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Tripled and coincidence fixed point theorems
for contractive mappings satisfying ®-maps in
partially ordered metric spaces
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Abstract

In this paper, we study some tripled fixed and coincidence point the-
orems for two mappings F': X x X x X — X and g: X — X satisfying a
nonlinear contraction based on ¢-maps. Our results extend and improve
many existing results in the literature. Also, we introduce an example
to support the validity of our results.

1 Introduction and Preliminaries

The notion of a coupled fixed point for a mapping F': X x X — X was initiated
by Gnana Bhaskar and Lakshmikantham [1] and they proved some interesting
coupled fixed point theorems, while Ciri¢ and Lakshmikantham [2] introduced
the concept of the coupled fixed point for two mappings F: X x X — X
and g: X — X and established many existing theorems. Vasile Berinde and
Marin Borcut [3, 4] initiated the concept of a tripled fixed point of the mapping
F: X x X xX — X and the concept of a tripled coincidence point of the two
mappings F: X x X x X — X and g: X — X and extended the results
of Gnana Bhaskar and Lakshmikantham [1] and Ciri¢ and Lakshmikantham
[2] to the interesting tripled fixed and coincidence point theorems. For some
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coupled fixed point results in different metric spaces we refer the reader to
5)-25)-

Consistent with Berinde and Borcut [3, 4], we give the following definitions
and preliminaries.

Definition 1.1 ([3]). Let X be a nonempty set and F: X x X x X = X be
a given mapping. An element (z,y,z) € X x X x X is called a tripled fized
point of F' if

Let (X, d) be a metric space. The mapping

d: X x X xX =R, d((z,y,2), (u,0,w)) = d(z,u) + d(y,v) + d(z,w),
defines a metric on X x X x X, which will be denoted for convenience by d.

Definition 1.2 ([3]). Let (X, <) be a partially ordered set and F: X X
X x X — X be a mapping. We say that F' has the mized monotone property
if F(x,y,z) is monotone non-decreasing in = and z and is monotone non-
increasing in y; that is, for any x,y,z € X,

T1,T2 € X; 1 S ) anheb F(xlayaz) S F($2,y72),
Y1,Y2 S Xa Y1 S Y2 1mphes F(xayhz) 2 F($792>Z)a

and
21,20 € X, 2z <z implies F(z,y,21) < F(x,y,22).

The main results of [3] are:

Theorem 1.1 ([3]). Let (X,<) be a partially ordered set and (X,d) be a
complete metric space. Let F: X x X x X — X be a continuous mapping such
that F has the mized monotone property. Assume that there exist j, k,1 € [0,1)
with j +k+1 <1 such that

d(F(z,y,2), F(u,v,w)) < jd(z,u) + kd(y,v) + ld(z, w) (1)

for all z,y,z,u,v,w € X with x > w, y < v, and z > w. If there exist
To,Y0,20 € X such that xo < F(z0,%0,20), Yo > F(yo,To,0), and 2o <
F(z0,Y0,%0), then F has a tripled fized point.

Theorem 1.2 ([3]). Let (X, <) be a partially ordered set and (X,d) be a
complete metric space. Let F': X x X x X — X be a mapping having the mixed
monotone property. Assume that there exist j,k,l € [0,1) with j+k+1 <1
such that

d(F(z,y,2), F(u,v,w)) < jd(z,u) + kd(y,v) + ld(z,w)
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for all x,y,z,u,v,w € X with x > u, y < v, and z > w. Assume that X has
the following properties:

i. if a non-decreasing sequence x,, — x, then x,, < x for alln € N,
ii. if a non-increasing sequence y, — y, then y, >y for all n € N.

If there exist xg,yo,20 € X such that o < F(zo0,y0,20), Yo = F(yo,zo0,Y0),
and zo < F(20, Y0, o), then F has a tripled fized point.

Also, Borcut and Berinde [4] introduced the concept of a tripled coincidence
point of mappings F': X x X x X — X and g: X — X.

Definition 1.3 ([4]). Let X be a nonempty set. Let F: X x X x X —» X
and g: X — X be two mappings. An element (z,y,z) € X x X x X is called
a tripled coincidence point of F and g if

F(z,y,2) = gz, F(y,z,y) =gy and F(z,y,7) = gz.

Definition 1.4 ([4]). Let (X, <) be a partially ordered set and F': X x X X
X — X be a mapping. We say that F' has the mized g-monotone property
if F(x,y,z) is monotone non-decreasing in z and z and is monotone non-
increasing in y; that is, for any x,y,z € X,
x1,T2 EX, gri ng2 lmphes F(xlayvz) SF(J?Q,?J,Z),
Y1, Y2 € X7 9y1 < gy lmphes F($>y172) > F(1’7y272)>

and
21,22 € X, gz1 < gz implies F(z,y,21) < F(z,y, 22).

The main results of [4] is:

Theorem 1.3 ([4]). Let (X, <) be a partially ordered set and (X,d) be a
complete metric space. Let F': X x X x X — X and g: X — X such that
F has the mized g-monotone property. Assume that there exist j,k,1 € [0,1)
with j +k+1 <1 such that

d(F(z,y,2), F(u,v,w)) < jd(gz, gu) + kd(gy, gv) + ld(gz, gw) (2)

for all x,y, z,u,v,w € X with gr > gu, gy < gv, and gz > gw. Syppose that
F(X x X x X CgX, g is continuous and commute with F' and also suppose
either

(a) F is continuous or

(b) X has the following property:
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(i) if a non-decreasing sequence x,, — x, then x, < x for all n,

1) if a non-increasing sequence vy, — vy, then y, > vy for all n.
g seq Y Y, Y Yy

If there exist wo,yo, 20 € X such that gzo < F(xo, Y0, 20), 990 = F(yo,Z0,Y0),
and gzo < F(z0,Y0,%0), then F and g a tripled coincidence point.

By following Matkowski [26], we let ® be the set of all non-decreasing
functions ¢: [0,4+00) — [0,4+00) such that hr—? ¢"(t) = 0, for all ¢t > 0,
n—-+oo

where ¢™ denotes the n-th iterate of ¢. Then its an easy matter to show that:

(1) ¢(t) <t for all t > 0,

(2) ¢(0) = 0.

If ¢ € ®, then we call ¢ to be a ¢-map.

In this paper, we utilize the notion of ¢-map to prove a number of tripled
fixed and coincidence point results for two mapping F': X x X x X — X and
g: X — X in ordered metric spaces. Our results generalize Theorems 1.1 and
1.3. Also, we support our results by introducing a nontrivial example satisfying
our main results and doesn’t satisfy the conditions 1 and 2 of Theorems 1.1
and 1.3 respectively.

2 Main Results

Our first result is the following.

Theorem 2.1. Let (X, <) be a partially ordered set and (X,d) be a metric
space. Let F: X x X x X — X, g: X — X be two mappings. Suppose the
following

1. gX is a complete subspace of X,

2. F(X x X x X) C gX,

3. F has the mized g-monotone property,

4. F is continuous and

5. g is continuous and commute with F.

Assume that there exists ¢ € ® such that

d(F(z,y,2), F(u,v,w)) < ¢(maX {d(gﬂc, gu), d(gy, gv), d(gz, gw),
d(F (2,y.2), go). d(F (2,y,2), g2), d(F (u,v,w), gu), d(F(w, v, u), gw) } ).
(3)
for all z,y,z,u,v,w € X with x > u, y < v, and z > w. If there exist

o, Y0, 20 € X such that gzo < F(zo,%0,20); 9%0 > F(Y0,Z0,Y0), and gzo <
F(z0,90,0), then F' and g have a tripled coincidence point.
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Proof. Suppose there exist xo, Yo, 20 € X such that gz < F(z0, y0, 20), 9Yo >
F(yo,2o,y0), and gzo < F(z0,Y0,20). Define g1 = F(xo,%0,20), gy1 =
F(yo,xo,y0) and gz1 = F(z20,y0,%0). Then gxo < gx1, gyo > gy1 and
9z0 < gz1. Again, define gxo = F(z1,y1,21), gy2 = F(y1,21,y1) and gzo =
F(z1,y1,21). Since F has the mixed g-monotone property, we have gzy <
gr1 < gxa, gy2 < gy1 < gyo and gzg < gz1 < gzo. Continuing this process, we
can construct three sequences (g,), (gy,) and (gz,) in X such that

9Ty = F(xnfhynflaznfl) < gTny1 = F(mnaynvzn)7

9Yn+1 = F(ynaxnayn) < gYn = F(yn—175€n—1,yn—1),
and

gzn = F(anhynflairnfl) < 9Zn+1 = F(znvynvxn)
If, for some integer n, we have (§Zn+t1, 9Yn+t1, 92n+1) = (9Tn, GYn, g2n), then
F(zn,Yn, 2n) = 9Tn, FYn:Tn,Yn) = gYn, and F(zn,Yn, Tn) = g2n; that is,
(Zn, Yn, 2n) is a tripled coincidence point of F. Thus we shall assume that
(9Tn+t1s 9Yn+1, 92n+1) # (9Tn, GYn, gzn) for all n € N; that is, we assume that

either gx,+1 # gTpn O gYn+1 7# GYn OF GZnt+1 7 g2n. For any n € N, we have

d
d

gxn+1agxn)
F(xna Yn» Zn)a F(xn—la Yn—1, Zn—l)

(
(

IN

¢( max {d(gzna gwn—l)a d(gyna gyn—1)7 d(an, gzn—l)a

S

F(x’nﬂ y’ﬂ? Z’n)? gwn)’ d(F(Zn7 y’nJ x’n)? gzn)v

(
(F(2n-1,9n-1,2n-1), 97n-1))s d(F (201, Yn-1,@n-1): 92n-1)) } )

S

= ¢( max {d(g!l,'n, gxn*l)v d(gyna gynfl)v d(gzru gznfl)a

d(gxn+1v gIn)’ d(gzn-i-hgzn)})

IN

(b( max {d(gmNa gmn—1)7 d(gyna gyn—1)7 d(gzna gzn—l)a

d(9Tn41, 92n), A(GYn+1, 9Yn), d(92n+1, 9%n) }) ; (4)
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d(gyna gyn+1)
d(F(yn—h Tn—1, yn—l)

F(ynvxnvyn)
d

IN

¢(max {d(gynfhgyn% (gxnfla gl'n), d(F(ynfla Tn—1, yn71)> gynfl)a

A(F (Yns TnsYn), 9Yn })
d
)s

(gxn 17g$n) d(yn+17yn)})
¢(max{ (gxnvgxn 1 (Qymgyn—l),d(gzn,gzn—1)7d(9$n+1,g$n)7

d(9Yn+1,9Yn), d(gZn+1, gzn)})» (5)

Pp(max{d(gyn—1,9un),

IA

and

d
d

gszrl,an)
F(va Yn, xn)v F(anla Yn—1, xnfl)

(
(

IN

(b( max {d(gz’rH gzn*l)a d(.gynv gyn71>7 d(gxnv gxnfl)a

d F(Zmyn,mn),g»%%d(F(l‘myn,Zn),gﬂin),

(
(F(Zn—la yn—laxn—l),gzn—l))a d(F(xn—l,yn—hzn—l),gxn—l))})

S

= ¢>( max {d(gwn, 9T0n-1), A(gYn, GYn—1), d(gzn, g2n-1),

d(ganrla gxn)7 d(gzn+1>gzn)})

IN

¢( max {d(gxna gxn—l)v d(gyna gyn—l), d(gzna gzn—l)a
d(g$n+1, gmn)a d(gyn-i-l ’ gyn)7 d(gzn+17 gzn) }) 5 (6)
From (4), (5), and (6), it follows that

max{d(gmnH, gmn)’ d(gynv gyn+1)7 d(gzn-i-h gzn)}
< ¢>( max {d(gzm 9Tn—1), d(gYn, 9Yn—1), d(g2n, g2n-1),

d(gxn-‘rl’ gmn)’ d(gyn-i-lvgyn)) d(gzn—i-lv gzn)}) . (7)

If
max {d(gxn’ gxn—1)7 d(gyna gyn—l)a d(gzna 9%—1),
d(gTni1,92n), A(9Ynt1,9Yn)s d(9Zn11,9%n) }
= Inax {d(g$n+1»gmn)v d(gym gyn+1)7 d(gszrl»gzn)}»
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then from (7) we have

max{d(g:z:n+1, gl'n), d(gyna gy77,+1)7 d(gzn+1a gzn)}
< ¢( max {d(gm"’ gmn—l)v d(gyna gyn—l)v d(gzna 9%-1)})
< maX{d(gxn+17 gwn)a d(gy’m gyn+l)7 d(gzn+1a gzn)}’7

a contradiction. Thus (7) becomes

max{d(gTn+1,9%n), A(9Yn, 9Yn+1), A(g2n+1, 92n)}
< ¢(max {d(gzn, 92n-1), d(gYn, 9Yn—1),d(92n, gZn-1)}). (8)

By repeating (8) n-times, we get that

max{d(gznt1,9Tn), d(gYn, gYn+1), d(92n+1,9%n)}

< ¢p(max{d(gzn, gTn—1), d(gYn, gYn—1), d(g2n, g2n—1)})
S ¢2(max{d(gxnflag$n72)7d(gynflagynf2)ud(gznfl7gzn72)})
< ¢"(max{d(gx1,9x0),d(gy1. gy0),d(gz1,9%0)}). 9)

Now, we shall show that (g9x,), (gyn), and (gz,) are Cauchy sequence in X.
Let € > 0. Since

lim ¢"(max{d(gx1,gz0),d(gy1,9y0),d(gz1,9%0)}) =0

n—-+oo
and € > ¢(€), there exist ng € N such that
¢" (max{d(gx1,gw0), d(gy1, gy0), d(g21, 920)}) < € — d(e),

for all n > ny.
This implies that,

max{d(g:an, gmn), d(gynv gyn+1)v d(gzn—‘rla gzn)} <€e— ¢(€)’ (10)

for all n > ng.
For m,n € N, we will prove by induction on m that

max{d(9Tn, 9Tm), A(gYn, gYm), A(g2n, 92m)} < €, (11)

for all m > n > ny.
For m = n + 1, (11) is true by using (10) and noting that € — ¢(¢) < .
Now suppose that (11) holds for m = k; that is,

max{d(gxn, 97k), A(gYn, 9y ), d(g2n, g21)} < €. (12)
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For m =k + 1, we have

d(gTn, 9Tk+1)
d(gTn, 9Tn11) + d(9Tny1, 9Tk11)
€— ¢(€) + d(F($k7yka Zk)vF(xnaynazn))

€—¢(e) + ¢>( max {d(gark, 92n), A(GYk, 9Yn)> A(92k, 97n),
d(F(fUIw Yk Zk), gxk), d(F(Zka Yk xk% gzk),

) d(gzna gzk)a d(gzn-‘rla gwn)7

)

) d(gz'ru gzk)u d(gxn+1a g(En),

IAINA

IN

d(F($n7yn7Zn)7gxn)ﬂ d(F(znaym ‘rn)ugzn)
= € ¢(€) + ¢(max {d(gxna gxk)a d(gynagyk

d(92n+1,9%n), A(gTrs1, 921), d(92k41, 921)

)
+o(m
)
)

IN

~— = Y =

max { (920, g1), A(GYn, gYk
(gyn+1,gyn L d(92n41,9%n), A(9Tk41, gTk),
d(gyr+1. 9Yk), (ng+1,ng)}) (13)

Using (10) and (12), we have

max {d(g:vm 92%), A(9Yn, 9Yx)> A(92n, 92k), A(9Tns1, 9%0 ), A(GYnt1, GYn)s
d(92n+159%n)s A(G9Tk41, 9Tk), A(GYk+1, 9Yk)s A(9Zh41, gzk)}
< max{e, e — ¢(€)} = €. (14)

From (13), (14) and the properties of ¢, we obtain

d(gzy, gny1) < € — (b(e) + ¢(e) =

Similarly, we show that
A(gYn, gyr+1) < €

and
d(gzn, 92zk+1) < €.

Hence, we have
max{d(9zn, 9Tk+1), A(GYns 9Yk+1), d(g2n, g2r+1)} < €.

Thus (11) holds for all m > n > ng. Hence (g9x,,), (9yn) and (gz,) are Cauchy
sequences in gX.
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Since gX is complete, there exist p, ¢, € gX such that (gx,), (gyn) and
(9zn) converge to p, g, and r respectively. Choose z,y,z € X such that
p=gx,q =gy and r = gz. Now, we show that (p,q,r) is a coincidence point
of F. Since F, g are commute and F' is continuous, we have

99%n11 = 9(F (Zn, Yn, 2n)) = F(92n, 9Yn, 92n) — F(p,q, 7).

Also, since g is continuous and gz,, — p, we have ggxr, — gp. By uniqueness
of limit, we get F(p,q,r) = gp. Similarly, we show that g¢g = F(q,p,q) and
gr = F(r,q,p). So (p,q,r) is a tripled coincidence point of F' and g. O

By taking ¢(t) = kt, k € [0,1) in Theorem 2.1, we have the following:

Corollary 2.1. Let (X, <) be a partially ordered set and (X,d) be a metric
space. Let F: X x X x X — X, g: X = X be two mappings. Suppose the
following:

1. gX is a complete subspace of X,

2. F(X x X x X) CgX,

3. F has the mixed g-monotone property,

4. F 1is continuous and

5. g is continuous and commute with F.

Assume that there exists k € [0,1) such that

d(F(x,y,z),F(u,v,w)) < kmax {d(gm,gu),d(gy,gv),d(gz,gw),
d(F(x,y,2), gz), d(F(2,y, ), 92), d(F (u, v, w), gu), d(F (w,v, u), gw) },

for all z,y,z,u,v,w € X with x > w, y < v, and z > w. If there exist
0, Y0, 20 € X such that gro < F(z0,90,20); 9%0 > F(Y0,%0,Y0), and gzo <
F (20,90, 0), then F' and g have a tripled coincidence point.

As a consequence of Corollary 2.1, we have the following:

Corollary 2.2. Let (X, <) be a partially ordered set and (X,d) be a metric
space. Let F: X x X x X — X, g: X — X be two mappings. Suppose the
following

1. gX is a complete subspace of X,

2. F(X x X x X) CgX,

3. F has the mized g-monotone property,

4. F is continuous and

5. g 1s continuous and commute with F.

Assume that there exist a1, as,as,aq,as,as,a7 € [0,1) with EZ:1 a; <1
such that

d(F(x,y,2), F(u,v,w)) < ard(gz, gu) + a2d(gy, gv) + azd(gz, gw)
+a4d(F(l‘7 Y, Z)7 g.%‘) + a5d/(F(Zv Y, x)? gz)
+asd(F (u,v,w), gu) + a7zd(F(w, v, u), gw),
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for all z,y,z,u,v,w € X with x > u, y < v, and z > w. If there exist
0,90, 20 € X such that gro < F(zo0,%0,20), 9%0 = F(y0,%0,%0), and gzo <
F (20,90, 0), then F and g have a tripled coincidence point.

By taking g = ix (the identity mapping on X) in Theorem 2.1, Corollary
2.1 and Corollary 2.2, we have the following:

Corollary 2.3. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F: X x X x X — X be a continuous mapping having the
mized monotone property. Assume that there exists ¢ € ® such that

d(F(z,y,z), F(u,v,w)) < ¢(max {d(x, u),d(y,v),d(z,w),d(F(z,y, z),x),
d(F(z,y,x),2),d(F(u,v,w),u),dF(w,v,u), w)}),

for all z,y,z,u,v,w € X with x > u, y < v, and z < w. If there exist
0, Yo,20 € X such that zo < F(z0,Y0,%0); Yo > F(yo,0,¥0), and 29 <
F (20,90, %0), then F has a tripled fized point.

Corollary 2.4. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F: X x X x X — X be a continuous mapping having the
mized monotone property. Assume that there exists k € [0,1) such that

d(F(z,y,2), F(u,v,w)) < kmax {d(z,u),d(y,v),d(z,w), d(F(z,y, 2), z),
d(F(z,y,), 2),d(F(u,v,w),u),d(F(w,v,u),w)},

for all z,y,z,u,v,w € X with x > w, y < v, and z < w. If there exist
z0,Yo, 20 € X such that o < F(20,90,20), Yo > F(yo,Z0,%0), and zo <
F (20,90, %0), then F has a tripled fized point.

Corollary 2.5. Let (X, <) be a partiallyy ordered set and (X, d) be a complete
metric space. Let F': X x X x X — X be a continuous mapping having the

mixed monotone property. Assume that there exists ai,as,as, a4, as, ag, ay in
[0,1) with ZZ:1 a; < 1 such that

d(F((E,y, Z),F(’LL, 'va)) < ald(xa U,) + CLQd(y,’U) + agd(z,w)—i—
asd(F(z,y,2),2) + asd(F (2,9, ), 2) + asd(F (u, v, w), u) + azd(F(w, v, u),w),

for all z,y,z,u,v,w € X with x > u, y < v, and z < w. If there exist
To,Y0,20 € X such that zo < F(zo,%0,20), Yo = F(yo,20,Y0), and zg <
F (20,90, %0), then F has a tripled fized point.

By adding an additional hypotheses, the continuity of F' and g in Theorem
2.1 can be dropped.
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Theorem 2.2. Let (X, <) be a partially ordered set and (X,d) be a complete
metric space. Let F: X x X x X — X and g: X — X be two mappings.
Suppose that there exists ¢ € © such that

d(F(z,y,2), F(u,v,w)) < ¢( max {d(gz, gu), d(gy, gv), d(g9z, gw),
d(F(z,y,2),g2), d(F(2,y, ), 92), d(F (u,v,w), gu), d(F (w, v, u), gw) }),
(15)
for all z,y, z,u,v,w € X with gr > gu, gy < gv, and gz < gw. Suppose the
following:
1. gX is a complete subspace of X,
2. F(X x X x X) CgX,
3. F has the mized g-monotone property,
4. F and g are commute.
Also, assume that X has the following properties:
i. if a non-decreasing sequence x, — x, then x, < x for alln € N,
1. if a non-increasing sequence y, — Yy, then y, >y for alln € N,
If there exist xp,y0,20 € X such that gxro < F(zo,0,20),
9yo > F(yo,20,%0), and gzo < F(20,%0,%0), then F and g have a tripled
coincidence point.

Proof. By following the same process in Theorem 2.1, we construct three
Cauchy sequences (gz,,), (gyn) and (gz,) in gX with

gry <greo < ...<gT, < ...,

9Y1 > gY2 > ... > GYn > ...,

and
gz1 < gz < ... < gz, <

such that gz, - p=gx € gX, gy, — q=gy € gX, and gz, > r =gz € gX,
where z,y, z € X. By the hypotheses on X, we have gx,, < gz, gy, > gy and
gzn < gz for all n € N. From (15), we have

d(F(2,y,2), Tns1)
d(F(z,y,2), F(Zn; Yn, 2n))

o(max {d(, 20), (g, yn), (2, 20), d(F (., 2), g2), d(F (2, ,2), 92),

A(F(Tn, Yn» 2n), 9%n), A(F(2n, Yn, Tn), gzn)}),

IN
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IN

IA

and

IN

IN

IN

= d)(maX{dgx 92n), d(9Y, 9yn), d(g2, g2n), d(F(x,y, 2), gx),

(
A(F(=,,), 92), (g1, 920), (9741, 9) | )
(

IN
<

(maX {d 9%, 9%n), d(gy, gyn), (92, 92n), d(F (. y, 2), gz),
F(Z Y,z ) ) d(F(y,J:,y),gy),d(gacn+1,gxn),
gyn+17gyn) d(gzn+1>gzn)})v (16)

QU

(
d

d(yn-‘rla (yvx y))

(F'(Yn, Tnsyn), F(y, 2, y))

(b(maX{ Yn,> Y d(xmx)vd(F(yn,xmyn)7gyn),d(F(y,$,y)7gy)})

¢(ma><{ (9Yn> 9Y); d(gwmgwxd(gynﬂ,gyn),d(F(yw,y),gy)})
(

¢
d

U

maX{ 9T, 9n), d(9y, gyn), d(g2, g2n),
(F(z,y,2),92),d(F(2,y,2),92),d(F(y,,9), 9y),
A(gn+1,920): d(gYn+1, 9Yn)s d(g20t1,9%0) | ) (17)

d(F(2,9,7), Znt1)
d(F(z,y, %), F (2, Yn, Tn))

¢(max{d(zyzn),d(y,yn)yd(x Tn), d(F(2,y,2), g2), d(F(2,y, 2), gx),
(F'(zn, Yn> n), 92n), d(F (Tn, Yn, 2n), gn })

¢(max {d(gz7gzn)7d(gy,gyn) (g, gen), d(F(z,y, ), g2),
(F(x,y,2), g7), d(92n+1, 92n), A(gTn+1, 920 })

¢(maX {d(gfc 92n), d(9Y, 9Yn), d(92, gzn), d(F
d
d

SY

S

(z,9,2),97),
F(z,y,2),92),d(F(y,2,9), 9y), d(9Tn+1, gTn)
gyn+1,gyn) d(gszrlngn)})' (18)

)

(
(



TRIPLED AND COINCIDENCE FIXED POINT THEOREMS 191

From (16)-(18), we have

max{d(F(x, Y, Z)v xn+1)7 d(yn—ﬁ-l, F(ya x, y))7 d(F(Zv Y, .13), Zn—i—l)}
d)(max {d(gfv, 9n), d(9y, gyn), d(gz, 9zn), d(F(x,y, 2), gx),
d(F(z,y,2),92),d(F(y,z,9), 9y), d(gTn i1, gTn),
d(gyn+17gyn)vd(gzn+1agzn)})' (19)

IN

Our claim is:

max{d(F(z,y, 2), gr), d(gy, F(y, z,y)), d(F(z,y,x),92)} = 0.
To prove our claim, suppose that

max{d(F(z,y, 2), gx), d(gy, F(y, x,y)), d(F (2, y,2),92)} # 0.

Let

e = max{d(F(z,y, 2), gx),d(gy, F(y, z,y)), d(F(z,y,2),92)}.
Since € > 0, d(gx, gz,,) — 0, d(gy, gyn) — 0, d(92,92n) = 0, d(gZn, gTn+1) —
0, d(9Yn, gyns+1) — 0, and d(gzn, gzn+1) — 0, we choose ng € N such that

d(z,x,) < = for all n > nyg,

[N e

d(y,yn) < = for all n > ny,

d(z,zn) < = for all n > ny,

€
2
€
2
<

d(@n, Tnt1) for all n > ng,

€
2
d(yn7yn+1) < 6% for all n Z no,

and .
d(zny 2nt1) < B for all n > nyg.

Thus (19) becomes

max{d( (a:,y,z) xn-i-l) d(yn+17F(y7xvy))7d(F(Z Y,z ) Zn+1 }
(maX{;d(F z,y,2),92),d(F(2,y, ), 92), d(F(y, 2, y), })

= o(max{d(F(z,y,2), 92), d(F(z,y7x>,gz>,d<F<y7x,y>,gy>}) (20)

IN

for all n > ny.
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Letting n — 400 in (20) it follows that

max{d(F(x,y, 2),gx),d(gy, F(y,z,y)),d(F(z,y,r),92)}
< ¢(max{d(F(fv,y,2)»9%)7d(F(Ay,:v)7gz)7d(F(y,x,y)7gy)})
< max{d(F(z,y,2),9%),d(gy, F(y,x,y)),d(F(z,y,2),92)},

a contradiction. Therefore

max{d(F(v,y, 2), gr),d(gy, F(y,z,y)), d(F(z,y,7),92)} = 0

and hence d(F(x,y, 2), gz) = 0,d(gy, F(y,z,y)) = 0 and d(F(z,y,z), gz) = 0.
Thus F(z,y,2) = gz, F(y,z,y) = gy and F(z,y,z) = gz; that is (x,y, 2) is a
tripled fixed point of F' and g. O

By taking ¢(t) = kt, k € [0,1) in Theorem 2.2, we have the following:

Corollary 2.6. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F: X x X x X — X and g: X — X be two mappings.
Suppose that there exists k € [0,1) such that

d(F(z,y,2), F(u,v,w))
< kmax {d(gz, gu), d(gy, gv), d(gz, gw), d(F (z,y, z), gz),
A(F(2,y,2),92), d(F (u,v,0), gu), d(F (w, v, u), gw) },

for all x,y, z,u,v,w € X with gr > gu, gy < gv, and gz < gw. Suppose the
following:

1. gX is a complete subspace of X,

2. F(X x X x X)CgX,

3. F has the mized g-monotone property,

4. F and g are commute.

Also, assume that X has the following properties:

i. if a non-decreasing sequence x, — x, then x, < x for alln € N,

1. if a non-increasing sequence y, — vy, then y, >y for alln € N,

If there exist xo,y0,20 € X such that gro < F(xo,%0,20),
90 > F(yo,20,y0), and gzo < F(z0,y0,%0), then F and g have a tripled
coincidence point.

As a consequence result of Corollary 2.6, we have

Corollary 2.7. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F': X x X x X — X and g: X — X be two mappings.



TRIPLED AND COINCIDENCE FIXED POINT THEOREMS 193

Suppose that there exist a1, as,as, aq,as, ag, a7 € [0,1) with 23:1 a; < 1 such
that

d(F(x,y,2), F(u,v,w))
ard(gz, gu) + azd(gy, gv) + azd(gz, gw) + asd(F(z,y, 2), gz) +
asd(F(z,y,x), 9z) + dag(F(u, v, w), gu) + a7d(F(w,v,u), gw),

IN

for all z,y, z,u,v,w € X with gr > gu, gy < gv, and gz < gw. Suppose the
following:

1. gX is a complete subspace of X,

2. F(X x X x X) CgX,

3. F has the mizxed g-monotone property,

4. F and g are commute.

Also, assume that X has the following properties:

i. if a non-decreasing sequence T, — x, then x, < x for alln € N,

1. if a non-increasing sequence vy, — vy, then y, >y for alln € N.

If there exist x0,y0,20 € X such that gxro < F(zo,Y0,20),
9yo > F(yo,20,%0), and gzo < F(z0,%0,%0), then F and g have a tripled
coincidence point.

By taking g = ix (the identity mapping on X) in Theorem 2.2, Corollary
2.6 and Corollary 2.7, we have the following:

Corollary 2.8. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F': X x X xX — X be a mapping having the mized monotone
property. Assume that there exists ¢ € ® such that

d(F(z,y,2), F(u,v,w)) < qi)(max {d(m, u),d(y,v),d(z,w),d(F(z,y, z),x),
d(F(z,y,x),z),d(F(u,v,w),u),d(F(w,v,u),w)})

for all x,y,z,u,v,w € X with x > u, y <v, and z < w. Assume also that X
has the following properties:

i. if a non-decreasing sequence x,, — x, then x, < x for alln € N,

1. if a non-increasing sequence y, — Yy, then y, >y for alln € N,

If there exist xg, Yo, 20 € X such that xo < F(x0,Y0,20), Yo = F(yo, o, Yo),
and zo < F(20, Y0, o), then F has a tripled fized point.

Corollary 2.9. Let (X, <) be a partially ordered set and (X, d) be a complete
metric space. Let F: X X X xX — X be a mapping having the mized monotone
property. Assume that there exists k € [0,1) such that

d(F(x,y,z), F(u,v,w)) < kmax {d(x7 u),d(y,v),d(z,w),d(F(z,y, z),x),

d(F(z,y,x),2),d(F(u,v,w),u),d(F(w,v,u), w)}
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for all x,y,z,u,v,w € X with x > u, y <wv, and z < w. Assume also that X
has the following properties:

i. if a non-decreasing sequence x, — x, then x, < x for alln € N,

. if a non-increasing sequence Yy, — Yy, then y, >y for alln € N,

If there exist xg, yo, 20 € X such that xo < F(x0,Y0,20), Yo = F (Yo, Zo, Yo),
and zo < F(z0, Y0, o), then F has a tripled fized point.

Corollary 2.10 ([3]). Let (X,<) be a partially ordered set and (X,d) be a
complete metric space. Let F': X x X x X — X be a mapping having the mized
monotone property. Assume that there exist ay,as,as,aq,as,as,a7 € [0,1)
with 23:1 a; <1 such that

d(F(‘Ta Y, Z)a F(ua v, w)) S ald(xa u) + a2d(ya ’U) + a3d(zv w) +
aqd(F(z,y,2),z) + a5d(F(z,y,x), 2) + agd(F (u,v,w), u) + azd(F(w,v,u),w),

for all x,y, z,u,v,w € X with x > u, y < v, and z > w. Assume that X has
the following properties:

i. if a non-decreasing sequence x, — x, then x, < x for alln € N,

1. if a non-increasing sequence y, — vy, then y, >y for alln € N,

If there exist xq, Yo, 20 € X such that xo < F(xo0,Y0,20), Yo > F (Yo, To, Yo),
and zo < F(20, Y0, o), then F has a tripled fized point.

Now, we prove a uniqueness theorem for a tripled fixed point.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (respectfully
Theorem 2.2) suppose that

[(9z0 < gyo) A (920 < gyo)] V [(9y0 < gz0) A (950 < g20)]-
Then gr = gy = g=.
Proof. Suppose to the contrary, that is gr # gy or gy # gz or gx # gz. Let
e = max{d(gz, gy), d(gz, 92),d(gy, 92)}.

Since € > 0, d(9zpn, 9Tnt+1) = 0, d(gyn, 9yn+1) — 0 and d(gzn, gznt1) — 0
there exist ng > 0 such that

d(gxnagxn—&-l) < % for all n > 1o,

d(gYn, gyn+1) < g for all n > ng

and .
d(9zn, gzn+1) < 3 for all n > ng.
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Without loss of generality, we may assume that gzo < gyo and gzo < gyo.
By the mixed monotone property of F, we have gz, < gy, and gz, < gy, for
all n € N. Thus by (3), we have

A(9Yn+1,9%n+1)
A(F(Yn, Tny Yn)s F (@0, Yn, 2n))

< cb(max {d(gyn,gmn%d(gyn,gzn),d(F(ymwmyn),gyn),
A(F @0 Yns 20), 90): A(F (2, Y20 920) })
< ¢(max{d(gyn,gmn),d(gymgzn),d(gynﬂ),gyn%
d(ga?nﬂ’gmn),d(gzn+17gzn)}) (21)
and
d(9Yn+1,9%n+1)
= d(FYn,Tn,Yn), F (20, Yn, 1))
< ¢(max{d(gymgwn),d(gyn,gzn),d(F(yn,rmyn),gyn),
AE (@, Yy 70): 920), d(F (2 Ys 00, 970) | )
<

¢( max {d(gyna gxn)a d(gyna gzn)a d(gyn—i-l)a gyn)a
d(gajn-ﬁ-lagajn)ad(gzn-i-lvgzn)}) (22)
By (21) and (22), we have

maX{d(Q?ﬁH—la gxn-i—l)v d(gyn—Ha an+1)}
< ¢< max {d(gym 9%0), d(GYn;s 92n), A(GYn+1), 9Yn),

d(ganrlvg-rn)ad<gzn+lagzn)})-
For n > ng, we have

ma‘X{d(gyn-‘rlag$n+1)7d(gy7b+17gzn+1)}
)
¢><ma><{ (9Yn> 92 ), d(gyn, 92n), 5

¢? ( max {d(gynq,gffnfl)’ d(9yn-1:9%n-1), %})

IN

IN



TRIPLED AND COINCIDENCE FIXED POINT THEOREMS 196

IN

¢ ( max {d(gynfz, 9%n—2), d(gyn—2, 92n—2), g})

‘/\ e

P ( max {d(gynm 9%no)s A(GYno» 9%no ) % }) : (23)

On letting n — +o0 in (23) and using the property of ¢ and the fact that
d is continuous on its variables, we get that max{d(gy, gz),d(gy,gz)} = 0.
Hence gy = gz = gx, a contradiction. O

Corollary 2.11. In addition to the hypotheses of Corollary 2.1 (respectfully
Corollary 2.6) suppose that

[(9z0 < gy0) A (920 < gy0)] V [(9¥0 < gz0) A (9y0 < g20)]-
Then gxr = gy = gz.
Now, we introduce an example to support the useability of our results:

Example 2.1. Let X = [0, 1] with usual ordered. Define d: X x X — X by
d(z,y) =|r—y|. Defineg: X - X and F: X x X x X — X by gz = %x, and

0, y > min{z, z;
F(z,y,2) = { (min{z,z} —y), y< minl{iz, z{
Then:
1. gX is a complete subspace of X.
2. F(X x X xX)CgX.
3. F and g are commute.
4. F has the mixed g-monotone property.
5. For z,y, z,u,v,w € X we have

d(F(z,y,2), F(u,v,w))

8
g max {d(gz, gu),d(gy, gv),d(gz, gw), d(F(z,y, z), gz),

d(F(z,y,), go), d(F(u,v,w), gu), d(F(w,v,u), gw) }

IN

holds, for all gz > gu, gy < gv and gz > gw.
6. There are no j,k,l € [0,1) with j + k + [ < 1 such that

d(F(z,y,z), F(u,v,w)) < jd(z,u) + kd(y, v) + ld(z, w)

holds for all x > u, y < v and z > w.
7. There are no j,k,l € [0,1) with j + k + [ < 1 such that

d(F(z,y,2), F(u,v,w)) < jd(gz, gu) + kd(gy, gv) + ld(gz, gw)
holds for all gz > gu, gy < gv and gz > gw.
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Proof. The proof of (1), (2) and (3) are clear. To prove (4), let z,y,z € X. To
show that F(x,y,z) is monotone g-non-decreasing in z, let z1,x2 € X with
gxr1 < gxro. Then %xl < %xz and hence z; < xs.
If y > min{xy, z}, then F(z1,y,2) =0 < F(x2,y, 2).
If y < min{xy, 2z}, then

F(o1,,2) = g(minfor, 2} — ) < 3 mingaz, 2} y) = Foa,3.2).

Therefore, F(x,y,z) is monotone g-non-decreasing in x. Similarly, we may
show that F(z,y, z) is monotone g-non-decreasing in z and monotone g-non-
increasing in y. To prove (5), given z,y, z,u, v, w € X with gz > gu, gy < gv
and gz > gw. Then %l’ > %u, %y < %v and %z > %w. Hence x > u, y < v
and z > w. So, we have the following cases:

Case 1: y > min{z, z} and v > min{w, w}. Here, we have

d(F(z,y,z), F(u,v,w)) =0

IN

% max {d(gz, gu), d(gy, gv), d(gz, gw), d(F(z,y, z), gz),
d(F(z,y,),gz),d(F(u,v,w), gu), d(F(w,v,u), gw) }.

Case 2: y > min{z, z} and v < min{u,w}. This case is impossible since
y <o < min{u, w} < min{z, z}.

Case 3: y < min{x, z} and v > min{u, w}.
Suppose w < v, then w —y < v — y and hence
min{z,z} —y

Z—yYy=z—w+w-—y

IN A

Z—w+v—1yY

3l -+ 300
+

. [(gz —gw) + (gv — gy)}

3
= %[d(gz, gw) + d(gv, gy)]
8

IN
|
=
Q
w
~
s
—

Q
&
Q
<
:—/
=
e
n
Q
g
N~—
—

IA

g max {d(gz, gu), d(gy, gv), d(gz, gw), d(F (x,y, 2), ),
d(F(z,y,x),gx),d(F(u,v,w), gu),d(F(w,v, u),gw)}.
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Therefore,

IN

d(F(z,y,2), F(u,v,w))
d <;(min{x, z} — y)70)

—_

= (min{x, z} — y)

oo W

g wmax {d(gz, gu),d(gy, gv), d(gz, gw), d(F(z,y, 2), 9z),

d(F(z,y,2), gz),d(F(u,v,w), gu), d(F (w,v,u), gw) }.

Suppose u < v, then u — y < v — y and hence

Therefore,

IA

IN

IN

IN

min{z, z} — y

r—=Yy
r—u+u—y
r—u+v—y

e -w+ 2wy

: [(gar —gu) + (gu — gy)}

3
4
(
S {d(gg;, gu) + d(gv, gy)}

g max{d(gz, gu), d(gy, gv))}
g max {d(gz, gu), d(gy, gv), d(gz, gw), d(F(z,y, z), gz),

d(F(z,y,x),gx),d(F (u,v,w), gu), d(F(w,v, u),gw)}.

d(F(2,y,2), F(u,v,w))
1 .
g(mln{,m Z} - y>70)

SH

(min{x, 2} — y)

o Wl

g max {d(gz, gu),d(gy, gv),d(gz, gw), d(F(z,y, z), gx),

d(F(z,y,),gz),d(F(u,v,w), gu), d(F(w,v,u), gw) }.

Case 4: y < min{z, z} and v < min{u, w}.
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Since z > u and z > w, then min{x, z} > min{u, w}. Thus

d(F(z,y,z), F(u,v,w))
= d (;(min{x, z}—y), %(min{u, w}— v))
= %‘(min{x, z} — min{u, w}) + (v — y)‘

= %[(min{x, z} — min{u, w}) + (v — y)}

If min{u, w} = w, then min{x, 2} — min{u, w} < x — u, and hence

IN

d(F(z,y, 2), F(u,0,w))

(@ —w)+(v—y)]
)33+ 30 -v)

(g:v —gu) + (gv — gy)}

W

_d(gﬂc gu) + d(gy, gv)}

max {d(gz, gu), d(gy, gv) }

@\OO@\OO@\%@\%/-\ w\’—‘

d(F(z, y,x),gz),d(F(u,v,w),gu),d(F(w,v,u),gw)}.

If min{u, w} = w, then min{z, 2} — min{u, w} < z —w, and hence

d(F(z,y, z), F(u,v,w))
e-w+@-y)

(5 E[E-m+ o)
g {(gz —gw) + (gv — gy)}

[d(g2, gw) + d(gy, gv)]

CO O ¥~

— max{d(gy, gv), d(g9z, gw)}

o ©

9
d(F(z,y,), gz),d(F(u,v,w), gu), d(F(w,v,u), gw) }.

max {d(gz, gu), d(gy, gv), d(gz, gw), d(F(z,y, z), gz),

—max {d(gz, gu), d(gy, gv), d(gz, gw), d(F (z,y, ), gz),
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To prove (6), suppose there exist j,k,1 € [0,1) with j 4+ k+1 < 1 such that
d(F(z,y,z), F(u,v,w)) < jd(z,u) + kd(y,v) + ld(z, w)
holds for all x > u, y < v and z > w. Then

ﬂﬂmejmﬁJ»:agm:%g$ (24)

amLanjuJJ»Zagmzégk, (25)
and

d(F(1,0,1), F(1,0,0)) = d(%,O) - % <. (26)

From (24), (25), and (26), we have j + k41 > 1, a contradiction.

To prove (7), suppose there exist j,k,1 € [0,1) with j+ k+1 < 1 such that
d(F(z,y,2), F(u,v,w)) < jd(gz, gu) + kd(gy, gv) + ld(gz, gw)
holds for all gz > gu, gy < gv and gz > gw. Then

d(F(1,0,1),F(0,0,1)) = d(é,()) = é < %j, (27)
ﬂF@QUJﬂJJ»:ﬂé®:%§Zh (28)
and
1 1 3
AF(L0.1).F(10,0) = d(3,0) = < &1 (29)

From (27), (28), and (29), we have j + k + 1 > 22, a contradiction.

Thus by Theorems 2.1 and 2.3, F' and g have a tripled coincidence point.
Here, (0,0,0) is the tripled coincidence point of F' and g. O

Remarks:

1. Example 2.1 does not satisty condition 1 of Theorem 1.1 (Theorem 7 of
.2. Example 2.1 does not satisfy condition 2 of Theorem 1.3 (Theorem 4 of
.3. Theorem 1.3 (Theorem 4 of [4]) is a special case of Corollaries 2.2 and
2.7.

4. Theorem 1.1 (Theorem 7 of [3]) is a special case of Corollary 2.5.
5. Theorem 1.2 (Theorem 8 of [3]) is a special case of Corollary 2.10.
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