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ABSTRACT. In this paper, we work with the umbrella matrix Lie group and its Lie
algebra. We show that the Lie subalgebra of the PC matrix is the Lie algebra of the umbrella
matrix. Furthermore, we obtain an isomorphism between the Lie subgroup of PC matrices
and the umbrella matrix Lie group.
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1. INTRODUCTION

Pairwise comparisons occur when we compare two things, and we can express these com-
parisons with matrices. These matrices are called Pairwise Comparisons (PCs) matrices.
Studies on PC matrices are old, and nowadays, they are the matrices we use to make more
precise decisions about anything [2]. There are two types of PC matrices: multiplicative and
additive. The group property of these matrices has been studied [6]. and some significant
results have been obtained through studies on their Lie group structure [5]. The Lie group
and Lie algebra of PC matrices have also been studied [3, 4, 7].
Geometrically, we can define umbrella matrices as orthogonal rotation matrices whose de-
terminant is not −1 and which leave the S =

[
1 1 . . . 1

]
axis constant. These matrices

were first discussed in the study [8] and brought to the literature. One of them was exam-
ined in the [9] study for the curvature matrix of the curve-hypersurface binary. A feature
that makes umbrella matrices unique and essential is that they are Lie group structures, so
we have information about their Lie algebra structure. In addition, the Lie group of this
matrix group has been studied in detail in [8, 10] studies.
This paper begins with a section of preliminaries presented to make the paper as self-
contained as possible. Some significant results of the Lie group structure and Lie alge-
bra of Umbrella matrices are presented in section 3. In the study in [5], the complement
space dimension of the additive part of the (3× 3)- type skew-symmetric matrix set was
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calculated. However, for n > 3, this situation has not been examined. In section 4, we
generalize this situation for all (n×n) type matrices using a different method. Finally, we
identify an isomorphism from the A(n) Umbrella matrix Lie subgroup to the H PC matrix
Lie subgroup.

2. PRELIMINARIES

Firstly, let us give this section’s necessary definitions and theorems.

Defination 2.1. A is an orthogonal matrix, for which −1 is not an eigenvalue, may be
written as

A = (In −B)−1(In +B)

in which B is skew-symmetric matrix; Cayley Formula. [11]

Defination 2.2. Let A orthogonal matrix. If

AS = S

then A is called an umbrella matrix, where S =
[
1 1 . . . 1

]T ∈ Rn
1. [8]

Defination 2.3. Let V be given as vector space and

[ , ] : V ×V → V

transformation as

• 2-linear

• [X ,Y ] =−[Y,X ], ∀ X ,Y,Z ∈V

• [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0, ∀ X ,Y,Z ∈V .

The [, ] transform is called a Lie operator on V , and the vector space V is called a Lie algebra.
[12]

Defination 2.4. Let V be a Lie algebra and W a subspace of V such that [X ,Y ] ∈W for all
X ,Y ∈W ; then W is called a subalgebra of V . [13]

Teorem 2.1. Let A(n) is the set of umbrella matrices, O(n) is the set of orthogonal matrices
and SO(n) is the set of orthogonal matrices whose determinant is not -1, then

• A(n)⊆ O(n) is subgroup.

• A(n)⊆ SO(n) is subgroup.

• A(n) and A(n,C) are the Lie group. [8]
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3. UMBRELLA MATRICES LIE ALGEBRA OF THE LIE GROUP

In the paper [8], the Lie algebra of the Lie group of A(n) matrices is calculated. We will
obtain when use a different approach the Lie algebra of the Lie group of umbrella matrices
in the following theorem, assuming that g is the Lie algebra of (n×n)-type skew-symmetric
matrices.

Teorem 3.1. Let B(n) be the space of skew-symmetric matrices whose row sums are zero

B(n) = {B ∈ g | BS = 0, S =
[
1 1 . . . 1

]T ∈ Rn
1}

then, B(n) is the Lie algebra of the Lie group A(n).

Proof. Let A ∈ A(n). Therefore, we have

AS = S

where AAT = In and S =
[
1 1 . . . 1

]T ∈ Rn
1. We consider the curve A(t) as a curve in the

Lie group A(n). Hence, let A(0) = In is curve for t = 0.

A(t)A(t)T = In. (1)

Differentiating Eq.(1) with respect to t, we have

A
′
(t)A(t)T +A(t)A′(t)T = 0.

For t = 0, we obtain

A
′
(0)+A′(0)T = 0. (2)

Therefore, due to Eq.(2), A
′
(0) is skew-symmetric matrix. In addition to differentiating

A(t)S = 0 with respect to t, we have

A
′
(t)S = 0. (3)

Thus, we have write t = 0 in Eq.(3) and we get

A
′
(0)S = 0 (4)

Consequently, because of the equations Eq.(3) and Eq.(4), the elements of A(n) Lie group
Lie algebra are skew-symmetric matrices whose row sums are zero.
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Proposition 3.1. The Lie algebra of the space of matrices B(n) is the Lie
subalgebra of g.

Proof. Let B1,B2 ∈ B(n). Then,

B1S = 0 (5)

B2S = 0 (6)

where S =
[
1 1 . . . 1

]T ∈ Rn
1. Therefore, from Eq.(5) and (6), we can write

(B1 +B2)S = B1S+B2S

= 0.

So, (B1 +B2) ∈ B(n).

• For c ∈ R and B ∈ B(n), we can see easily that cB ∈ B(n).

• For the Lie brackets [ , ], we have

[ , ] : B(n)×B(n)→ B(n)

(A,B) → [A,B] = AB−BA.

Hence, we obtain
(AB−BA)S = S.

Consequently, B(n) is the Lie subalgebra of g.

Teorem 3.2. The dimension of the A(n) Lie Group is (n−1)(n−2)
2 . [8]

Proof. We know that the dimension of a manifold is equal to the dimension of the tangent
space. Then, let In ∈ A(n) and {x11,x21, ...,xnn} be a coordinate system for a coordinate
neighborhood of In. Accordingly, the set

ψ = {ψi j(In) | ψi j = Ei j −E ji −Ein +Eni +E jn −En j, 1 ≤ i ≤ j < n}

is a base of set TAn(In) and where the E = {Ei j ∈ GL(n,R) | Ei j =
∂

∂xi j
, 1 ≤ i ≤ j < n} set

denotes the standard base of Rn
n. Therefore, we can write

TA(n)(In) =
(n−1)(n−2)

2

and since dimTA(n)(In)=dimA(n). Thus we obtain

dimA(n) =
(n−1)(n−2)

2
.
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4. PC MATRICES AND UMBRELLA MATRICES

Let us assume that

G = {A = [ai j]n×n | A⊙AT = I, ai j > 0, 1 ≤ i, j ≤ n}

is the abelian PC matrices of type (n×n). Operation of this abelian group is defined as

⊙ : G×G −→ G

(A,B)−→ ⊙(A,B) = A⊙B = [ai jbi j]

where ′′⊙′′ is the Hadamart product. The Lie algebra of the G Lie group is g, which is the
space of skew-symmetric matrices. Hence, let us consider the space of

Cg = {A ∈ g | aik +ak j = ai j, 1 ≤ i, j,k ≤ n}

additive consistent matrices. Cg is the Lie subgroup of g and we can write the equation

g =Cg ⊕C⊥
g .

In this equation, the C⊥
g space is called the orthogonal complement space of g and is

written as
C⊥

g = {B ∈ g | BS = 0, S =
[
1 1 . . . 1

]T ∈ Rn
1}.

Proposition 4.1. Let C⊥
g be the orthogonal complement of g and B(n) be the Lie algebra

of the Lie group A(n) . Then,
C⊥

g = B(n).

Proof. From Teo.(3.1), we can easily see C⊥
g = B(n).

We will examine the orthogonal complement of a (3×3)-type skew-symmetric matrix
with the following example.

Example 4.1. Let us consider the skew-symmetric matrix

A =

 0 1 2
−1 0 3
−2 −3 0

 .

From here, we can write the skew-symmetric matrix A as follows

A =

 0 2
3 −2

3
−2

3 0 2
3

2
3 −2

3 0

+

 0 1
3

8
3

−1
3 0 7

3
−8

3 −7
3 0

 .

5



M. Çarboğa, Y. Yaylı – The Lie Group of Umbrella Matrices and . . .

Then,

B =

 0 2
3 −2

3
−2

3 0 2
3

2
3 −2

3 0


matrix is the orthogonal complement of A. Therefore, we can obtain B ∈C⊥

g .

From [5], is known to be dimC⊥
g = 1 and C⊥

g =span


 0 1 −1

−1 0 1
1 −1 0

 for matrices

of type (3×3). We will generalize this situation with the following theorem.

Teorem 4.1. Let C⊥
g be the complement part of the space of skew-symmetric matrices of

g. Then,

C⊥
g = span{ψi j}

for
ψ = {ψi j(In) | ψi j = Ei j −E ji −Ein +Eni +E jn −En j, 1 ≤ i ≤ j < n}

where the E = {Ei j ∈ GL(n,R) | Ei j =
∂

∂xi j
, 1 ≤ i ≤ j < n} set denotes the standard base of

Rn
n. Furthermore, dimC⊥

g = (n−1)(n−2)
2 .

Proof. From the proposition(4.1), we know that C⊥
g = B(n). Due to the theorem(3.2), the

elements of the set ψ become a base of the C⊥
g space. Additionally, since C⊥

g = dimBn, we
get

dimC⊥
g =

(n−1)(n−2)
2

.

Example 4.2. According to theorem(4.1) for n = 3,we may write that dimC⊥
g = 1 and

C⊥
g = span{ψ12}. Therefore, we have

ψ12 = E12 −E21 −E13 +E31 +E23 −E32

and we obtained

ψ12 =

 0 1 −1
−1 0 1
1 −1 0


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In addition, also for n = 4, we have dimC⊥
g = 3 and C⊥

g = span{ψ12,ψ13,ψ23}. Thus, we
may write

ψ12 = E12 −E21 −E14 +E41 +E24 −E42

ψ13 = E13 −E31 −E14 +E41 +E34 −E43

ψ23 = E23 −E32 −E24 +E42 +E34 −E43

We can therefore write them as

ψ12 =


0 1 0 −1
−1 0 0 1
0 0 0 0
1 −1 0 0

 ,ψ13 =


0 0 1 −1
0 0 0 0
−1 0 0 1
1 0 0 0

 ,ψ23 =


0 0 0 0
0 0 1 −1
0 −1 0 1
0 1 −1 0

 .

Proposition 4.2. Let Cg, g be the space of additive consistent matrices of the space of
skew-symmetric matrices. Then,

dimCg = n−1.

We will give the relationship between Lie groups with the following theorem.

Proof. Since it is g =Cg ⊕C⊥
g , we write

dimg = dimCg +dimC⊥
g .

From here, considering dimg = n(n−1)
2 and theorem(4.1), we may write

n(n−1)
2

= dimCg +
(n−1)(n−2)

2
.

Consequently, we can easily calculate that it is dimCg = n−1.

Teorem 4.2. Let H ⊂ G be the Lie subgroup and

H = {N ∈ G | N ⊙


1
1
...
1

=


1
1
...
1

}
where ⊙ is the Hadamart product. Then there is an isomorphism from the A(n) Lie subgroup
to the H Lie subgroup, so A(n)∼= H.

Proof. Let C : B(n) −→ A(n) is Cayley transformation and e : B(n) −→ H is exponential
transformation. Then,
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A(n) H

B(n)

f

C e

considering the diagram above, we define

f : A(n)−→ H

where f = e◦C−1. We aim to show that f is an isomorphism. For this, first of all, we can
easily see that f is 1-1 and surjective, thanks to the transformations of C and e being 1-1
and surjective. Secondly, we say that f is a homomorphism since the transformations of C
and e are homomorphisms. Consequently, f transform is an isomorphism, and A(n)∼= H.

Example 4.3. Let us consider the umbrella matrix

A =
1
21

 5 20 −4
−4 5 20
20 −4 5

 .

If the inverse Cayley formula is applied to the A matrix, we get

B =

 0 2
3 −2

3
−2

3 0 2
3

2
3 −2

3 0


matrix in example 4.1. Then, when we apply the exponential transformation to the B matrix,
we may find that

N =

 1 e
2
3 e−

2
3

e−
2
3 1 e

2
3

e
2
3 −e

2
3 1

 .

Hence, N ∈ H.

Likewise, we can correspond an element from Lie subgroup H with an element from
Lie subgroup A(n) using the transform f = C ◦ e−1.
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5. CONCLUSION

A(n) is the Lie algebra of the umbrella matrix Lie group, while B(n) is the space of skew-
symmetric matrices whose rows sum to zero. The consistent additive PC is the orthogonal
complement space of these matrices. This study has established a relationship between
PC matrices and Umbrella matrices for the first time. Additionally, we have provided an
isomorphism between the Lie group of PC matrices and the Lie group of A(n) Umbrella
matrices.
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