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Numerical Decomposition of
Affine Algebraic Varieties

Shawki AL Rashed and Gerhard Pfister

Abstract

An irreducible algebraic decomposition ∪d
i=0Xi = ∪d

i=0(∪di
j=1Xij) of

an affine algebraic variety X can be represented as a union of finite
disjoint sets ∪d

i=0Wi = ∪d
i=0(∪di

j=1Wij) called numerical irreducible de-
composition (cf. [14],[15],[18],[19],[20],[22],[23],[24]). The Wi correspond
to the pure i-dimensional components Xi, and the Wij present the i-
dimensional irreducible components Xij . The numerical irreducible de-
composition is implemented in Bertini (cf. [3]). The algorithms use
homotopy continuation methods. We modify this concept using partially
Gröbner bases, triangular sets, local dimension, and the so-called zero
sum relation. We present in this paper the corresponding algorithms
and their implementations in Singular (cf. [8]). We give some exam-
ples and timings, which show that the modified algorithms are more
efficient if the number of variables is not too large. For a large number
of variables Bertini is more efficient∗.

1 Introduction

Given a system of n polynomials in CN ,

f(x1, ..., xN ) :=


f1(x1, ..., xN )

.

.
fn(x1, ..., xN )

 .

Key Words: Witness point set, Homotopy function, Gröbner basis, Local dimension,
Monodromy action, Zero Sum Relation.
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Let X = V (f) be the algebraic variety defined by the system above. X has
a unique algebraic decomposition into d pure i-dimensional components Xi,
X = ∪di=0Xi. Where Xi = ∪di

ji
Xij is empty or the union of di i-dimensional

irreducible components.
The numerical irreducible decomposition (cf. [15],[18],[19],[20],[23]) is given as
the union W = ∪di=0Wi = ∪di=0(∪di

j=1Wij). The Wi are called i-witness point
sets and are given as an intersection of the pure i-dimensional component Xi

of X with a generic linear space L in CN of dimension N − i. The finite sets
Wij are called the irreducible witness point sets representing the irreducible
components Xij of dimension i. The irreducible witness point sets have the
following properties:

1. Wij ⊂ Xij ,

2. ](Wij) = deg(Xij) ,

3. Wij ∩Wil = ∅ for j 6= l .

The computation of the numerical irreducible decomposition uses numerical
homotopy continuation methods (cf. [25],[26]). This requires that the number
n of polynomials of a given polynomial system is equal to the number N of
variables.
The numerical irreducible decomposition proceeds in three steps:

The first step reduces the polynomial system to a system of N polynomials
in N variables and computes a finite set Ŵi called witness point super set for
each non-empty pure i-dimensional component Xi. Ŵi consists of points of Xi

and Ji a set of points on components of larger dimension, the so-called junk
point set (cf. [15],[18],[23]).

The second step removes the points of Ji from Ŵi to obtain a subset Wi

of the pure i-dimensional component Xi (cf. [23]).

The third step breakups Wi into irreducible witness point sets representing
the i-dimensional irreducible components of X (cf. [14],[22]).

In [15],[18],[23] the cascade algorithm is used to compute the witness point

super sets Ŵi. In the second section we modify this algorithm replacing the
use of the homotopy function by Gröbner basis computations at certain levels.
In [23] the parameter continuation for polynomial systems is used to remove

junk points from Ŵi to obtain the i-witness point set Wi. In the third sec-
tion we give a modified algorithm using local dimension, Gröbner bases in the
zero-dimensional case, and the homotopy function to compute the i-witness
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point set Wi. The breakup of the witness point set Wi into irreducible witness
point sets is achieved using two algorithms (cf. [14],[22]). The first algorithm
computes the points on the same irreducible component in the witness point
set using path tracking techniques. The second algorithm computes a linear
trace for each component which certifies the decomposition. In the fourth
section we explain how to use the zero sum relation (cf. [7]) and the mon-
odromy action on the algebraic variety to breakup Wi into irreducible witness
point sets. In the last section we give examples and timings to compare the
implementations of Bertini and Singular .

2 Witness Point Super Set

Definition 2.1. Let Z = V (f) be an affine algebraic variety in CN of dimen-
sion d, and X be a pure i-dimensional component of Z. Let Li be a generic
linear space in CN of dimension N−i. A finite set Ŵi ⊂ CN is called i-witness
point super set for X if

X ∩ Li ⊂ Ŵi ⊂ Z ∩ Li .

The union Ŵ of all i-witness point super sets is called a witness point super
set for Z.

The following algorithm computes a witness point super set.

Remark 2.1. With the notations of the algorithm the following facts prove
its correctness and explain our modification:

1. The positive dimensional irreducible components of V (F1, ..., Fn) are the
same as the positive dimensional irreducible components of
V (f1, ..., fN ). Isolated points of V (F1, ..., Fn) are isolated points of
V (f1, ..., fN ).

2. V (f1, ..., fN ) has no components of dimension smaller then r := N −
rank(f) (cf. [23]). Therefore the modified algorithm starts in
dimension r.

3. Since V (f1, ..., fN ) is of dimension d, the witness point super sets in
dimension greater than d are empty. Therefore the modified algorithm
can stop at dimension d.

4. For i = 0, 1, ..., d, the sets Ŵi are witness point super sets for the pure
i-dimensional components of V (F1, ..., Fn) (cf. [15],[23],[24]).
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Algorithm 1 WitnessPointSuperSet

Input: F = {F1, ..., Fn} ⊂ C[x1, ..., xN ].

Output: {f1, .., fN}, {Ŵr, .., Ŵd},L. {f1, .., fN} a square system, Ŵi a wit-
ness point super set corresponding to a pure i-dimensional component of
V (f1, ..., fN ), L a set of linear polynomials defining a linear space of dimen-
sion N − d.

f = {f1, ..., fN} reduction of F = {F1, ..., Fn} to a square system
(cf. [15],[18],[23]);

d = dim(V (f1, ..., fN )) (using Gröbner basis cf. [8],[11]);
r = N − rank(f), rank(f) the rank of the Jacobian matrix of the system f
at a

generic point;
L = {l1, ..., ld} a set of d generic linear polynomials;
if d = r then

compute Td = V (f1, ..., fN , l1, ..., ld) (using a solver based on triangular
sets

cf. [8],[11]);

Ŵd = {(x1, ..., xN ) | (x1, ..., xN ) ∈ Td, (x1, ..., xN ) ∈ V (F )};
return {f1, ..., fN}, {Ŵd}, L ;

else
for i = r to d do

if i = 0 then
Ωi(f)(x) = f ;

else

Ωi(f)(x, z1, ..., zi) =:



f1(x) +
∑i

j=1 λ1jzj
.
.

fN (x) +
∑i

j=1 λNjzj
l1 + z1
.
.

li + zi


λkj ∈ C generic, k = 1, ..., N , j = 1, ..., i;

for i = d to r do
if i = d then

compute Ti = V (Ωi(f)(x, z1, ..., zi)) (using a solver based on trian-
gular

sets cf. [8],[11]);
else

compute Ti = V (Ωi(f)(x, z1, ..., zi)) (using a homotopy function
with

Ωi+1(f)(x, z1, ..., zi) as start system and Si+1 as start solution
set cf. [15],[18],[23]);

Ŵi = {(x1, ..., xN ) | (x1, ..., xN , 0, ..., 0) ∈ Ti, (x1, ..., xN ) ∈ V (F )};
Si = Ti \ {(x1, ..., xN , z1, ..., zi) ∈ Ti | z1 = .... = zi = 0};

return {f1, ..., fN}, {Ŵr, ..., Ŵd}, L ;
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5. In [15],[18],[23] the cascade algorithm is used to compute Ŵi. It starts

with i = N − 1 to compute the witness point super sets Ŵi. It needs to
define a start system G(x) = 0 for the homotopy continuation method
(cf. [25],[26]), and to know its solutions. We use a Gröbner basis of the
ideal defining Z to compute the dimension d of Z, then use the cascade
algorithm which starts with i = d− 1. We will show that we do not need
to define a start system.

We will illustrate our modifications of the algorithm by an example.

Example 2.1. Let X be the algebraic variety defined by the polynomial system

f(x, y, z) =

 (x3 + z)(x2 − y)
(x3 + y)(x2 − z)

(x3 + z)(x3 + y)(z2 − y)

 .

The dimension of X ⊂ C3 is 1.
The algorithm in ([15],[23]) starts at level 2, while the modified algorithm

starts at level 1 to compute the witness point super set Ŵ for the algebraic
variety X as follows.

• L = {l1 = x+ y + z − 1} the set of 1 generic linear polynomials;

•

Ω0(f)(x, y, z) := f(x, y, z) =

 (x3 + z)(x2 − y)
(x3 + y)(x2 − z)

(x3 + z)(x3 + y)(z2 − y)

 ;

• λ11 := 1, λ12 := 5, λ13 := 18,

Ω1(f)(x, y, z, z1) :=


(x3 + z)(x2 − y) + z1
(x3 + y)(x2 − z) + 5z1

(x3 + z)(x3 + y)(z2 − y) + 18z1
x+ y + z − 1 + z1

 ;

• compute T1 = {t1, ..., t29} ⊂ C4 the set of solutions of Ω1(f)(x, y, z, z1)
using the library ”solve.lib” in Singular ;

• Ŵ1 = {w1, ..., w7 | ∃ti ∈ T1 : ti = (wi, 0), i = 1, ..., 7} ⊂ C3 the
1-witness point super set corresponding to the pure 1-dimensional com-
ponent of X;

• S1 = T1 \ {(x, y, z, z1) ∈ T1 | z1 = 0};
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• using the homotopy function technique, (implemented in Bertini ),

T0 = V (t.Ω1(f)(x, y, z, z1) + (1− t).
(

Ω0(f)(x, y, z)
z1

)
),

with the start system Ω1(f)(x, y, z, z1) and the start solution set S1 as t
goes from 1 to 0.

• Ŵ0 = T0 ⊂ C3 the 0-witness point super set corresponding to the pure
0-dimensional component of X;

• Ŵ = {Ŵ0, Ŵ1} the witness point super set for X.

We note that we did not need to define a start system (with given solutions)
to compute the witness point super set.

3 Computation Witness Point Set

The witness point super set Ŵi is a union of an i-witness point set Wi and a
junk point set Ji (cf. [15],[18],[23]),

Ŵi = Wi ∪ Ji, Wi ⊂ Xi and Ji ⊂ ∪j>iXj for i = 0, 1, ..., d.

We use Gröbner bases, triangular sets, local dimension and homotopy contin-
uation method in the algorithm below to remove the points of Ji from Ŵi as
follows.

Proof (The correctness of the Algorithm 2).

The witness point super set Ŵi is the union of points on the i-dimensional
component and points on components of dimension greater then i. Ŵd has
no junk points, i.e. Wd := Ŵd. From the definition of the witness point
set it follows that sd := ]Wd is the degree of the d-dimensional compo-
nent of V (f1, ..., fn). The witness point super sets are computed numeri-

cally, that means w ∈ Ŵi is an approximate value of a point v on X. Let
Z ⊂ CN × CN be the algebraic variety defined by the polynomial system
{f1 − t1, ..., fN − tN}, y := (y1, ..., yN ) ∈ CN with ‖y‖ ≤ 10−16. Define the
map ϕ : Z ⊂ CN × CN → CN by ϕ(x, y) = y. Then we have

Zϕ(v,0) = V (f1, ..., fN ) ⊂ CN and

†w is the numerical approximate solution of the system f = {f1, ..., fn}, i.e. we consider
f(w) = 0 numerically.
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Algorithm 2 WitnessPointSet

Input: {f1, .., fN} ⊂ C[x1, .., xN ], {Ŵr, .., Ŵd} a list of witness point super
sets, L = {l1, .., ld} a set of generic linear polynomials (Output of Algorithm
1).

Output: {f1, ..., fN}, {Wr, ..,Wd}, L = {l1, ..., ld}. Wi a witness point set
corresponding to a pure i-dimensional component of V (f1, ..., fN ).

Wd = Ŵd, sd = ]Wd;
for i = d− 1 to r do
Wi = Ŵi;
for each point w ∈Wi do

compute t = dimwZ for Z = V (f1 − f1(w), ..., fN − fN (w)) (using a
Gröbner

basis cf. [8],[11]);
if t > i then
Wi = Wi \ {w};

for each point† w ∈Wi do
if i = 0 then

choose A ⊂ Cd×N a generic matrix and a generic ε ∈ CN , ‖ε‖ <
10−16;
compute S = V ({f1, ..., fN , A(x−w)}), T = V ({f1, ..., fN , A(x−w−
ε)})

(using a solver based on triangular sets cf. [8],[11]);
if ]S = ]T then
Wi = Wi \ {w};

for j = i+ 1 to d do
choose A ⊂ Cj×N a generic matrix;
if j = d then

compute S = V ({f1, ..., fN , A(x− w)}) (using a solver based on
triangular sets cf. [8],[11]);

if ]S = sd then
Wi = Wi \ {w};

else
compute S = V ({f1, ..., fN , A(x−w)}) (using a homotopy function
with

the start system {f1, .., fN , l1, .., lj} and the start solution Wj

cf.
[23]);

if w ∈ S then
Wi = Wi \ {w};

return {f1, ..., fN}, {Wr, ...,Wd}, L ;
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Zϕ(x,f1(w),...,fN (w)) = V (f1 − f1(w), ..., fN − fN (w)) ⊂ CN .

It follows (cf. [9], proposition 3.4)

t := dimwV (f1 − f1(w), ..., fN − fN (w)) ≤ dimvV (f1, ..., fN )).

If t > i, then w must be the approximate value of a point v on a component
of dimension greater then i. That means that w ∈ Ji.
If i = 0, i.e. w ∈ Ŵ0, then an (N − d)-dimensional generic linear space
V (A(x− w)) meets the algebraic variety V (f1, ..., fN ) in a finite set S. If the
(N − d)-dimensional generic linear space V (A(x − w − ε)) passing through a
neighborhood of w meets V (f1, ..., fN ) in a set T of the same cardinality, then
there exists a neighborhood U of w such that U ∩X \ {w} 6= ∅. This implies
that w is not an isolated point in V (f1, ..., fN ), i.e. w is on a component of
positive dimension. This implies that w ∈ Ji. In case of i > 0 the test whether
w is on a component of dimension j ∈ {d, d−1, ..., i+1} is as follows. If j = d,
the degree of the pure d-dimensional component is sd. The d-dimensional
generic linear space V (A(x − w)T ) through w meets V (f1, ..., fN ) in a finite
set S of cardinality greater or equal to sd. If ]S = sd, then w is on the pure d-
dimensional component. It implies that w ∈ Ji. If j < d, we use the homotopy
function to remove the junk points (cf. [23]). �

4 Partition Witness Point Sets

In this section we show that the monodromy action on an algebraic variety Z
and the zero sum relation are sufficient to find the breakup of the k-witness
point set Wk into irreducible k-witness point sets. We present here a modified
version of the algorithms described in ([14],[22]).

Let Z be a pure k-dimensional algebraic variety in CN , and Z = ∪ri=1Zi be
the irreducible decomposition of Z. Let π : CN −→ Ck be a generic projection
and let l ⊂ Ck be a general line. Consider

• Wl := π−1(l) ∩ Z a set of r different curves in CN .

• U the non-empty open subset of l consisting of all points x ∈ l with
π−1(x) transversal to Z.

• W := π−1(x)∩Z for a generic element x ∈ U , and V a non-empty subset
of W.

• Wi := π−1(x) ∩ Zi for an irreducible k-dimensional component Zi of Z.

• λ : CN −→ C a linear function, one-to-one on W .
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• For y ∈ U , let Vy be a subset of π−1(y) ∩ Z defined by

Vy := {z | z on a curve inWl through a point of V }.

We define a function s : U −→ C by

s(y) =
∑
z∈Vy

λ(z),

Vy

Vx

x ly

Wl

Theorem 4.1. Let l, U , W , V , Wi for i = 1, ..., r, and the functions λ, s be
as above.
If the function s is continuous and V ∩Wi 6= ∅ for some i ∈ {1, ..., r}, then
Wi ⊆ V .

Before proving the theorem we illustrate it by an example.

Example 4.1. Let Z be the curve in C2 defined by the polynomial f(x, y) =
(x2 + y2 − 5)(x− 2y − 3). Let L1 be the line in C2 defined by the polynomial
l1 = x+ y − 3. We define a homotopy function :

h(t, x(t), y(t)) :=

(
α(t)

f(x(t), y(t))

)
.

α(t) = (1− t)l0 + tl1 = x+ y − 2t− 1, where l0 = x+ y − 1 .

Then with conditions above α(t) maps a point in L1 ∩ Z to a point in L0 ∩ Z
as t goes from 1 to 0, L0 the line defined by l0.

Proof (of Theorem 4.1). Assume that Wi * V . Since Wi ∩ V 6= ∅, then
there are a, b ∈ Wi such that a is not in V and b in V . Let a1, ..., ar denote
the points of the set V \ {b}. By Corollary 3.5 in [14] there is a loop α in the
fundamental group π1(U, π−1(x)) with α(0) = α(1) which takes aj to aj for
all j=1,...,r, and interchanges a and b.
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Since α is a continuous loop and s : U −→ C is continuous, the composition
s ◦ α : [0, 1] −→ C is continuous and

s(α(1)) = s(α(0))

λ(a) +

r∑
j=1

λ(aj) = λ(b) +

r∑
j=1

λ(aj),

as t goes from 1 to 0. This implies that λ(a) = λ(b). But this contradicts the
fact that λ is one-to-one on W. Thus Wi is a subset of V . �

Example 4.2. Let Z be the curve in C2 defined be the polynomial f(x, y) =
(y−x)(y−2x)(y−3x), and Z = Z1∪Z2∪Z3 be the irreducible decomposition.
Let π : C2 −→ C be the projection given by π(x, y) = x, and λ : C2 −→ C,
λ(x, y) = y.
Note that the restriction of π to Z, πZ is proper and generically three-to-one
with degree 3 equal to the degree of Z. λ is one-to-one on the fiber π−1(y) =
{(x, x), (x, 2x), (x, 3x)}. Let L be the line defined by the linear polynomial
l(x, y) = x+y−2. L intersects Z in the finite set W := {(1, 1), ( 2

3 ,
4
3 ), ( 1

2 ,
3
2 )}.

Let V := {(1, 1), ( 2
3 ,

4
3 )} ⊂ W . The function

∑
v∈V λ(v) given by λ(x, x) +

λ(x, 2x) = x + 2x = 3x is continuous. By the theorem above if an irreducible
1-witness point set W1 contains {(1, 1)} or {( 2

3 ,
4
3 )}, then W1 is a subset of V .

Now we will explain our modification of the algorithm to compute the
irreducible witness point sets.
Let Zk = ∪ri=1Zki be the union of the irreducible k-dimensional components
of the algebraic variety Z = V (f1, ..., fn) and Lk be the linear space in CN

defined by k generic linear polynomials

lj = cj0 + cj1x1 + ...+ cjNxN .

for j = 1, .., k and i = 0, 1, ..., N , cij ∈ C.
We use the generic linear space Lk to define a projection
π : CN −→ Ck+1, π(x1, ..., xN ) := (z1, ..., zk, zk+1) as follows:

x1
.
.
.
.
xN

 7→


z1
.
.
.
zk
zk+1

 :=


c11 c12 . . c1N
c21 c22 . . c1N
. . . . .
. . . . .
ck1 ck2 . . ckN
p1 p2 . . pN

 .


x1
.
.
.
.
xN

 ,

p1, ..., pN ∈ C randomly chosen.
Set λ(x1, ..., xN ) := zk+1 and l := V (z1, ..., zk−1) ⊂ Ck the coordinate axis zk
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as in the theorem above. Let Lk,y be the linear space defined by the linear
polynomials l1, ..., lk−1 and lk,y := y+ck1x1+...+ckNxN . Let Wy := Lk,y∩Zk

be the k-witness point set. For y = ck0, we fix a non-empty subset V = Vy ⊂
Wy. In general let Vy be the subset of Wy consisting of all points which are
on a curve in π−1(l) ∩ Zk through a point of V . To compute Vy we use the
homotopy function

H(x(t), t) = (1− t).



l1
.
.
lk
f1
.
.
fn


+ t.



l1
.
.

lk − ck0 + y
f1
.
.
fn


as t goes from 1 to 0 using V as start system. Note that ]Vy = ]V .

Define the function s : C −→ C by

s(y) :=
∑

(x1,...,xN )∈Vy

λ(x1, ..., xN ).

To test the linearity of s, we take three values of y in C, say a, b, c.
If there exist A,B ∈ C such that

(s(a) = Aa+B, s(b) = Ab+B) =⇒ s(c) = Ac+B, (4.1)

then s is linear.
So far this is the approach which can be found in [14]. We now explain a

modification.
The condition (4.1) of the linearity above is equivalent to the following equa-
tion

s(a)(b− c) + s(b)(c− a) + s(c)(a− b) = 0. (4.2)

If Wkj ∩ Va 6= ∅ for some j ∈ {1, ..., r} and the condition (4.1) is true, then
Wkj ⊆ Va (Theorem 4.1). Let

Z(y) := {z =

N∑
t=1

ptvt | v = (v1, ..., vN ) ∈ Vy, p = (p1, ..., pN ) ∈ CN}.

Then

s(y) =
∑
v∈Vy

λ(v) =
∑
v∈Vy

(

N∑
t=1

ptvt) =
∑

z∈Z(y)

z.
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The continuation of the homotopy function implies that the i-th points in
the sets Va, Vb and Vc are on the same irreducible component. Let Va :=
{v1, ..., vm}, Vb := {v1, ..., vm} and Vc := {v̂1, ..., v̂m} be the sets computed
by using the homotopy function above . Let Z(a) := {a1, ..., am}, Z(b) :=
{b1, ..., bm} and Z(c) := {c1, ..., cm} be the sets corresponding to the set Va,
Vb and Vc respectively.

From (4.2) we obtain an equivalent condition to (4.1)

(b− c)
m∑
i=1

ai + (c− a)

m∑
i=1

bi + (a− b)
m∑
i=1

ci = 0. (4.3)

The condition (4.3) is called zero sum relation (cf. [7]) of a given subset
Va ⊆ W denoted by ZSR(Va). The sets Va, Vb and Vc have distinct points
and the same cardinality m, then obviously

ZSR(Va) =
∑

ai∈Va

ZSR({ai}). (4.4)

where ZSR({ai}) = (b− c)ai + (c− a)bi + (a− b)ci is defined as the zero sum
relation of a given point in Va.

The following algorithm computes irreducible witness point sets. The cor-
rectness of the Algorithm 3 follows from the Theorem (4.1).
We give an example of a pure 2-dimensional variety Z which is a union of
two 2-dimensional irreducible components Z1 and Z2. Z1 is of degree three
and Z2 is of degree two. The 2-witness point set W for Z is given as a finite
subset of Z consisting of five points {w1, w2, w3, w4, w5}. Z1 should contain
three points W1 := {w1, w2, w3} and the remaining points W2 := {w4, w5} are
on Z2. The algorithms (cf. [14],[22]) use the homotopy function at least nine
times to breakup W into W1 and W2. We will show below that we do not
need more than five times to use the homotopy function to breakup W into
W1 and W2.

Example 4.3. .
Let Z be the algebraic variety of dimension two in C3 defined by the polynomial
f(x, y, z) = (x3 + z)(x2− y). Let L be the linear space of dimension one in C3

defined by the linear equations l1 = 4x+7y+2z+6, l2 = 5x+7y+3z+6. Then
W := L ∩ Z = {w1, w2, w3, w4, w5}, where w1 = (1,−1.1428571429,−1), w2 =
(0,−0.8571428571, 0),

‡the i− th point in R corresponds to the i− th point in Wa;
§smallest subset with respect to the cardinality.
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Algorithm 3 IrrWitnessPointSet

Input: {f1, ..., fN} ⊂ C[x1, ..., xN ], {Wr, ...,Wd}, a list of witness point sets,
L = {l1, ..., ld} a set of generic linear polynomials (Output of Algorithm 2).
Where Wk = {w1, ..., wmk

} are witness point sets for a pure k-dimensional
component Zk of Z = V (f1, ..., fN ), k = r, ..., d.

Output: {{Wr1, ...,Wrtr}, ..., {Wd1, ...,Wdtd}}, Wkrk irreducible witness
point sets corresponding to a k-dimensional irreducible component Zkrk of
Zk.

for k = r to d do
a:=ck0;
define Lka to be the linear space defined by the subset {l1, ..., lk} ⊂ L;
choose b, c ∈ C generic, define Lkb, Lkc as above;
Wa = Wk, Wb = ∅, Wc = ∅, R = ∅;
choose p1, ..., pN ∈ C;
for i = 1 to mk do

compute {vi} ⊂ Z ∩ Lk,b and {v̂i} ⊂ Z ∩ Lk,c (using the homotopy
function with {f1, ..., fN , l1, ..., lk−1, lk,a} as start system and
{wi} as start solution);

compute the zero sum relation of {wi};

ri = (a− b)(
N∑
j=1

pj v̂ij) + (b− c)(
N∑
j=1

ptwij) + (c− a)(

N∑
j=1

ptvij);

R = R ∪ {ri}‡;
tk = 0;
while R 6= ∅ do

if
∑

t∈T t = 0 and T is a smallest subset§ of R then
tk = tk + 1;
Wktk ⊂Wa the points corresponding of the points of T ;
R = R \ T ;

return {{Wr1, ...,Wrtr}, ..., {Wd1, ...,Wdtd}} ;
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w3 = (−0.1428571429 + i ∗ 0.9147320339,−0.8163265306− i ∗ 0.2613520097,
0.1428571429− i ∗ 0.9147320339),
w4 = (−1,−0.5714285714, 1),
w5 = (−0.1428571429− i ∗ 0.9147320339,−0.8163265306 + i ∗ 0.2613520097,
0.1428571429 + i ∗ 0.9147320339).

We now illustrate the Algorithm 3:

• Use the linear space L1 to define the linear projection π : C3 −→ C3 as
follows

π(x, y, z) :=

 4 7 2
5 7 3
1 2 3

 x
y
z

 = (4x+7y+2z, 5x+7y+3z, x+2y+3z).

• Define the linear space L1,c of dimension one in C3 by the linear equa-
tions l1 = 4x+ 7y+ 2z+ 6, lc = 5x+ 7y+ 3z+ c, where c is generically
chosen in C. Then

πZ∩L1,c
(x, y) = (−6,−c, x+ 2y + 3z).

• Define the linear function λ : C2 −→ C by λ(x, y, z) := x+ 2y + 3z.

• For a = 6, let V1 = Va := {w11 = (1,−1.1428571429,−1)} ⊂W , L1,a :=
L the linear space defined by l1 = 4x + 7y + 2z + 6, la = 5x + 7y +
3z + 6. Then¶ Z(a) = {

∑
v∈Va

λ(v) = w11[1] + 2(w11[2]) + 3(w11[3])} =
{−4.2857142858}.

• Let b = 9, L1,b the linear space defined by l1 = 4x + 7y + 2z + 6, lb =
5x + 7y + 3z + 9. Compute Vb := (tL1,a + (1 − t)L1,b) ∩ Z = {w12 =
(1.671699881657157,−0.4776285376163331,−4.671699881657164)} as t
goes from 1 to 0, using Va as a start solution. Z(b) = {w12[1] +
2(w12[2]) + 3(w12[3])} = {−13.2986568385470012}.

• Let c = 63, L1,c the linear space defined by l1 = 4x + 7y + 2z +
6, lc = 5x + 7y + 3z + 63. Compute Vc := (tL1,a + (1 − t)L1,c) ∩ Z =
{w13 = (3.935100643260828, 14.30425695906836,−60.93510064326094)}
as t goes
from 1 to 0, using Va as a start solution. Z(c) = {w13[1] + 2(w13[2]) +
3(w13[3])} = {−150.261687368385272}.

¶we use the notation wij = (wij [1], wij [2], wij [3]) for i=1,..,5, j=1,2,3.
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zero sum relation of V1 = {(1,−1.1428571429,−1)}:

r1 :=
∑

a∈Z(a)

(b− c) +
∑

b∈Z(b)

(c− a) +
∑

c∈Z(c)

(a− b) =

= −75.8098062588232524.

The zero sum relation set of V1 = {(1,−1.1428571429,−1)} is R1 := {r1 =
−75.8098062588232524}.

• Let a = 6, Va := {w11 = (0,−0.8571428571, 0)} ⊂ W , L1,a := L the
linear space defined by l1 = 4x + 7y + 2z + 6, la = 5x + 7y + 3z +
6. Then Z(a) = {

∑
v∈Va

λ(v) = w11[1] + 2(w11[2]) + 3(w11[3])} =
{−1.7142857142}.

• Let b = 9, L1,b the linear space defined by l1 = 4x + 7y + 2z + 6, lb =
5x + 7y + 3z + 9. Compute Vb := (tL1,a + (1 − t)L1,b) ∩ Z = {w12 =
(−0.8358499408285809 + i ∗ 1.046869318849985, 0.2388142688081706 −
i ∗ 0.2991055196714253,−2.164150059171436− i ∗ 1.046869318849981)}
as t goes from 1 to 0, using Va as a start solution. Z(b) = {w12[1] +
2(w12[2])+3(w12[3])} = {−6.8506715807265477−i∗2.6919496770428086}.

• Let c = 63, L1,c the linear space defined by l1 = 4x + 7y + 2z + 6, lc =
5x+ 7y + 3z + 63. Compute Vc := (tL1,a + (1− t)L1,c) ∩ Z =
{w13 = (−1.967550321630417 + i ∗ 3.257877039491183,
15.99072866332302− i ∗ 0.9308220112831772,
−55.03244967836969 − i ∗ 3.257877039491242); } as t goes from 1 to 0,
using Va as a start solution. Z(c) = {w13[1] + 2(w13[2]) + 3(w13[3])} =
{−135.083442030093447− i ∗ 8.3773981015488974}.

zero sum relation of V2 = {(0,−0.8571428571, 0)}:

r2 :=
∑

a∈Z(a)

(b− c) +
∑

b∈Z(b)

(c− a) +
∑

c∈Z(c)

(a− b) =

= 107.3334745556671221− i ∗ 128.308937286793398.

The zero sum relation set of V2 = {(0,−0.8571428571, 0)} is
R2 := {r2 = 107.3334745556671221− i ∗ 128.308937286793398}.

• For the other points V3 = {w3}, V4 = {w4} and V5 = {w5}, we found the
zero sum relations:
R3 := {r3 = −9.38237104997583366 + i ∗ 127.0170767088},
R4 := {r4 = −31.5236682999307779 + i ∗ 128.3089372867945956} and
R5 := {r5 = 9.382371038077068− i ∗ 127.0170767088}.
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• The set of zero sum relation for all points of W is R = ∪5j=1Rj =
{r1, r2, r3,
r4, r5}, where i-th point in W corresponds i-th point in R.

• Find the smallest subset T of R with
∑

t∈T t = 0, which corresponds
an irreducible witness point set of W . Then we get T1 = {r3, r5},
T2 = {r1, r2, r4} corresponding to the irreducible witness point sets W1 =
{w3, w5}, W2 = {w1, w2, w4} respectively.

Remark 4.1. The points of a witness point set are computed approximately
by using the homotopy continuation method. Therefore the result of the zero
sum relation is only almost zero.

5 Examples and timings with Singular and Bertini

In this section we provide examples with timings of the algorithms
WitnessPointSuperSet, WitnessPointSet, and IrrWitnessPointSet imple-
mented in Singular to compute‖ the numerical decomposition of a given
algebraic variety defined by a polynomial system and compare them with the
results of Bertini . Each step of the numerical decomposition is paralleliz-
able. For our comparisons we did not use the parallel version of Bertini .

We tested two versions of the implementation in Bertini using the cascade
algorithm (cf. [15]) and using the regenerative cascade (cf. [16]) algorithm.
For the timings we used the 32-bit version of Singular 3-1-1 (cf. [8]) and
Bertini 1.2 (cf. [3]) on an Intel R© Core(TM)2 Duo CPU P8400 @ 2.26 GHz
2.27 GHz, 4 GB RAM under the Kubuntu Linux operating system.

Let Z be the algebraic variety defined by the following polynomial system:

Example 5.1. (cf. [18]).

f(x, y, z) =

 (y − x2)(x2 + y2 + z2 − 1)(x− 1
2 )

(z − x3)(x2 + y2 + z2 − 1)(y − 1
2 )

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 1
2 )


Example 5.2. (cf. [23],Example 13.6.4).

f(x, y, z) =

(
x(y2 − x3)(x− 1)

x(y2 − x3)(y − 2)(3x+ y)

)
‖The Singular implementation uses Bertini to compute the solutions of the homotopy

function.
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Example 5.3.

f(x, y, z) =

 (x3 + z)(x2 − y)
(x3 + y)(x2 − z)

(x3 + z)(x3 + y)(z2 − y)


Example 5.4.

f(x, y, z) =

 x(y2 − x3)(x− 1)
x(3x+ y)(y2 − x3)(y − 2)

x(y2 − x3)(x2 − y)


Example 5.5.

f(x, y, z) =

 (x− 1)((x3 + z) + (x2 − y))
(x3 + z)(x2 − y)
(x3 + z)(x2 − 1)


Example 5.6.

f(x, y, z) =

 (y − x2)(x2 + y2 + z2 − 1)(x− 1
2 ) + x5

(z − x3)(x2 + y2 + z2 − 1)(y − 1
2 ) + y4

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 1
2 ) + z6


Example 5.7.

f(x, y, z) =

(
x(y2 − x3)(x− 1) + y2

x(y2 − x3)(y − 2)(3x+ y) + x3

)
Example 5.8.

f(x, y, z) =

 (x3 + z)(x2 − y) + x4

(x3 + y)(x2 − z) + y3

(x3 + z)(x3 + y)(z2 − y) + z5


Example 5.9.

f(x, y) =


−3568891411860300072x5 + 1948764938x4+
3568891411860300072x2y2 − 1948764938xy2

−5105200242937540320x5y − 1701733414312513440x4y2+
11692589628x5 + 3897529876x4y + 5105200242937540320x2y3+
1701733414312513440xy4 − 11692589628x2y2 − 3897529876xy3


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Example 5.10.

f(x, y, z) =



−356737285367005125x5 − 92300457164036000x3y+
1121648050080163317x2z + 290209720279281056yz

−356737285367005125x5 + 887060318883271500x3z+
1121648050080163317x2y − 2789081819567309964yz

−356737285367005125x5z2 + 356737285367005125x5y+
887060318883271500x3z3 − 887060318883271500x3yz+

1121648050080163317x2z3 − 1121648050080163317x2yz−
2789081819567309964z4 + 2789081819567309964yz2


Example 5.11.

f(x, y, z) =



x5y2 + 2x3y4 + xy6 + 2x3y2z2 + 2xy4z2 + xy2z4 − x4y2
−2x2y4 − y6 − x5z − 2x3y2z − xy4z − 2x2y2z2 − 2y4z2−

2x3z3 − 2xy2z3 − y2z4 − xz5 − 3x3y2 − 3xy4 + x4z+
2x2y2z + y4z − 3xy2z2 + 2x2z3 + 2y2z3 + z5 + 3x2y2+

3y4 + 3x3z + 3xy2z + 3y2z2 + 3xz3 + 2xy2 − 3x2z − 3y2z−
3z3 − 2y2 − 2xz + 2z

x6y + 2x4y3 + x2y5 + 2x4yz2 + 2x2y3z2 + x2yz4−
5x6 − 10x4y2 − 5x2y4 − x4yz − 2x2y3z − y5z − 10x4z2−

10x2y2z2 − 2x2yz3 − 2y3z3 − 5x2z4 − yz5 − 3x4y−
3x2y3 + 5x4z + 10x2y2z + 5y4z − 3x2yz2 + 10x2z3+

10y2z3 + 5z5 + 15x4 + 15x2y2 + 3x2yz + 3y3z + 15x2z2

+3yz3 + 2x2y − 15x2z − 15y2z − 15z3 − 10x2 − 2yz + 10z

x6y2z + 2x4y4z + x2y6z + 2x4y2z3 + 2x2y4z3+
x2y2z5 − 7x6y2 − 14x4y4 − 7x2y6 − x6z2 − 17x4y2z2−
17x2y4z2 − y6z2 − 2x4z4 − 11x2y2z4 − 2y4z4 − x2z6−
y2z6 + 7x6z + 18x4y2z + 18x2y4z + 7y6z + 15x4z3+
27x2y2z3 + 15y4z3 + 9x2z5 + 9y2z5 + z7 + 21x4y2+

21x2y4 − 4x4z2 + 13x2y2z2 − 4y4z2 − 11x2z4 − 11y2z4−
7z6 − 21x4z − 40x2y2z − 21y4z − 24x2z3 − 24y2z3 − 3z5−

14x2y2 + 19x2z2 + 19y2z2 + 21z4 + 14x2z + 14y2z+
2z3 − 14z2


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Example 5.12.

f(x1, x2, x3, x4, x5) =


x25 + x1 + x2 + x3 + x4 − x5 − 4
x24 + x1 + x2 + x3 − x4 + x5 − 4
x23 + x1 + x2 − x3 + x4 + x5 − 4
x22 + x1 − x2 + x3 + x4 + x5 − 4
x21 − x1 + x2 + x3 + x4 + x5 − 4


Example 5.13.

f(a, b, c, d, e, f, g) =



a2 + 2de+ 2cf + 2bg + a
2ab+ e2 + 2df + 2cg + b
b2 + 2ac+ 2ef + 2dg + c
2bc+ 2ad+ f2 + 2eg + d
c2 + 2bd+ 2ae+ 2fg + e
2cd+ 2be+ 2af + g2 + f
d2 + 2ce+ 2bf + 2ag + g


Example 5.14. cyclic 4-roots problem.(cf.[5],[6]).

Example 5.15. cyclic 5-roots problem.(cf.[5],[6]).

Example 5.16. cyclic 6-roots problem.(cf.[5],[6]).

Example 5.17. cyclic 7-roots problem.(cf.[5],[6]).

Example 5.18. cyclic 8-roots problem.(cf.[5],[6]).

Example 5.19.

f(x11, x12, x13, x14, x15, x21, x22, x23, x24, x25, x31, x32, x33, x34, x35) =

=



−x12x21 + x11x22
−x13x22 + x12x23
−x14x23 + x13x24
−x15x24 + x14x25
−x22x31 + x21x32
−x23x32 + x22x33
−x24x33 + x23x34
−x25x34 + x24x35


Table 1 summarizes the results of the timings to compute the numerical

decomposition∗∗.
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Remark 5.1. The timings in the following table show that for an increasing
number of variables the original method of (cf.[14],[15],[18],[22],[23]) becomes
more efficient. One reason is that the computation of triangular sets which
is used in Singular for solving polynomial systems is expensive in this case.
Therefore the Algorithm 1, Algorithm 2 become slow in this situation. This is
not true for the Algorithm 3.
Replacing the solving of polynomial systems using triangular sets by homotopy
function methods but keeping the computation of the dimension and starting
at this dimension is more efficient also in case of a large number of variables.

Example Bertini Bertini (re) Singular

5.1 134.45s 39s 36.07
5.2 3.08s 2.5s 1.49s
5.3 1min 21.28s 27.4s 4.02s
5.4 18.56s 2.7s 1.77s
5.5 15.36s 8.6s 1.29s
5.6 4min 13s 15min 2s 2min 27s
5.7 1.83s 1.6s 0.39s
5.8 3min 29s 10min 43s 1.69s
5.9 16s 7s 2s

5.10 2min 57s 28s 2min 35s
5.11 44min 56s 2min 37s 4min 3s
5.12 4.73s 6s 0.37s
5.13 5.84s 8s 1s
5.14 1.43s 4.3s 0.79s
5.15 3.54s 10s 0.57s
5.16 3min 23.26s 2min 29s 1.43s
5.17 2h 11min 57s 32min 17s stopped after 5h
5.18 19h48min 17s 6h45min2s stopped after 50h
5.19 1min 57s 51s stopped after 3h

Table 1: Total running times for computing a numerical decomposition of the
examples above

∗∗(re) means using the regenerative cascade algorithm instead of the cascade algorithm
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