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Abstract. Some of the modern differential equations applications include fluid
mechanics, population dynamics, convective transport, electrical networks, chemical
reaction kinetics, and molecular dynamics. Differential equations modeling physical
processes are often contained different mathematical terms in its structure. It is
sometimes complicated and challenging to analyze such equations both theoretically
and numerically. In this study, numerical solutions of Burgers’ equation modeling
many physical phenomena are obtained. For this purpose, the Burgers’ equation
is divided by time and converted into two simpler sub-problems. Quartic B-spline
bases are used with the collocation method to solve each subproblem, and stability
analysis is given for time splitting. The obtained numerical solutions have been
compared with other studies in the literature. Thus it has been shown that the
proposed method is effective, sensitive, and applicable for many nonlinear models.
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1. Introduction

With the increasing computing power of modern digital computers in recent years,
partial differential equations (PDEs) have become highly successful tools describing
almost every physical and engineering problem. In recent years, mathematicians
have increasingly been interested in PDEs’ solutions depending on location and
time containing high-order small coefficient linear terms [1]. The Burgers’ equation
is also an important PDE representing various physical phenomena. The Burgers’
equation was first introduced by [2]. In later years, Burgers’ [3, 4] used this equation
to study some of the properties of the turbulent fluid in a channel resulting from the
interaction of the opposite effects of convection and diffusion. Furthermore, after
that study of Burgers’, the equation was called the Burgers’ equation. Besides, due
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to the similarity of the Burgers’ equation to the Navier-Stokes equation, solving
this equation numerically also sheds light on the Navier-Stokes equation [5]. The
equation we will consider in this study, with the initial and boundary conditions are
as follows

Ut + UUx − νUxx = 0, a ≤ x ≤ b, t ≥ 0 (1)

U(x, 0) = f(x), U(a, t) = λ1, U(b, t) = λ2 (2)

Ux(a, t) = Ux(b, t) = 0, Uxx(a, t) = Uxx(b, t) = 0. (3)

Where U = U(x, t) is a function that is sufficiently differentiable by position and
time, and ν is the kinematic viscosity coefficient that controls the balance between
convection and diffusion. When ν = 0, the equation (1) becomes the inviscid Burg-
ers’ equation, which is a model for equations that develop shock waves. The equation
(1) contains the first-order derivative and the second-order derivative with respect
to t and x, respectively. It has a structure similar to the parabolic heat equation
besides the term nonlinear UUx. In addition to being the fundamental equation
of fluid mechanics, this equation also models shock waves, gas dynamics, nonlinear
acoustics, traffic flow, turbulence, elastic waves in anisotropic solid and heat con-
duction phenomenas [6, 7, 8]. The exact solution of the Burgers’ equation is given
in [1, 8] with the Hopf - Cole transform as a Fourier series expansion. Further, the
exact solution of the one-dimensional Burgers’ equation for different initial values
was obtained by [9]. In recent years, numerical solutions of the equation (1) have
been obtained by many authors via various methods and techniques. Xue and Feng
[10] proposed an alternating segment explicit-implicit (ASE-I) scheme with intrinsic
parallelism for Burgers’ equation, Arora et al. [11] solved Burgers’ equation using an
innovative scheme of collocation having quintic Hermite splines as base functions,
Cook et al. [12] presented semi-implicit semi-Lagrangian (SISL) finite difference
methods to approximate travelling wave solutions of the one-dimensional Burgers’
equation, Zhao et al. [13] proposed mixed finite volume element (MFVE) methods
for solving Burgers’ equation, Mous and Laouar [14] solved the equation via finite dif-
ference method combined with explicit and implicit schemes, Elgindy and Karasözen
[15] presented a high-order integral nodal discontinuous Galerkin (DG) method to
solve Burgers’ equation, Zhang et al. [16] concerned with the numerical analysis of
a nonlinear implicit difference scheme for Burgers’ equation, Özis et al. [17] used
Hopf–Cole transformation to solve Burgers’ equation via Galerkin quadratic B-spline
finite element method, Kutluay et al. [18] calculated the numerical solutions of the
equation by least-squares quadratic B-spline finite element method, Chen and Zhang
[5] proposed a weak Galerkin (WG) finite element method to obtain solutions of the
Burgers’ equation, Zeidan et al. [19] developed a novel Adomian decomposition
method (ADM) for the solution of Burgers’ equation, Korkmaz et al. [20] intro-
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duced a new differential quadrature method based on quartic B-spline functions to
get solutions of the Burgers’ equation and so on. Recently, It can be given as studies
where splitting methods are applied as follows, Seydaoğlu [21] proposed multiquadric
radial basis function (MQ-RBF) for space approximation and a Lie-Group scheme
for time integration to solve Burgers’ equation, Sari et al. [22] solved the equation
using some higher order splitting-up techniques based on the cubic B-spline Galerkin
finite element method, Saka and Dağ [23] described collocation method using quartic
B-splines to obtain numerical solutions of the Burgers’ equation, Geiser et al. [24]
proposed adaptive iterative splitting methods to solve Multiphysics problems, which
are related to convection–diffusion–reaction equations, Çiçek and Tanoğlu [25] de-
rived ananalytical approach to the Strang splitting method for the Burgers’-Huxley
equation, Zürnacı and Seydaoğlu [26] presented convergence analysis of operator
splitting methods applied to the nonlinear Rosenau–Burgers’ equation, Zhang et al.
[27] introduced the nonlinear stability and convergence analyses for a second order
operator splitting scheme applied to the “good” Boussinesq equation.

In this study, numerical solutions of one-dimensional Burgers’ equation were
obtained using the quartic B-spline collocation finite element method using operator
splitting. For this purpose, the equation has been converted into two subproblems,
one linear and one nonlinear. After making approaches to the derivatives in each
sub-problem with quadratic B-spline bases, ordinary differential equation systems
were obtained. Numerical solutions of the equation are obtained by solving these
systems sequentially. Some advantages of operator splitting methods are easy to
apply and explicit methods, their algorithms are sequential, and mid-range solutions
are stored in the solution vector, they retain the structural features of the solution
(volume preservation, time symmetricity, and simple implementation can be given),
thus providing superiority over other standard integrators in numerical schemes.
In this respect, splitting methods are an important class of geometric numerical
integrators [28].

2. Algorithm for Operator Splitting

The fundamental idea behind operator splitting methods, dividing a given com-
plex problem into more straightforward problems for smaller time steps. Thus,
different parts of the problem can be effectively solved by appropriate integration
methods [29].

Let us consider a Cauchy problem given as follows

dU(t)

dt
= ΛU(t), U(0) = U0, t ∈ [0, T ] . (4)
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In (4), it is assumed that the function U(x, t) is semi-discretized along spatial direc-
tion. We will concentrate on cases where the operator Λ = Â+ B̂ can be written as
a summation of two linear ( and/or nonlinear) operators. That is, it can be written
as follows

dU(t)

dt
= Â(U(t)) + B̂(U(t)), U(0) = U0, t ∈ [0, T ] . (5)

The vector U(x, t) is the solution vector obtained from the U0 ∈ X initial condition.
The operators Λ, Â, B̂ are bounded or unbounded operators in a finite or infinite
X Banach space. With the aid of the Lie operator formulation, the expression (5)
in general (maybe nonlinear) can be written as follows

dU(t)

dt
= AU(t) +BU(t) (6)

Where, the operators A and B are Lie operators applied to the function U(t) like
A = Â (U(t)) ∂

∂U , B = B̂ (U(t)) ∂
∂U . The formal solution of the problem (6) is

U(tn+1) = e∆t(A+B)U(tn). This solution can also be written as follows using the
Taylor series expansion of exponential function

U(tn+1) = e∆t(A+B)U(tn) =
∞∑
k=0

tk

k!

(
Â (U(t))

∂

∂U
+ B̂ (U(t))

∂

∂U

)k
U(tn).

In order to solve Eq. (6) numerically, the splitting technique splits the problem into
dU(t)
dt = AU(t) and dU(t)

dt = BU(t) and tries to find the solution numerically

or analitically [30]. Let us assume that ϕ
[A]
∆t and ϕ

[B]
∆t are the exact or numerical

solutions of the equations involving the operators A and B, respevtively, then the
most basic first order splitting technique is defined as follows

L∆t = ϕ
[A]
∆t ◦ ϕ

[B]
∆t ≡ e

∆tAe∆tB or L∗∆t = ϕ
[B]
∆t ◦ ϕ

[A]
∆t ≡ e

∆tBe∆tA

and known as Lie-Trotter splitting [31] techniques. If we change the place of opera-
tors A and B and take the combination for half time step as follows

S∆t = e
∆t
2
Ae∆tBe

∆t
2
A or S∗∆t = e

∆t
2
Be∆tAe

∆t
2
B

we obtain so-called symmetric Marchuk [32] or more widely known Strang splitting
[33] techniques having the schemes ”A−B −A” and ”B −A−B”. The algorithm
for Strang splitting technique is as follows

dU∗(t)

dt
= AU∗(t), U∗(tn) = U0

n, t ∈
[
tn, tn+ 1

2

]
dU∗∗(t)

dt
= BU∗∗(t), U∗∗(tn) = U∗(tn+ 1

2
), t ∈ [tn, tn+1] (7)

dU∗∗∗(t)

dt
= AU∗∗∗(t), U∗∗∗(tn+ 1

2
) = U∗∗(tn+1), t ∈

[
tn+ 1

2
, tn+1

]
.
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Here tn+ 1
2

= tn+ ∆t
2 and the desired solutions are obtained from equation U(tn+1) =

U∗∗∗(tn+1). Replacing the original problem with sub-problems naturally leads to an
error called splitting error [29]. The local turncation error of this approach is found
as follows

Te =
(e∆t(A+B) − e

∆t
2
Ae∆tBe

∆t
2
A)U(tn)

∆t

=
∆t2

24
(2 [B, [B,A]]− [A, [A,B]])U(tn) +O(∆t3).

Moreover, this illustrates that the technique is the second-order one. Here the
symbols [, ] are Lie parenthesis, and they represent the Baker-Campbell-Hausdorff
(BCH) formula, which has been frequently used in numerical analysis in recent
years. One can see the Ref. [34] and therein for more information. Also, Faou et
al. [35] analyzed the convergence properties of the exponential Lie and Strang split-
ting applied to inhomogeneous second-order parabolic equations with homogeneous
Dirichlet boundary conditions. Hansen and Ostermann [36] concerned an optimal
convergence analysis is presented for the methods when applied to equations on Ba-
nach spaces with unbounded vector fields. Descombes [37] proved the convergence
of a splitting scheme of high order for a reaction-diffusion system.

3. Quartic B-spline Collocation Approach

The partition of the solution interval [a, b] in terms of nodal points xm, m =
0, 1, ..., N , is a = x0 < x1 < ... < xN = b. If h = xm+1 − xm, zm(x), m =
−2(1)N + 1, quartic B-spline functions on the range [a, b] in terms of nodes xm as
follows

zm(x) =
1

h4



(x− xm−2)4, [xm−2, xm−1]
(x− xm−2)4 − 5(x− xm−1)4, [xm−1, xm]
(x− xm−2)4 − 5(x− xm−1)4 + 10(x− xm)4, [xm, xm+1]
(xm+3 − x)4 − 5(xm+2 − x)4, [xm+1, xm+2]
(xm+3 − x)4, [xm+2, xm+3]
0, otherwise.

(8)

It is clear that the set {z−2(x),z−1(x),...,zN+1(x)} forms a base on the interval
[a, b] [39]. It is clear that zm(x) function is zero outside the range [xm−2, xm+3]. So
each [xm, xm+1] finite element is covered by five quartic B-splines such as zm−2(x),
zm−1(x), zm(x), zm+1(x), zm+2(x). Let’s assume that the function U(x, t) is
defined on [a, b], then, U(x, t) can be approached in terms of quadratic B-spline
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functions and time dependent δm(t) parameters as follows

U(x, t) ∼=
N+1∑
−2

δm(t)zm(x). (9)

Where δm(t) are time-dependent parameters determined in each time step. With
the help of expressions (8) and (9), the values of U(x, t) and its derivatives at the
node points are as follows

Um = δm−2 + 11δm−1 + 11δm + δm+1,

U
′
m =

4

h
(−δm−2 − 3δm−1 + 3δm + δm+1),

U
′′
m =

12

h2
(δm−2 − δm−1 − δm + δm+1), (10)

U
′′′
m =

24

h3
(−δm−2 + 3δm−1 − 3δm + δm+1).

4. Application of the method to Burgers’ equation

The Burgers’ (1) equation is split as linear part (diffusion) and nonlinear part (con-
vection) as follows

Ut − νUxx = 0 (11)

Ut + UUx = 0. (12)

If the approaches given in (10) are used in (11) and (12), ordinary differential equa-
tion systems are obtained as follows

◦
δm−2 + 11

◦
δm−1 + 11

◦
δm +

◦
δm+1 −

12ν

h2
(δm−2 − δm−1 − δm + δm+1) = 0 (13)

◦
δm−2 + 11

◦
δm−1 + 11

◦
δm +

◦
δm+1 +

4zm
h

(−δm−2 − 3δm−1 + 3δm + δm+1)= 0.(14)

Where the symbol ◦ denotes the first order derivative with respect to t and zm is

zm = δm−2 + 11δm−1 + 11δm + δm+1. Instead of the parameter δm and
◦
δm, δn+1

m +δnm
2

Crank-Nicolson and δn+1
m −δnm

∆t forward finite difference approaches are written in the
equations (13) and (14) respectively, the following algebraic equation systems are
obtained

κ1δ
n+1
m−2 + κ2δ

n+1
m−1 + κ2δ

n+1
m + κ1δ

n+1
m+1 = κ3δ

n
m−2 + κ4δ

n
m−1 + κ4δ

n
m + κ3δ

n
m+1(15)

κ5δ
n+1
m−2 + κ6δ

n+1
m−1 + κ7δ

n+1
m + κ8δ

n+1
m+1 = κ8δ

n
m−2 + κ7δ

n
m−1 + κ6δ

n
m + κ5δ

n
m+1(16)
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κ1 = 1− 6ν∆t

h2
, κ2 = 11 +

6ν∆t

h2
, κ3 = 1 +

6ν∆t

h2
, κ4 = 11− 6ν∆t

h2
,

κ5 = 1− 2zm∆t

h
, κ6 = 11− 6zm∆t

h
, κ7 = 11 +

6zm∆t

h
, κ8 = 1 +

2zm∆t

h
.

(15) and (16) systems consist of (N+1) equations and (N+4) unknown parameters
(δ−2, δ−1, δ0, ..., δN , δN+1). For the unique solution of these systems, δ−2, δ−1 and
δN+1 values must be eliminated. If the boundary conditions given by (2) and (3) are
used to eliminate these parameters, consequently one obtained four-diagonal band
matrix systems of (N + 1)× (N + 1). In order to obtain numerical solutions in the
desired time step, initial vector is calculated first. Then, (15) and (16) systems are
resolved with the Strang splitting algorithm (7) using the initial vector. The initial
vector δ0

m is obtained using the U(x, 0) = f(x) as follows

δ0
m−2 + 11δ0

m−1 + 11δ0
m + δ0

m+1 = f(xm), m = 0(1)N .

To be able to solve this system uniquely, the parameters δ−2, δ−1 and δN+1 must
be eliminated using boundary conditions Ux(a, 0) = Uxx(a, 0) = 0 and Ux(b, 0) = 0.
Thus, four-diagonal band matrix system of (N + 1)× (N + 1) has been obtained as
follows 

18 6 0 0 0 0 0 0
11.5 11.5 1 0 0 0 0 0

1 11 11 1 0 0 0 0
0 1 11 11 1 0 0 0

. . .

0 0 0 1 11 11 1 0
0 0 0 0 1 11 11 1
0 0 0 0 0 2 14 8





δ0
0

δ0
1

δ0
2

δ0
3
...

δ0
N−2

δ0
N−1

δ0
N


=



f(x0)
f(x1)
f(x2)
f(x3)

...
f(xN−2)
f(xN−1)
f(xN ).


4.1. Stability Analysis

To investigate the stability analysis of the proposed method, let us express the
stability of the systems (15) and (16) with ρA and ρB, respectively. For this purpose,
the von Neumann method [38] will be applied in accordance with the algorithm (7).
To do this, if the necessary operations are performed after typing δnm = ξneiβmh in
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the system (15) the following statement is obtained

ρA(
ξn+1/2

ξn
) =

κ3 cos 2βh+ (κ3 + κ4) cosβh+ κ4 + i[(κ3 − κ4) sinβh− κ3 sin 2βh]

κ1 cos 2βh+ (κ1 + κ2) cosβh+ κ2 + i[(κ1 − κ2) sinβh− κ1 sin 2βh]

ρA(
ξn+1/2

ξn
) =

X + iY

Z + iT

X = κ3 cos 2βh+ (κ3 + κ4) cosβh+ κ4, Y = (κ3 − κ4) sinβh− κ3 sin 2βh

Z = κ1 cos 2βh+ (κ1 + κ2) cosβh+ κ2, T = (κ1 − κ2) sinβh− κ1 sin 2βh.

A method is stable if
∣∣∣ρA( ξ

n+1/2

ξn )
∣∣∣ ≤ 1. Since |Z|2+|T |2−|X|2−|Y |2 = 192v∆t[cosβh−

5 cos2 βh−cos3 βh+5]/h2 ≥ 0,
∣∣∣ρA( ξ

n+1/2

ξn )
∣∣∣ ≤ 1 is provided. Since UUx is linearized

in the equation (12) zm acts as a constant. İf δnm = ξneiβmh is written in the system
(16) the following statement is obtained as a result of the necessary operations

ρB(
ξn+1

ξn
) =

κ8 cos 2βh+ (κ5 + κ7) cosβh+ κ6 + i[(κ5 − κ7) sinβh− κ8 sin 2βh]

κ5 cos 2βh+ (κ6 + κ8) cosβh+ κ7 + i[(κ8 − κ6) sinβh− κ5 sin 2βh]

ρB(
ξn+1

ξn
) =

K + iL

M + iN

K = κ8 cos 2βh+ (κ5 + κ7) cosβh+ κ6, L = (κ5 − κ7) sinβh− κ8 sin 2βh

M = κ5 cos 2βh+ (κ6 + κ8) cosβh+ κ7, N = (κ8 − κ6) sinβh− κ5 sin 2βh.

Since here |M |2 + |N |2 − |K|2 − |L|2 ≥ 0,
∣∣∣ρB( ξ

n+1

ξn )
∣∣∣ ≤ 1 is provided. So the Strang

algorithm given with (7) is unconditionally stable since

ρ(ξ) = ρ
n+1/2
A ρn+1

B ρ
n+1/2
A

|ρ(ξ)| =

∣∣∣∣∣ρA(
ξn+1/2

ξn
)

∣∣∣∣∣
∣∣∣∣ρB(

ξn+1

ξn
)

∣∣∣∣
∣∣∣∣∣ρA(

ξn+1/2

ξn
)

∣∣∣∣∣ ≤ 1.

5. Applications and Results

In order to measure the effectiveness of the proposed method in this section, three
test problems are taken into consideration, and the error norms L2, L∞ and ‖e‖1
given below are used

L2 =

√√√√h

N∑
j=0

∣∣∣∣(Uj − U ej )2
∣∣∣∣, L∞ = max

j

∣∣Uj − U ej ∣∣ , ‖e‖1 =
1

N

N−1∑
1

∣∣∣Uj − U ej ∣∣∣
U ej

.
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Table 1: Comparison of the ‖e‖1 norm at t = 0.1 for the values ∆t = 0.0005, ν = 1
and the different mesh sizes for the Problem 1.

Present method ∆t = 0.0005 h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625
L2 × 103 0.361987 0.052935 0.005775 0.024239 0.014925
L∞ × 103 0.599086 0.088908 0.009633 0.039417 0.046720
‖e‖1 0.0013363 0.0002235 0.0000316 0.0000931 0.0000920
Other methods ‖e‖1
∆t = 0.00001
[18] Least-squares 0.012165 0.006941 0.003651 0.001858 0.000928
[23] QBCM1 0.00174 0.00029 0.00005 0.00014 0.00016
[23] QBCM2-split 0.00177 0.00041 0.00006 0.00013 0.00016
[40] Galerkin- split 0.000635 0.000085 0.000024 0.000006 0.000006
[41] Cub-col. 0.00734 0.00095 0.00014 0.00003 0.00001
[42] Finite diff. 0.007571 0.002025 0.000555 0.000177 −

Problem 1
This example has the initial condition U(x, 0) = sinπx and the boundary con-

ditions U(0, t) = U(1, t) = 0 that are frequently used in the literature, and its exact
solution is given by Cole [8] as follows

U e(x, t) = 2πv

∑∞
j=1 jaj sin(jπx)e−j

2π2vt

a0 +
∑∞

j=1 aj cos(jπx)e−j2π2vt

a0 =

∫ 1

0
e−(2πv)−1(1−cosπx)dx

aj = 2

∫ 1

0
e−(2πv)−1(1−cosπx) cos(jπx)dx, j = 1, 2, ....

In Table 1, the error norms of L2, L∞ and ‖e‖1 at t = 0.1 are given of Problem
1 for the ν = 1, ∆t = 0.0005 and decreasing of the values h. It is seen that from the
Table, the proposed splitting method gives better results than those given in Ref.
[23] despite using the same bases and methods. Also, generally better results were
obtained from the other studies given in the Table except for the Ref. [40] study
using the Galerkin method. Figure 1 shows that the exact solution and numerical
solution are in good harmony for the values ν = 1, 0.1, and 0.01. The numerical
solutions for ν = 10−3, 10−4 and 10−5 were plotted at different times because the
exact solution was broken for the smaller values ν. L2 and L∞ error norms are given
in Table 2 and the L∞ norm is compared with some studies in the literature. As
seen from the Table, we have a smaller L∞ norm than the QBCM2 (split) method
given in Ref. [23], when we compare with the QBCM1 method, while our norm of
L∞ is big in the early times, it is getting smaller as time progresses. In addition, in
Table 3, positions and values where the solution has the maximum values are given.
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Table 2: Comparison of the L∞ norm for the values h = 0.05, ∆t = 0.01 for ν = 1,
h = ∆t = 0.025 for ν = 0.1, h = ∆t = 0.01 for ν = 0.01.

t ν Present [23] [43] [44] [45]
QBCM1 QBCM2 N = 25 N = 45

L2 × 103 L∞ × 103 L∞ L∞ L∞ L∞ L∞
0.02 1.5453 2.2470 2.9e-4 2.34e-3 5.19e-3 - - -
0.04 1 1.2756 2.5098 3.8e-4 2.61e-3 6.91e-3 - - -
0.1 0.0869 0.1381 3.7e-4 1.46e-3 8.17e-3 - - -
0.22 0.0445 0.0698 2.2e-4 3.60e-4 5.50e-3 - - -
0.05 0.4226 1.1311 8.7e-4 3.07e-3 3.98e-3 6.14e-4 - -
0.25 0.1 0.3340 0.7415 1.2e-4 1.16e-2 9.03e-3 7.63e-4 - -
0.75 0.1085 0.2104 4.0e-5 6.64e-3 3.91e-3 1.66e-4 - -
1.5 0.0130 0.0243 3.0e-5 1.48e-3 1.25e-3 7.70e-5 - -
0.4 0.4701 3.5066 8.8e-3 1.21e-2 2.60e-2 3.22e-3 1.6e-2 1.1e-3
0.8 0.01 0.6045 1.9625 1.5e-4 5.66e-3 2.88e-2 5.98e-3 2.6e-2 1.4e-3
1.2 0.1020 0.4741 8.0e-5 8.13e-3 1.77e-2 1.29e-3 8.0e-3 1.9e-4
3 0.0039 0.0098 1.0e-5 2.55e-3 6.93e-3 2.57e-5 4.5e-5 2.2e-5

Table 3: Positions and values where the waves take their maximum value.

ν t x U(x, t) U e(x, t) ν t x U(x, t)
0 0.5000 1.000000 1.000000 0 0.5000 1.000000
0.02 0.5000 0.821443 0.820095 0.2 0.7000 0.998071

1 0.04 0.5000 0.672662 0.672485 10−3 0.4 0.9000 0.996191
0.1 0.5000 0.371405 0.371577 0.8 0.9900 0.848825
0.22 0.5000 0.113582 0.113668 1.2 0.9800 0.636106
0 0.5000 1.000000 1.000000 2 0.9800 0.423046
0.05 0.5500 0.951726 0.951723 0.2 0.7000 0.999821

0.1 0.25 0.6500 0.775191 0.775103 0.4 0.9000 0.999852
0.75 0.6500 0.426362 0.426330 10−4 0.6 0.9900 1.003239
1.5 0.5750 0.183364 0.183363 1 0.9900 0.759597
0 0.5000 1.000000 1.000000 2 0.9900 0.440444
0.4 0.8900 0.956783 0.956557 0.2 0.7000 0.999950

0.01 0.8 0.9400 0.782100 0.781193 0.4 0.9000 0.999997
1.2 0.9200 0.584944 0.584724 10−5 0.6 0.9990 1.096807
3 0.8700 0.267775 0.267766 1 0.9990 0.828144

2 0.9990 0.469876
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Table 4: Comparison of the L∞ norm with Ref. [13, 16] for the different values h
and ∆t.

h, ∆t Present [13]
L2 × 103 L∞ × 103 L∞(U − Uh) L∞(P − Ph)

1/20, 1/20 0.2976 1.0451 2.6767e-2 2.1361e-2
1/40, 1/40 0.0732 0.2955 1.4241e-2 1.1424e-2
1/80, 1/80 0.0229 0.0783 7.4366e-3 5.9368e-3
1/160, 1/160 0.0073 0.0201 3.8548e-3 3.0320e-3

Present [16]
L2 × 107 L∞ × 107 L∞

1/20, 1/1600 0.312053 0.427035 7.690244e-4
1/40, 1/1600 0.013835 0.018186 1.913819e-4
1/80, 1/1600 0.005825 0.008444 4.700194e-5
1/160, 1/1600 0.002536 0.011451 1.087647e-5
1/1600, 1/20 0.209242e-4 2.242296e-4 1.149126e-2
1/1600, 1/40 0.220734e-4 2.259426e-4 2.648148e-3
1/1600, 1/80 0.246042e-4 2.274373e-4 6.070708e-4
1/1600, 1/160 0.245033e-4 2.206108e-4 1.507808e-4

As seen from Table 3, wave amplitudes decrease for the ν = 1, 10−1, 10−2, 10−3 as
the time progresses, but for ν = 10−4, 10−5 amplitudes increase until t = 0.6 and
then decrease. Moreover, the error norm L∞ were compared with the Ref. [13, 16]
for different h and ∆t in Table 4. It can be seen from the table that the error norms
of L∞ calculated by the presented method are lower than those given in other Refs.

Problem 2
As a second problem, the exact solution of the Burgers’ equation giving the shock

wave solution is as follows

U(x, t) =
x/t

1 +
√
t/t0ex

2/4νt
, t ≥ 1, 0 ≤ x ≤ 1.

Where t0 = e1/8ν , boundary conditions were selected from (2) and (3) and the initial
condition was obtained by taking t = 1 in the exact solution. For this problem,
numerical results and graphs are given for h = 0.02, 0.005, ν = 0.01, 0.005, 0.0005
and ∆t = 0.01, which are frequently used in the literature. In Table 5, L2 and L∞
are given and compared with some studies in the literature. It is seen that from the
Table, the error norms obtained by the method suggested are better than the other
studies. In the Table 6, the waves’ maximum amplitudes and positions for different
h, ν, and t are given. As shown from the table, as time progresses, the waves’ peak
moves to the right, and their amplitudes decrease. In Figure 2, the error graphs in
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Figure 1: Solution profile of Problem 1 for different viscosity and time values.
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Table 5: Comparison of the error norms of L2 and L∞ with some studies for h = 0.02,
0.005, ∆t = 0.01 of Problem 2.

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

h = 0.02, ν = 0.01 t = 1.7 t = 2.1 t = 2.6
Present 0.138431 0.359225 0.172995 0.724110 1.085721 5.608637
Present x ∈ [0, 1.2] 0.138127 0.359225 0.113566 0.288767 0.096592 0.228696
[23] QBCM1 0.17014 0.40431 0.20476 0.86363 1.29951 6.69425
[23] QBCM2-split 0.24003 0.48800 0.30849 1.14760 1.57548 8.06799
[46] Septic col. 0.69910 3.13476 0.72976 2.66986 1.74570 8.06798
h = 0.02, ν = 0.005 t = 1.8 t = 2.4 t = 3.2
Present 0.183206 0.535872 0.137983 0.388240 0.690508 4.095068
Present x ∈ [0, 1.2] 0.183206 0.535872 0.137909 0.388240 0.106842 0.278624
[23] QBCM1 0.19127 0.54058 0.14246 0.39241 0.93617 5.54899
[23] QBCM2- split 0.49130 1.16930 0.41864 0.93664 1.28863 7.49147
[46] Septic col. 0.68761 2.47189 0.67943 2.16784 1.48559 7.49146
h = 0.005, ν = 0.005 t = 1.7 t = 2.4 t = 3.1
Present 0.023510 0.079707 0.015469 0.052714 0.556090 4.103998
Present x ∈ [0, 1.2] 0.023510 0.079707 0.014079 0.049002 0.009736 0.033877
[23] QBCM1 0.01705 0.06192 0.01252 0.05882 0.60199 4.43469
[23] QBCM2- split 0.35891 1.21170 0.25132 0.80777 0.63052 4.79061
[23] QBCM1 x ∈ [0, 1.2] − − − − 0.00765 0.01831
[23] QBCM2 x ∈ [0, 1.2] − − − − 4.79061 0.583
[40] QBGM 0.35133 1.20755 0.24451 0.80187 0.63335 4.79061
[40] CBGM 0.35126 1.20726 0.24448 0.80176 0.63340 4.79061
[47] Galerkin 0.857 2.576 0.423 1.242 0.235 0.688

t = 3.1 are given in addition to the numerical and complete solution for ν = 0.005,
0.0005, ∆t = 0.01 and h = 0.005. As it seen from the graph, while the error in the
range [0, 1] for ν = 0.005 is at the right limit, the error decreases and shifts to the
left when the range is extended to [0, 1.2].

Problem 3
As the last problem, we will consider the Burgers’ equation with the following

analytical solution is given by [48, 49] and boundary conditions

U(x, t) =
α+ µ+ (α− µ)eη

1 + eη
, η =

α(x− µt− γ)

ν
, 0 ≤ x ≤ 1, t ≥ 0,

U(0, t) = 1 and U(1, t) = 0.2.

Where µ represents the velocity of the wave moving to the right, while α = 0.4,
µ = 0.6, and γ = 0.125 are constants. The initial condition of the problem can
be obtained by taking t = 0 in the exact solution. Numerical solutions have been
obtained up to t = 1.5 using h = 1/36, ∆t = 0.01, ν = 0.01 parameter values to
compare with the studies given in the literature. In the Table 7, L2 and L∞ error
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Figure 2: The shock wave profile of Problem 2 at different times for h = 0.005,
∆t = 0.01.
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Table 6: Wave positions and maximum amplitudes of Problem 2 for h = 0.02, 0.005,
∆t = 0.01.

t x U(x, t) U e(x, t) t x U(x, t) U e(x, t)
1 0.420 0.362438 0.362438 1 0.440 0.415249 0.415249

h = 0.02 1.7 0.520 0.269753 0.269683 h = 0.02 1.8 0.580 0.304811 0.304796
ν = 0.01 2.1 0.580 0.239441 0.239444 ν = 0.005 2.4 0.660 0.261816 0.261799

2.6 0.640 0.212303 0.212237 3.2 0.760 0.225061 0.225036
1 0.440 0.415249 0.415249 1 0.490 0.486554 0.486554

ν = 0.005 1.7 0.565 0.314147 0.314106 h = 0.005 1.7 0.635 0.374055 0.372725
h = 0.005 2.4 0.665 0.261942 0.261921 ν = 0.0005 2.4 0.755 0.314174 0.313640

3.1 0.750 0.228863 0.228852 3.1 0.860 0.276033 0.275810

Table 7: Comparison of the error norms L2 and L∞ of the Problem 3 with Ref.
[23, 40] for h = 1/36, ∆t = 0.01, ν = 0.01, t = 0.5.

[23] [23] [40] [40]
Present QBCM1 QBCM2 QBGM CBGM

L2 × 103 0.330303 0.77033 1.81958 1.92558 1.73106
L∞ × 103 1.220225 3.03817 6.94015 6.35489 5.48892

norms are given at time t = 0.5 and Compared to the quartic B-spline collocation
[23] and [40] using both quadratic and cubic Galerkin method. It can be seen from
the Table that the method we recommend has smaller L2 and L∞ error norms. In
Figure 3, the waves appear to move to the right, and Since the wave does not fit in
the range [0, 1] at t = 1.5, the solution region has been expanded to [0, 1.5].

6. Conclusions

As a result of this study, the method proposed here has been found to be effective
and reliable in obtaining numerical solutions of partial differential equations. In the
[23] study, the collocation method with quartic B-spline bases was applied to the
Burgers’ equation by first-order splitting (QBCM2). We have achieved better re-
sults by applying the second-order Strang splitting method to the Burgers’ equation
using the same base and method. Since simpler sub-schemes are obtained with the
proposed method, this method will be useful in the numerical solution of many one-
dimensional or higher-dimensional nonlinear partial differential equations. Besides,
the method is noteworthy for numerical solutions and for the solution of complex
nonlinear partial differential equations that model various physical phenomena.
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Figure 3: The profile of Problem 3 at different times for h = 1/36, ∆t = 0.01.
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[18] S. Kutluay, A. Esen, I. Dağ, Numerical solutions of the Burgers’ equation by
the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math.,
167 (2004) 21–33. doi:10.1016/j.cam.2003.09.043.

[19] D. Zeidan, C. K. Chau, T. T. Lu, W. Q. Zheng, Mathematical studies of the
solution of Burgers’ equations by Adomian decomposition method, Math Meth Appl
Sci. 43 (2020) 2171–2188. DOI: 10.1002/mma.5982.
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[26] F. Zürnacı, M. Seydaoğlu, On the convergence of operator splitting for the
Rosenau–Burgers equation, Numer. Methods Partial Differential Eq., 35 (2019) 1363–
1382. DOI: 10.1002/num.22354.

[27] C. Zhang, H. Wang, J. Huang, C. Wang, X. Yue, A second order operator
splitting numerical scheme for the “Good” Boussinesq equation. Appl. Numer. Math.
119 (2017) 179–193. http://dx.doi.org/10.1016/j.apnum.2017.04.006.

[28] S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numer-
ical integration of differential equations, Bol. Soc. Esp. Mat. Apl., 45 (2008) 89–145.

[29] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations (First Edition), Springer-Verlag Berlin Heidelberg,
2003.
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