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Properties on a subclass of univalent functions
defined by using a multiplier transformation
and Ruscheweyh derivative

Alina Alb Lupas

Abstract

In this paper we have introduced and studied the subclass RI(d, o, 3)
of univalent functions defined by the linear operator RI, , ,f(z) defined
by using the Ruscheweyh derivative R™ f(z) and multiplier transforma-
tion I (n, A1) f(2), as RI) 5, + A — A, RI) , f(z) = (1 =7)R"f(2) +
I (n,\ 1) f(2), 2 € U, where A,, = {f € H(U) : f(2) = 2+ ant12" T +

.., z € U} is the class of normalized analytic functions with A, = A.
The main object is to investigate several properties such as coefficient
estimates, distortion theorems, closure theorems, neighborhoods and
the radii of starlikeness, convexity and close-to-convexity of functions
belonging to the class RI(d, , 3).

1 Introduction

Denote by U the unit disc of the complex plane, U = {2z € C : |z] < 1} and
H(U) the space of holomorphic functions in U.
Let A, = {f e HWU): f(2) =2+ apn1z2" ™t +..., 2€ U} with A; = A.
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Definition 1. (Ruscheweyh [20]) For f € A, n € N, the operator R" is
defined by R™ : A — A,

Rf(z) = f(2)

R'f(2) = z2f'(2),
(n+1)R"™f(z) = 2(R"f(2) +nR"f(z), zeU.

Remark 1. If f € A, f(2) = 2+ 3272, a;27, then

o]

(n+7—1)! ;

Z J a]zj,zeU.
=2 o= 1)

Definition 2. For f € A, n € N, \|l > 0, the operator I (n,\,1) f(z) is
defined by the following infinite series

AG—1)+1+1 ;
Remark 2. It follows from the above definition that

I+DI(n4+1,0ND) f(z)=0+1=XT(n,\1) f(z)+Az(I (n, \1) f(2)),
zeU.

Remark 3. Forl =0, A > 0, the operator DY = I (n,\,0) was introduced
and studied by Al-Oboudi [16], which is reduced to the Sdlagean differential
operator [21] for A = 1.

Definition 3. [7] Let v, \,1 > 0, n € N. Denote by RI&M the operator given
by RI; \ c A=A, RID L f(2) = (L=7)R"f(2) + 91 (n, A1) f(2), z€U.
Remark 4. If f € A, f(2) = 2+ 372, a;27, then

Rlz7/\7lf(z) =z+ Z;iz {’y (W) 4 (1—7) (Z!E.j:ll))!! } ajzl, z € U.
This operator was studied also in [13], [14].

Remark 5. For a =0, RI?, auf(z) = R f(z), where z € U and for a =1,
RI} \ f(2) =T (m, A1) f (2 ), where z € U, which was studied in [3], [4], [10],
[9/ For 1 =0, we obtain RIY \ of (2) = RDY, f (2) which was studied in [5],
[6], [11], [12], [17], [18] and for 1 =0 and )\ =1, we obtain RIS ; of (2) =
L7 f (2) which was studied in [1], [2], [8], [15].
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We follow the works of A.R. Juma and H. Ziraz [19].

Definition 4. Let the function f € A. Then f(z) is said to be in the class
RI(d, o, B) if it satisfies the following criterion:

1 # 2RI 511 (2) + 0z®RIE  (f(2)" )
d*(1—a)RI) \ f(2) +az(RI) , f(2))

\ < B, (1)

wherede C—{0},0<a<1,0<p<1,z€U.

In this paper we shall first deduce a necessary and sufficient condition for
a function f(z) to be in the class RI(d,«, ). Then obtain the distortion
and growth theorems, closure theorems, neighborhood and radii of univalent
starlikeness, convexity and close-to-convexity of order §, 0 < § < 1, for these
functions.

2 Coefficient Inequality
Theorem 1. Let the function f € A. Then f(z) is said to be in the class
RI(d, a, B) if and only if

Z 1+a(j—1)F —1+8/d]):
Jj=2

whered e C—{0},0<a<1,0< <1, z€U.
Proof. Let f(z) € RI(d,,B). Assume that inequality (2) holds true. Then

we find that
(lexzf( ) + az (RIA/Alf( )"
(L=a)RI \ f(2) + az(RI, f(2))

A( l n+j7—1)! 1
_ DRl aG -0 = 1) {y (F2UH) " 4 (1 ) BN gy
2+ X5 ali—1) { (H)\g]ﬂl +l> + (=) (:!Ej:ll))!!}ajzj
_ Ea0aG -G - {3 (M) (-0 SR ol
- A( l n+j—1)! i
1= +a(G—1) { (1+ lg+11+) +(1—7) (n!E‘J—f))! }aj|z|a 1

< Bld|.

-1

I+1
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Choosing values of z on real axis and letting z — 17, we have

oo

) . 1+AG-1D+1\" (n+j—1)!
St - 0 1) {3 (SEEE) e G e
< Bldl.

Conversely, assume that f(z) € RI(d, a, B), then we get the following inequal-
ity

z(RI o f(2)) +az2(RIZV>\7lf(z))"
(= @RI, () + ax(RI]\ ()]

Re{ — 1|} > —pld|

- . o
2+ 3 i+ al =) {y (FPETE) "+ (- S f s
Re{ /=

— — — — —1+pd[} >0
2+ X (14 al - 0) {7 (BREFEE) " + (- ) S faye
J=

o] . n . B
Bldl=+ 3 (1+a( = 1) = 1+ pldl) {7 (HAEFE) " + (=) Gt e
P

Re ) o > 0.
. j— L n+j—1)! i
2+ 3 (1+ai—1) {v (2" + (1 - ) S a0
i=

Since Re(—e'?) > —|e?| = —1, the above inequality reduces to

o0 : n _ .
Bldir = 3 (14 a(j = D) ~ 1+ 6ld) {r (B2E2H)" + (1 - ) SR oy

j=

= . 1HAG—D+L\" n4j—1)! i
r— 3 (4 al - D) {7y (HREFE) " + (1 - ) G oy
i=2

> 0.

Letting r — 1~ and by the mean value theorem we have desired inequality
(2)

This completes the proof of Theorem 1 O
Corollary 1. Let the function f € A be in the class RI(d, o, 8). Then

= IB|1d|>\'1z” -1’
(L+a( = D) = 1+ Bld) {7 (F2E25)" + (1 - ) St}

a;

i>2.

3 Distortion Theorems

Theorem 2. Let the function f € A be in the class RI(d,«,8). Then for
|z| =r < 1, we have

r— Ald] 2 < |f(2)]

(1+a) 1+ ld)) [y (B25)" + (1= 7) (0 +1)]
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s
(L a)(1+8ld)) [y (42E) " + (1 =) (0 +1)]
The result is sharp for the function f(z) given by

sl
(L+ o)L+ Bld) [y (M) + (1 =) (0 +1)]

Proof. Given that f(z) € RI(d, «, 8), from the equation (2) and since

<r-+

fe) =2+

T+ A+1\"
sl [y (BE2E) a1
is non decreasing and positive for j > 2,then we have

oo

e+ aid) [ (FE) 0= o)) Sa <

I+1 2
>0+ ali= 1)~ L+ o) B e R e e
<

which is equivalent to,

. Bld
aj < n . (3)
LS e ) b (5) + =)+ 1)

Using (3), we obtain
fz2) =2+ a7
j=2

oo oo oo
<2+ Y aglzlf <r+ Y aprd <r 42y
j=2 Jj=2 Jj=2

gl
(1+ o)L+ Bld) [y (M) + (1 =) (0 +1)]

<r+

Similarly,
Bld
(L a)(1+8ld)) [y (S2E) " + (1= 9) (0 +1)]

This completes the proof of Theorem 2. O

[f(2)] =7 =
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Theorem 3. Let the function f € A be in the class RI(d,«, ). Then for
|z| = r < 1, we have

28/d] iy
- ; r< 1)
(L a)(1+8ld)) [y (S2E) "+ (1 =) (0 +1)]

2p|d|
(L+ o) (L4 Bld) [y (M) + (1 =) (n+1)]
The result is sharp for the function f(z) given by

Bld -
(L+ )L+ Bld) [y (M) + (1 =) (0 +1)]

<

r.

fz) =2+

Proof. From (3)
flz) =1+ jajz/"!
j=2

o0 o0
F)<1=) galaf ™t <14 jari ™
j=2 j=2

<1+ 261d r
(L a) (1 +8ld)) [y (S2E) " + (1 =9 (0 +1)]
Similarly,
21— 2 "
(L+ )L+ Bld) [y (M) + (1 =) (0 +1)]
This completes the proof of Theorem 3. O

4 Closure Theorems

Theorem 4. Let the functions fi, k=1,2,...,m, defined by
fk(Z) =z+ Z aj’kzj, ajr =0, (4)
j=2
be in the class RI(d, v, B). Then the function h(z) defined by

h(z) =Y mfe(z), >0,
k=1
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is also in the class RI(d, o, B), where

m

Zﬂk =1
k=1

Proof. We can write
h(z) = ZMmZ+ZZNkaJ p2! = Z+ZZMWJ 2
= k=1j=2 j=2k=1

Furthermore, since the functions fx(z), & = 1,2,...,m, are in the class
RI(d, «, ), then from Theorem 1 we have

I

<
I|
N

(I+a(=1))G —1+8ld)-

L+A(G—1) +1\" n+j—1)

Thus it is enough to prove that

Z 1+a(j—1)(G —1+8ld|)-
j=2

1+A(G—-1)+1 n+j—1 B
{7( e G0 }(Zﬂkajk> =

o

l+1
>y (1+a(i—1)G —1+8ld):-
k=1 j=2

R s e

I+1 n!(j—1)!
< uBld| = Bldl.
k=1
Hence the proof is complete. O

Corollary 2. Let the functions fi, k = 1,2, defined by (4) be in the class
RI(d,a, B). Then the function h(z) defined by

h(z) = (1= Qfi(z) +Cfa(2), 0<C<1,
is also in the class RI(d, o, B).
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Theorem 5. Let

fl(Z) =%
and
Bld »
f(Z) =2+ - 0 ; . Zjv
] (L+a(—1)G =1+ Bld) {7 (B2EFE) " + (1 — ) S
j>2.

Then the function f(z) is in the class RI(d, o, B) if and only if it can be
expressed in the form:

f(z) = pfr(z +Z/~Lyfj

where p11 >0, p; >0, j > 2 andu1+2§°;2,uj:1.

Proof. Assume that f(z) can be expressed in the form

f(z) = pifi(z +Zﬂgfa

= 8ld] ,
Z+Z - n ] szj-
7 (1 ali— 1) = 1+ 8ld)) {7 (F2E2) " + (1 - ) St

Thus
o (1+a(j = 1)) = 1+ Bld]) {7 (F2E) "+ (1 - ) L)
Bld]
3ld N
| — n n+j—1)! J
(L4 aG = D)6 = 1+ Bld) {7 (F2EFE) " + (1 - ) S

:Zﬂj:1*m§1~

=2

=2

Hence f(z) € RI(d, o, ).
Conversely, assume that f(z) € RI(d, a, §).
Setting

(L+a( = 1)G = 1+ Bld) {7 (B2EH) " + (1 - ) G
& Bld v
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since
o0
p1=1- ZMJ*
=2
Thus
f(z) = mfi(z) + Zﬂgfa

Hence the proof is complete. O

Corollary 3. The extreme points of the class RI(d, «, 5) are the functions

fi(z) =2
and
Bld| -
fi(z) = z+ : 0 ——2
] (14l = 1) = 1+ ld]) {7 (F2E)" 1 (1 - ) L
Jj=2.

5 Inclusion and Neighborhood Results
We define the - neighborhood of a function f(z) € A by
Ns(f)={geA:g(z _z+szJ and Z]|aj—b | <6} (5)
=2 Jj=2

In particular, for e(z) = z
Ns(e)={g e A:g(z —erszj andZ]\b|<5} (6)

Furthermore, a function f € A is said to be in the class RI*(d, a, 8) if there
exists a function h(z) € RI(d, o, 8) such that
‘2—1‘<1—g, seU, 0<E<1. (7)

Theorem 6. If

{7 <1+/\Z(j+_11)+l)n+ (1—7) W}
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> (AR +a-per]s a2

and

23d|

vt s [ () 0 )

)

then
RI(d, ar, B) C Ns(e).

Proof. Let f € RI(d,,B). Then in view of assertion (2) of Theorem 1 and
the condition

[ () o) = (2 00
j > 2, we get

ara sl b (S g e n] e s

[+1 j=2
o L4+ AG— 1) +1\" (ntj—1)
< pldl,

which implise

- Bld,
Zns (+a)1+ld) [y (5E) + A -1 m+1)] Y

Applying assertion (2) of Theorem 1 in conjunction with (8), we obtain

<1+a><1+ﬁ|d>[v(”w>n+<l— n+1]iaj<ﬂ|d|,

[+1 =
21+ a)(1+ 8ld)) [v (ﬁjjl) F A=)t 1)} i < 25)d
= 26/d
Jaj < n = 5a
g (L+ o)L+ Bld) [y (M) + (1 =) (n+1)]

by virtue of (5), we have f € Ns(e).
This completes the proof of the Theorem 6. O
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Theorem 7. If h € RI(d, o, B8) and

5 (+a)+gld) [y (H2) + (- (n+1)]

£=1- 2 142+ o 9
(1+ )1+ Bld]) [y (H2) + (=7 (n+1)] - Bl
then
Ns(h) € RI*(d, v, B).
Proof. Suppose that f € Ns(h), we then find from (5) that
> il = b <4,
j=2
which readily implies the following coefficient inequality
1)
Z|a3—b|§§ (10)

Next, since h € RI(d, a, 8) in the view of (8), we have

< gld
b < . RENGEY
S L+ A [ (328)" + (-9 e+ 1)]

Using 10) and (11), we get

P -

h(z 1

(2) ( (o) (1+81d)][¥ (lﬁ*lf‘“) +<17)("“)]>
Sg (1+a)(1+ Bld)) { (+ ) 7)(7”1)} —1-¢,

(+a)(1+Bld) [y (525) " + (1 =) (n+1)] - Bldl
provided that £ is given by (9), thus by condition (7), f € fRfJg(d, a, B), where
¢ is given by (9). O

6 Radii of Starlikeness,
Convexity and Close-to-Convexity

Theorem 8. Let the function f € A be in the class RI(d,«, 8). Then [ is
univalent starlike of order §, 0 < 6 < 1, in |z| < r1, where

T =
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inf

{(1 —)(1+a(i = D) - 1+ Bld) {7 (B2E2E) " + (1 - 9) S }

j Bld|(1 - 9)
The result is sharp for the function f(z) given by
B =5+ L :

. n . zZ )
(L+a(G = 1)) = 1+ ld)) {7 (FREH) " + (1) Sl
Jj=2.
Proof. Tt suffices to show that

2f'(2)
f(2)

—1‘§1—5, |z| <.

Since

> ieo(j — DaglzP !
1 —

>o5p a5z

|| <

zf'(z) 1‘ B Z;iz(j — a2~
f(z) IR NS

To prove the theorem, we must show that

> ea(j — DaglaP

, 1-4.
1= aslzP ™!
It is equivalent to
o0
D G —=daylzf T <14,
j=2

using Theorem 1, we obtain

. n TR
090+ aG -G - sl {y (BREEE)" 0 - S T
== BldI(1—5) ‘
Hence the proof is complete. O

Theorem 9. Let the function f € A be in the class RI(d,a, ). Then f is
univalent convex of order §, 0 < § <1, in |z| < ra, where

. n o 1
o Jamoatat -6 -1 s {r (BREEE)" - - SGESH T T
T 2 - 6)Bld] '

The result is sharp for the function f(z) given by
Bld| i
(L+a(G = 1) = 1+ ld)) {7 (L) " + (1) S

Jjz2 (12)

fi(z) =2+
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Proof. Tt suffices to show that

21"(2)
<1-4, zl < ro.
Z8) ol <2
Since
| D0~ Dyt S~ Dayleb
(2) 1+ 3770, jajzi—t 13772, jaglz[i—1

To prove the theorem, we must show that

>ie0 i — DajlzP 7!
1—3 772, jaglaP !

Z“ﬂs 2t <16,

using Theorem 1, we obtain

(1= 6)(1+a( - 1) — 1+ ld) { ()" + (1 - ) &E= ]
2(j - 0)Ald| ’

|zt <

or

: n 1 -1
e (1-8)(1+a( - D) —1+8ld) {7 (FEFH) "+ 1 - GHH P 7T
= 2(j — 0)Bld| '

Hence the proof is complete. O
Theorem 10. Let the function f € A be in the class RI(d,a, ). Then f is
univalent close-to-convex of order 6, 0 < § <1, in |z| < rs, where

1

{ (1=9)(1+a( = 1) =1+ 81D {v (M) " + 0 - GHSY ) }
3Bld] '

rz = inf
J

The result is sharp for the function f(z) given by (12).
Proof. Tt suffices to show that
PE-1<1-6 | <ra

Then

o0
f'(2) =1 = Zya 2T <Y aglal

Jj=2
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Thus [f'(2) = 1] < 1-48if 3272, 4% |,]7~1 < 1. Using Theorem 1, the above
inequality holds true if

or

(L= 8)(1+aG - 1) -1+ Bla) {y (FREFH)" 1 (1 ) L=t
361d]

|27t <

: n . Il 1
e {(16><1+a<j1))(j1+6d|){w(1“‘¢1‘1”“) + (- SEER ) } '

iBld|
Hence the proof is complete. O
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