ξ ∈ [ξ1, ξ2],

t
1+2η

∣∣∣4t2−1
2t − 2(1+3η)t

(1+η)2
− ξ 4t(1+2η)

(1+η)2

∣∣∣ for ξ /∈ [ξ1, ξ2]

where

ξ1 =
4(η2 + 5η + 2)t2 − (1 + 2t)(1 + η)2

8(1 + 2η)t2

and

ξ2 =
4(η2 + 5η + 2)t2 − (1− 2t)(1 + η)2

8(1 + 2η)t2
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Taking α = 1 − η, δ = 1, µ = 0, λ = 0, β = 0,m = 0, ϕ = 1 in Theorem 13, we
obtain result of
[2] in the following Corollary:

Corollary 18. Let the function f(z) given by (1) be in the class L(µ, t).
Then for some ξ ∈ R.

|a3 − ξa22| ≤

{ t
3−2µ for ξ ∈ [ξ1, ξ2],

t
3−2µ

∣∣∣4t2−1
2t − (µ2+5µ−8)t

(2−µ)2
− ξ 4t(3−2µ)

(2−µ)2

∣∣∣ for ξ /∈ [ξ1, ξ2]

where

ξ1 =
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1 + 2t)

8(3− 2µ)t2

and

ξ2 =
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1− 2t)

8(3− 2µ)t2

Taking α = 0,m = 0, ϕ = 1 in Theorem 13, we obtain the following Corollary:

Corollary 19. Let the function f(z) given by (1) be in the class E(β,λ)(H, 0, δ, µ).
Then for some ξ ∈ R,

|a3 − ξa22| ≤

{ t
(3−2µ)(6λβ+2λ−2β+1) for ξ ∈ [ξ1, ξ2],

t
(3−2µ)(6λβ+2λ−2β+1)

∣∣∣ 4t2−1
2t − (µ2+5µ−8)t

(2−µ)2 − ξ 4t(3−2µ)(6λβ+2λ−2β+1)
(2−µ)2(2λβ+λ−β+1)2

∣∣∣ for ξ /∈ [ξ1, ξ2]

where

ξ1 =

{
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1 + 2t)

8(3− 2µ)(6λβ + 2λ− 2β + 1)t2

}
(2λβ + λ− β + 1)2

and

ξ2 =

{
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1− 2t)

8(3− 2µ)(6λβ + 2λ− 2β + 1)t2

}
(2λβ + λ− β + 1)2

Taking α = 0, λ = 0, β = 0,m = 0, σ = 1 in Theorem 13, we obtain the following
Corollary:

Corollary 20. Let the function f(z) given by (1) be in the class E(H, 0, δ, µ).
Then for some ξ ∈ R,

|a3 − ξa22| ≤

{ t
(3−2µ) for ξ ∈ [ξ1, ξ2],

t
(3−2µ)

∣∣∣4t2−1
2t − (µ2+5µ−8)t

(2−µ)2
− ξ 4t(3−2µ)

(2−µ)2

∣∣∣ for ξ /∈ [ξ1, ξ2]
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where

ξ1 =

{
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1 + 2t)

8(3− 2µ)t2

}
and

ξ2 =

{
2(µ2 − 13µ+ 16)t2 − (2− µ)2(1− 2t)

8(3− 2µ)t2

}
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