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MORE ON MORITA CONTEXTS FOR
NEAR-RINGS

Mirela Ştefănescu and Mariana Dumitru

Abstract

In [2], the Morita context has been introduced for near-rings as
a generalization of a Morita context for rings. In this paper, we are
studying ideals in Morita contexts for near-rings, finding new results
which continue those in [3]. Firstly, ideals of a Morita context for near-
rings are considered in the two ways, that is, one is along to ideals of the
near-rings and of the bigroups; another is along to ideals of the Morita
context itself. Ideals when M (or Γ) has a strong unity, prime-ideals and
equi-prime ideals are studied obtaining their mutual relationship. To an
ideal of a Morita context itself, we put into correspondence another ideal
of it. We may construct also a quotient Morita context. An important
example of a Morita context which includes Mn(R) (the matrix near-
ring over a near-ring R) as an operator ring is given and one ideal of it
is obtained. Under certain condition, a Morita context (R, Γ, M, L) is
represented by (R, M∗, M, MapR(M, M)), where M∗ = MapR(M, R).

Lastly, we can find a categorical equivalence between R-groups and
L-groups, where R and L are near-rings in a Morita context (R, Γ, M, L).

1. Preliminaries

Let R be a right near-ring and let Γ be a group (not necessarily abelian).
Γ is a left R-group if there is a function R × Γ → Γ, (r, γ) → rγ, such that
(r + s)γ = rγ + sγ and (rs)γ = r(sγ), for all r, s ∈ R, γ ∈ Γ.

We say that Γ is a right R-group if there is a function Γ×R → Γ,
(γ, r) → γr, such that (γ + λ)r = γr + λr and γ(rs) = (γr)s, for all γ, λ ∈ Γ
and r, s ∈ R.

If R and L are near-rings and Γ is a group, then Γ is called an
R-L-bigroup if Γ is both a left R-group and a right L-group such that

(rγ)l = r(γl) , for all r ∈ R, l ∈ L, γ ∈ Γ.
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Definition 1.1. [see [2] 1.1. Definition]. A quadruple (R,Γ,M,L) is a
Morita context for near-rings, if R and L are near-rings, Γ and M are groups
such that

(i) Γ is an R-L-bigroup;

(ii) M is an L-R-bigroup;

(iii) there exists a function: Γ×M → R, (γ, m) → γm, such that

(γ1 + γ2)m = γ1m + γ2m, r(γm) = (rγ)m, (γm)r = γ(mr)

and (γl)m = γ(lm), for all γ1, γ2, γ ∈ Γ, m ∈ M, r ∈ R, l ∈ L;

(iv) there exists a function: M × Γ → L, (m, γ) → mγ, such that

(m1 + m2)γ = m1γ + m2γ, l(mγ) = (lm)γ, (mγ)l = m(γl)

and (mr)γ = m(rγ), for all m1,m2,m ∈ M,γ ∈ Γ, r ∈ R, l ∈ L;

(v) the two above functions are connected by

γ1(mγ2) = (γ1m)γ2 and (m1γ)m2 = m1(γm2),

for all γ1, γ2, γ ∈ Γ, m1,m2,m ∈ M.

Note that:

(m1γ1)(m2γ2) = ((m1γ1)m2)γ2 = (m1(γ1m2))γ2 =

= m1((γ1m2)γ2) = m1(γ1(m2γ2)).

Similarly, we have

(γ1m12)(γ2m2) = ((γ1m1)γ2)m2 = (γ1(m1γ2))m2 = γ1((m1γ2)m2) =

= γ1(m1(γ2m2)), for all m1,m2 ∈ M, γ1, γ2 ∈ Γ.

Due to (v), we can represent the above products by γ1mγ2 and m1γm2,
respectively. Call R and L the operator near-rings in a Morita context.

Examples of Morita contexts for near-rings were given in [2].

Define [M,Γ] :=
{

n∑
i=1

miγi|mi ∈ M, γi ∈ Γ, i = 1, 2, ..., n, n ∈ N

}
and [Γ,M ] :=

{
t∑

j=1

γjmj |mj ∈ M, γj ∈ Γ, j = 1, 2, ..., t, t ∈ N

}
.
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Lemma 1.1. The sets [M,Γ] and [Γ,M ] are subnear-rings of the operator
near-rings L and R, respectively.

Proof. It can easily be done by straightforward calculations. We only
notice that in the case of composition, for example in L, we have:(

n∑
i=1

aiγi

) m∑
j=1

bjλj

 =
n∑

i=1

aiωi, where ωi = γi

 m∑
j=1

bjλj

 ,

for i = 1, 2, ..., n since
m∑

j=1

bjλj ∈ L and γi

(
m∑

j=1

bjλj

)
∈ Γ.�

All the near-rings used in the paper are right near-rings.

2. Ideals of near-rings and bigroups in Morita contexts and their
relationships

Definition 2.1. Let (R,Γ,M,L) be a Morita context. A nonempty subset
K of M is called an ideal of M (we shall denote it by K C M), if the following
conditions are satisfied:

(i) (K, +) is a normal subgroup of (M,+);
(ii) kr ∈ K, for all k ∈ K, r ∈ R;
(iii) l(k + x)− lx ∈ K, for all k ∈ K, x ∈ M and l ∈ L.
The third condition is equivalent to the condition
(iii)

′
l(x + k)− lx ∈ K, for all k ∈ K, x ∈ M and l ∈ L,

since K is a normal subgroup of (M,+).

Definition 2.2. For K ⊆ M and j ⊆ L, we define the sets:

KM−1 := {l ∈ L|lx ∈ K for all x ∈ M},

JΓ−1 := {a ∈ M |aγ ∈ J for all γ ∈ Γ}.

Similarly, for ∆ ⊆ Γ and I ⊆ R, ∆Γ−1 and IM−1 are defined.
Recall that a subset Y of a near-ring X is an ideal, if (Y,+) is a

normal subgroup of (X, +), Y X ⊆ Y and x1(y + x2) − x1x2 ∈ Y , for all
x1, x2 ∈ X, y ∈ Y.

Proposition 2.3. Let (R,Γ,M,L) be a Morita context for near-rings.
(i) If J C L, then JΓ−1 C M.
(ii) If K C M, then KM−1 C L.
(iii) If I C R, then IM−1 C Γ.
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(iv) If ∆ C Γ, then ∆Γ−1 C R.

Proof is done by straightforward calculations.�
Similarly, by verifying the definitions, one can prove the following

Corollary 2.4. Let (R,Γ,M,L) be a Mor near-rings.
If J C L, N C M, I C R and ∆ C Γ, then J ⊆ JΓ−1M−1 C L,
N ⊆ NM−1Γ−1 C M, I ⊆ IM−1Γ−1 C R and ∆ ⊆ ∆Γ−1M−1 C Γ.

Definition 2.5. M is said to have a strong-right (resp. left) unity if
there exist elements δ (resp. ω) in Γ and e (resp. f) in M such that, for all
x ∈ M, xδe = x (resp. fωx = x).

Γ is said to have a strong-right (resp. left) unity if there exist elements λ
(resp. α) in Γ and a (resp. b) in M such that, for all γ ∈ Γ, γaλ = γ (resp.
αbγ = γ).

Remark 2.6. Assume R = [Γ,M ] and L = [M,Γ] . If M has a strong
right unity (γ, e), then γe is a right identity of R.

Indeed, for r = Σiγixi ∈ R,

r(δe) = (Σiγixi)(δe) = Σiγi(xiδe) = Σiγixi = r.

If Γ has a strong unity (a, λ), then aλ is a right identity of L.
Indeed, for l = Σjyjωj ∈ L,

l(aλ) = (Σjyjωj)(aλ) = Σjyj(ωjaλ) = Σjyjωj = l.

Proposition 2.7. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume L = [M,Γ], R = [Γ,M ] and both M and Γ have strong right unities.
Then for J C L, N C M, I C R and ∆ C Γ, J = JΓ−1M−1, N =
NM−1Γ−1, I = IM−1Γ−1 and ∆ = ∆Γ−1M−1.

Proof. We only have to prove the inclusions:

JΓ−1M−1 ⊆ J and NM−1Γ−1 ⊆ N.

Let (f, ω) be a strong right unity of Γ. Let l ∈ JΓ−1M−1. Hence lxγ ∈ J,
for all x ∈ M, γ ∈ Γ. Then l = lfω ∈ J (taking x = f, γ = ω). Thus,
JΓ−1M−1 ⊆ J.

Let (δ, e) be a strong right unity of M. If a ∈ NM−1Γ−1, then aγx ∈ N ,
for all γ ∈ Γ, x ∈ M. Taking γ = δ, x = e, we obtain

a = aδe ∈ N and NM−1Γ−1 ⊆ N.

Other two cases are similarly proved. �
Summarizing the above results, we have:
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Theorem 2.8. Let (R,Γ,M,L) be a Morita context for near-rings, with
L = [M,Γ] and R = [Γ,M ]. If both M and Γ have strong right unities, there
are lattice isomorphisms between the lattice of all ideals of M, respectively of
Γ,and the lattice of all ideals of L , respectively of R), given by:

J 7−→ JΓ−1 (resp. I 7−→ IM−1) and respectively
N 7−→ NM−1 (resp. ∆ 7−→ ∆Γ−1) , where

where J B L and N B M (resp. I B R and ∆ B Γ).�

Proposition 2.9. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume Γ has a strong right unity. If I C R, then [I,Γ] C Γ, where

[I,Γ] := {Σibiγi ∈ Γ | bi ∈ I, γi ∈ Γ}.

Proof. Since 0R = 0Rγ ∈ [I,Γ], [I,Γ] 6= ∅.

Let
n∑

i=1

biγi,
m∑

j=1

cjωj ∈ [I,Γ], then

n∑
i=1

biγi −
m∑

j=1

cjωj =
n∑

i=1

biγi +
1∑

j=m

(−cj)ωj ∈ [I,Γ].

For all

γ ∈ Γ, γ + Σibiγi − γ = γeδ + Σibi(γieδ)− γeδ =

= (γe + Σibi(γie)− γe)δ ∈ [I,Γ],

since Σibi(γie) ∈ I and I is a normal subgroup of R. Hence, [I,Γ] is a normal
subgroup of Γ.

For all l ∈ L, Σibiγi ∈ [I,Γ], we have (Σibiγi) l = Σibi(γil) ∈ [I,Γ], since
γil ∈ Γ.

Now, for all r ∈ R,Σibiγi ∈ [I,Γ], γ ∈ Γ, r(γ + Σibiγi)− rγ =

r(γeδ + Σibiγi(eδ))− rγ(eδ) = r(γe + Σibi(γie))− r(γe) ∈ [I,Γ],

since Σibi(γie) ∈ I and r(γe + Σibi(γie))− r(γe) ∈ I.
Therefore [I,Γ] is an ideal of Γ. �

Proposition 2.10. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume R = [Γ,M ] and M has a strong right unity. If ∆ C Γ, then [∆,M ] C
R, where

[∆,M ] := {Σiδixi ∈ R | δi ∈ ∆, xi ∈ M}.



92
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Proof. For all Σδixi,
n∑

j=1

δ′jx
′
j ∈ [∆,M ],

Σδixi −
n∑

j=1

δ′jx
′
j = Σδixi +

1∑
j=1

(−δ′j)x
′
j ∈ [∆,M ].

Take an arbitrary r ∈ R, then r = rωf (see (2.6)). Thus,

r + Σiδixi − r = rωf + Σiδi(xiωf)− rωf = (rω + Σiδi(xiω)− rω)f ∈ [∆,M ],

since Σiδi(xiω) ∈ ∆ and ∆ is a normal subgroup of Γ. Hence [∆,M ] is a
normal subgroup of R.

For all r ∈ R and Σiδixi ∈ [∆,M ], since xir ∈ M,we have
(Σiδixi) r = Σiδi(xir) ∈ [∆,M ].

For all s ∈ R, r(s + Σiδixi)− rs = r(sωf + Σiδixi(ωf))− rs(ωf) =

= {r(sω + Σiδi(xiω)− r(sω)}f ∈ [∆,M ], since Σiδi(xω) ∈ ∆,

∆ is a normal subgroup of Γ, and r(sω + Σiδi(xiω))− r(sω) ∈ ∆.
Therefore [∆,M ] is an ideal of R. �

Theorem 2.11. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume R = [Γ,M ] and both M and Γ have strong right unities. Then there
are lattice isomorphisms between the lattice of all ideals of Γ and the lattice
of all ideals of R, given, by

∆ 7−→ [∆,M ]and I 7−→ [I,Γ], respectively.

Proof. Let η : I 7−→ [I,Γ] and ξ : ∆ → [∆,M ]. Then, for all
Σj(Σiaijγij)xj ∈ [[I,Γ],M ], we show that Σj(Σiaij(γijxj)) ∈ I. Indeed, since
γijxj ∈ R, aij ∈ I, then aij(γijxj) ∈ I and so

Σiaij(γijxj) ∈ I and Σj(Σiaij(γijxj)) ∈ I.

On the other hand,

I = Iωf = (Iω)f ⊆ [[I,Γ],M ].

Therefore [[I,Γ],M ] = I and this means ξη(I) = I.
Similarly, we have ηξ(∆) = ∆. �
In the same manner, we prove the following two propositions.

Proposition 2.12. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume M has a strong right unity. If J C L, then [J,M ] C M, where

[J,M ] := {Σicixi | ci ∈ J, xi ∈ M}.�
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Proposition 2.13. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume L = [M,Γ] and Γ has a strong right unity. If K C M, then [K, Γ] C
L, where

[K, Γ] := {Σidiγi | di ∈ K, γi ∈ Γ}.�

Theorem 2.14. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume L = [M,Γ] and both M and Γ have strong right unities. There are
lattice isomorphisms between the lattice of all ideals of M and the lattice of
all ideals of L, given by:

K 7−→ [K, Γ] and J 7−→ [J,M ], respectively.�

3. Prime ideals of the near-rings and of the bigroups in a Morita
context and their relationships

Let (R,Γ,M,L) be a Morita context for near-rings. We recall the definition
of 3-prime ideals in the near-rings.

Definition 3.1. An ideal J C L is called a 3-prime ideal, if for any
l, l′ ∈ L, lLl′ ⊆ J implies l ∈ J or l′ ∈ J.

Let P C M, P 6= M. The ideal P is called a prime ideal in M, if , for
all x, y ∈ M, xΓy ⊆ P implies x ∈ P or y ∈ P. P is a 3-prime ideal
of M if xΓMΓy ⊆ P implies x ∈ P or y ∈ P, (x, y ∈ M), where
ΓMΓ = {Σiγixiλi | γi, λi ∈ Γ, xi ∈ M}.

Proposition 3.2. For an ideal P of M, P 6= M, the following statements
are equivalent:

(1) xΓy ⊆ P, for x, y ∈ M, implies x ∈ P or y ∈ P.
(2) xΓMΓy ⊆ P, for x, y ∈ M , implies x ∈ P or y ∈ P.
Proof.Indeed, if (1) holds and xΓMΓy ⊆ P, x /∈ P, then, for all γ ∈ Γ,

xΓ(xγy) ⊆ P. Since x /∈ P , we have xγy ∈ P ; therefore y ∈ P. Conversely, if
(2) holds, assume xΓy ⊆ P . As ΓMΓ ⊆ Γ, we also have xΓMΓy ⊆ P ; hence
x ∈ P or y ∈ P. Therefore (1) holds.�

Theorem 3.3. Let (R,Γ,M,L) be a Morita context for near-rings.
Then the following statements hold:

(i) If P C M is prime, then PM−1 is 3-prime.
(ii) If J C L is 3-prime, then JΓ−1 is prime.
(iii) There is a 1-1 correspondence between the set of all prime ideals of M

and the set of all 3-prime ideals of L.

Proof. (i) Let l, l′ ∈ L such that lLl′ ⊆ PM−1. This implies
l(xγ)l′ ∈ PM−1, for all x ∈ M, γ ∈ Γ, i.e., for all y ∈ M, l(xγ)l′y ∈ P (by
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definition of PM−1). But l(xγ)l′y = (lx)γ(l′y) ∈ P , where lx, l′y ∈ M and
γ ∈ Γ is arbitrary. Thus, lx ∈ P or l′y ∈ P. If for all x ∈ M, lx ∈ P, then
l ∈ PM−1. If there exists an x′ ∈ M, such that lx′ /∈ P, then for all y ∈ M
and γ ∈ Γ, (lx′)γ(l′y) ∈ P ; hence l′y ∈ P for all y ∈ M. Therefore l′ ∈ PM−1

and PM−1 is a 3-prime ideal of L.
(ii) Let x, y ∈ M such that xΓy ⊆ JΓ−1. If x ∈ JΓ−1, then we are

ready. Assume x /∈ JΓ−1, i.e. there is γ1 ∈ Γ, such that xγ1 /∈ J. Taking an
arbitrary l ∈ L, we have γ1l ∈ Γ and x(γ1l)y ∈ JΓ−1, i.e. for all γ ∈ Γ, l ∈
L, (xγ1)l(yµ) ∈ J. But xγ1 /∈ J, J being a 3-prime ideal, hence yµ ∈ J for all
µ ∈ Γ. Thus, y ∈ JΓ−1.

(iii) The 1-1 correspondence is given in Theorem 2.8, taken it only for
prime ideals and respectively 3-prime ideals:

J 7−→ JΓ−1, P 7−→ PM−1,

where J C L and P C M are 3-prime, respectively prime ideals.
It is sufficient to show the inclusions

JΓ−1M−1 ⊆ J and PM−1Γ−1 ⊆ P,

because in Theorem 2.8 these inclusions were obtained by using strong unities.
Let x ∈ PM−1Γ−1. Then for all y ∈ M, γ ∈ Γ, xγy ∈ P . Take y = x,

therefore xγx ∈ P for all γ ∈ Γ. Hence x ∈ P and PM−1Γ−1 ⊆ P. Let
h ∈ JΓ−1M−1. As JΓ−1M−1 C L, for any l ∈ L, hl ∈ JΓ−1M−1, i.e.,
hlxγ ∈ J, for all x ∈ M, γ ∈ Γ. If J = L, then h ∈ J. If J 6= L, we take
zδ ∈ L\J with z ∈ M, δ ∈ Γ. Then hlzδ ∈ J , for all l ∈ L, implying h ∈ J
since zδ /∈ J. Therefore, JΓ−1M−1 ⊆ J. �

Replacing the Morita context (R,Γ,M,L) in Theorem 3.3 by the Morita
context (L,M,Γ, R) , we obtain:

Theorem 3.4. Let (R,Γ,M,L) be a Morita context for near-rings.
Then the following statements hold:

(i)′ If ∆ C Γ is prime, then ∆Γ−1 is 3-prime.
(ii)

′
If IC R is 3-prime, then IM−1 is prime.

(iii)
′
There is a 1-1 correspondence between the set of all prime ideals of Γ

and the set of all 3-prime ideals of R.�
We may obtain a result connecting the prime radical of M, namely

P (M) := ∩{P |P is prime ideal in M},

and the 3-prime radical of the near-ring L, namely

P (L) := ∩{J | J is a 3-prime ideal in L}.
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Corollary 3.5. Let (R,Γ,M,L) be a Morita context for near-rings.
Then P (L)Γ−1 = P (M) and P (M)M−1 = P (L).

Proof. It is based upon the equalities (∩J)Γ−1 = ∩(JΓ−1) and
(∩P )M−1 = ∩(PM−1) and Theorem 3.4.�

Remark 3.6. For P (R) and P (Γ), we have P (R)M−1 = P (Γ) and
P (Γ)Γ−1 = P (R).

Definition 3.7. Let (R,Γ,M,L) be a Morita context for near-rings.
Let P C L. P is equiprime if there exists x ∈ L\P such that xll1 − xll2 ∈ P,
for all l ∈ L, implies l1 − l2 ∈ P , where l1, l2 ∈ L are arbitrary.

L is said to be equiprime if its zero ideal is equiprime, that is, if there
exists an element 0 6= a ∈ L, such that, for l1, l2 ∈ L, all1 = all2 ,for all l ∈ L,
implies l1 = l2.

Let N C M. N is equiprime, if there exists m ∈ M\N such that
mγx−mγy ∈ N for all γ ∈ Γ and x, y ∈ M, implies x− y ∈ N.

M is said to be equiprime if its zero ideal is equiprime, that is, if there
exists a ∈ M, a 6= 0, such that for x, y ∈ M, with aγx = aγy, for all γ ∈ Γ,
we have x = y.

Theorem 3.8. Let (R,Γ,M,L) be a Morita context for near-rings.
(i) If P C L is equiprime, then PΓ−1 C M , is equiprime.
(ii) If K C M is equiprime, then KM−1 C L is equiprime.
(iii) There is a 1-1 correspondence between the set of all equiprime ideals

of M and the set of all equiprime ideals of L, where L=[M,Γ].

Proof. (i) Suppose m ∈ M and m /∈ PΓ−1. Then, there is δ ∈ Γ such that
mδ /∈ P. Let, for any γ ∈ Γ, mγx−mγy ∈ PΓ−1. We show that x−y ∈ PΓ−1.

For any ω ∈ Γ, (mγx−mγy)ω ∈ P, i.e. mγxω −mγyω ∈ P.
Since γ is arbitrary, putting γ = δl, for any l ∈ L, we obtain (mδ)l(xω)−

−(mδ)l(yω) ∈ P.
Since P C L is equiprime, xω − yω = (x− y)ω ∈ P. Hence, x− y ∈ PΓ−1.
(ii) Suppose a ∈ L and a /∈ KM−1. Then there exists an element m ∈ M

such that am /∈ K.
For any l ∈ L, we assume all1 − all2 ∈ KM−1, where l1, l2 ∈ L, and we

shall show l1 − l2 ∈ KM−1. For any x ∈ M, (all1 − all2)x ∈ K and then
all1x− all2x ∈ K.

For m ∈ M and any γ ∈ Γ, mγ ∈ L. Therefore, putting l = mγ, we obtain
(am)γ(l1x)− (am)γ(l2x) ∈ K.

Since K C M is equiprime, l1x− l2x = (l1 − l2)x ∈ K and then
l1 − l2 ∈ KM−1.

(iii) It is sufficient to show the inclusions:

JΓ−1M−1 ⊆ J and KM−1Γ−1 ⊆ K.



96
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Let l1 ∈ JΓ−1M−1. If l1 ∈ J, then the statement is proved. Assume l1 /∈ J.
For any x ∈ M, γ ∈ Γ, l1xγ ∈ J. For any y ∈ M, l ∈ l, ly ∈ M. Therefore,
putting x = ly, we obtain l1(ly) ∈ J,i.e., l1l(yγ) ∈ J , where l1 /∈ J. But if
J is equiprime, then J is prime (see [1], p.3115), therefore yγ ∈ J. Hence
Σiyiγi ∈ J, for all yi ∈ M, γi ∈ Γ. But [M,Γ] = L, hence L ⊆ J and then
l1 ∈ J, a contradiction.

Let K C M be equiprime, we shall show that KM−1Γ−1 ⊆ K. If
a ∈ KM−1Γ−1, then, for x ∈ M, γ ∈ Γ, aγx ∈ K. If a ∈ K, then the
statement is proved. Assume a /∈ K. Since if K is equiprime, then K is prime,
and aγx ∈ K, a /∈ K implies x ∈ K. As x is arbitrary, it follows a ∈ K, a
contradiction.�

We define the equiprime radical of M by taking:

P∗(M) := ∩{P | P is an equiprime ideal in M}

and the equiprime radical (see [1], p. 3117) of the near-ring L :

P∗(L) := ∩{J | J is an equiprime ideal inL}.

Corollary 3.9. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume L = [M,Γ]. Then

P∗(L)Γ−1 = P∗(M) and P∗(M)M−1 = P∗(L).

Proof. It is based upon the equalities (∩J) Γ−1 = ∩(JΓ−1) and
(∩P ) M−1 = ∩(PM−1) and Theorem 3.8.�

If a Morita context (R,Γ,M,L) is given, considering (L,M,Γ, R) as a
Morita context, we obtain the following theorem and its corollary:

Theorem 3.10. Let (R,Γ,M,L) be a Morita context.
(i) If the ideal ∆ of Γ is equiprime, then ∆Γ−1 is equiprime.
(ii) If the ideal of R is equiprime, then IM−1 is equiprime.
(iii) There is a 1-1 correspondence between the set of all equiprime ideals

of Γ and the set of all equiprime ideals of R, where R = [Γ,M ].�

Corollary 3.11. For P∗(R) and P∗(Γ), we have

P∗(R)M−1 = P∗(Γ) and P∗(Γ)Γ−1 = P∗(R).�

4. Ideals of a Morita context

Recall the definition of an ideal of a Morita context for near-rings (see [2],
4.1).
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Definition 4.1. Let A := (A11, A12, A21, A22) be a Morita context for
near-rings. Then B := (B11, B12, B21, B22) is an ideal of A, (we denote it by
B C A), if for i, j, k ∈ {1, 2} :

(i) Bij is a normal subgroup of Aij ;
(ii) BijAjk ⊆ Bik, where BijAjk := {xy | x ∈ Bij , y ∈ Ajk};
(iii) Aki ∗Bij ⊆ Bkj , where Aki ∗Bij = {x(y + a)− xy | x ∈ Aki,

y ∈ Aij , a ∈ Bij}.
This definition requires that each Bij is not only an ideal in Aij , but also

it should satisfy additional conditions.
Let (I,∆,K, J) C (R,Γ,M,L) . From the definition of an ideal, we can

obtain the following mutual relationships between the ideals I and J :

(1)
{

Γ ∗ (JM) ⊆ I
(Γ ∗ J)M ⊆ I

and (2)
{

M ∗ (IΓ) ⊆ J
(M ∗ I)Γ ⊆ J.

Similarly, for ∆ and K, we have:

(3)
{

(M ∗∆)M ⊆ K
M ∗ (∆M) ⊆ K

and (4)
{

Γ ∗ (KΓ) ⊆ ∆
(Γ ∗K)Γ ⊆ ∆.

If other conditions, like zerosymmetry or having strong right (left) unities,
are satisfied, then we can have more strict relationships between I and J, and
also between ∆ and K.

For example, we assume Γ is zero-symmetric, that is

r0R = 0R, r0Γ = 0Γ, γ0M = 0R, γ0L = 0Γ,

x0R = 0M , l0M = 0M , x0Γ = 0L, l0L = 0L,

for all r ∈ R, γ ∈ Γ, x ∈ M and l ∈ L.
If Γ has a right strong unity, (f, ω), that is γfω = γ, for all γ ∈ Γ, then

γ(l+j)−γl = (γ(l+j)−γl)fω = (γ∗j)f ∈ I ⊆ IΓ, for all γ ∈ Γ, j ∈ J, l ∈ L.
Taking l = 0, we obtain γj ∈ IΓ. Hence, x∗(γj) ∈ M ∗(IΓ) ⊆ J, for all x ∈ M,
that is, x(λ + γj)− xλ ∈ M ∗ (IΓ) ⊆ J, for all λ ∈ Γ.

Taking λ = 0Γ, we obtain xγj ∈ M ∗ (IΓ) ⊆ J. Hence

(Σixiγi) j ∈ M ∗ (IΓ) ⊆ J, for all xi ∈ M, γi ∈ Γ.

If L = [M,Γ] has the left unity 1L, then j ∈ M ∗ (IΓ) ⊆ J. Thus J ⊆
M ∗ (IΓ) ⊆ J, where M ∗ (IΓ) = J and then MIΓ = J.

For a subset ∆ij ⊆ Γij , we obtained ∆ijΓ−1
kj := {x ∈ Γik | xΓkj ⊆ ∆ij},

for all i, j, k ∈ {1, 2}. (See [1].)
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Proposition 4.2. ([2], Prop. 4.2). Let Γ := (Γ11,Γ12,Γ21,Γ22) be a
Morita context and ∆ := (∆11,∆12,∆21,∆22) be an ideal of Γ. Then, for

i, j, k ∈ {1, 2},∆ijΓ−1
kj B Γij .�

We shall generalize the proposition as follows:

Theorem 4.3. If (I,∆,K, J) is an ideal of C = (R,Γ,M,L), then(
∆Γ−1, IM−1, JΓ−1,KM−1

)
C (R,Γ,M,L).

Proof. Since ∆Γ−1 C R, IM−1 C Γ, JΓ−1 C M, KM−1 C L, for ∆Γ−1

we shall show:
(i)
(
∆Γ−1

)
Γ ⊆ IM−1 and M ∗ (∆Γ−1) ⊆ JΓ−1.

By the definition of ∆Γ−1, we obtain
(
∆Γ−1

)
Γ ⊆ ∆, and ∆M ⊆ I, since

(I,∆,K, J) C (R,Γ,M,L). Thus
(
∆Γ−1

)
Γ ⊆ ∆ ⊆ IM−1.

For any x ∈ M, r ∈ R, a ∈ ∆Γ−1, we have: x(r + a) − xr ∈ M ∗
(∆Γ−1), and, for any γ ∈ Γ, (x(r + a)− xr)γ = x(rγ + aγ)− x(rγ) ∈ J, since
(I,∆,K, J) C C, M ∗∆ ⊆ J and x ∈ M, rγ ∈ Γ, aγ ∈ ∆.

Therefore, M ∗ (∆Γ−1) ⊆ JΓ−1.
For IM−1, we have to show
(ii) (IM−1)M ⊆ ∆Γ−1 and M ∗ (IM−1) ⊆ KM−1.
By the definition of IM−1, (IM−1)M ⊆ I and since (I,∆,K, J) C C, IΓ ⊆

∆ and then I ⊆ ∆Γ−1. Therefore, (IM−1)M ⊆ ∆Γ−1.
For any x(γ + δ) − xγ ∈ M ∗ (IM−1) (where x ∈ M,γ ∈ Γ, δ ∈ IM−1)

and for any y ∈ M, we have (x(γ + δ) − xγ)y = x(γy + δy) − x(γy) ∈ K,
since (I,∆,K, J) C C, M ∗ I ⊆ K and x ∈ M, γy ∈ R, δy ∈ I,(because of
∆M ⊆ I, due to (I,∆,K, J) C C). Therefore, M ∗ (IM−1) ⊆ KM−1.

For JΓ−1 and KM−1, respectively,
(iii) (JΓ−1)Γ ⊆ KM−1 and Γ ∗ (JΓ−1) ⊆ ∆Γ−1,
(iv) (KM−1)M ⊆ JΓ−1 and Γ ∗ (KM−1) ⊆ IM−1

are obtained by the symmetry of a Morita context, that is, if we take an ideal
(J,K, ∆, I) in the Morita context (L, M, Γ, R), then, from (i) and (ii), it
follows (iv) and (iii), respectively.�

Definition 4.4. Let (I,∆,K, J) be an ideal of C = (R,Γ,M,L). If
(I,∆,K, J) = (∆Γ−1, IM−1, JΓ−1,KM−1), then (I,∆,K, J) is called a upper
closed ideal.

If (I,∆,K, J) is upper closed, then

(∗) I = ∆Γ−1, ∆ = IM−1, K = JΓ−1, J = KM−1

implies

(∗∗) ∆ = ∆Γ−1M−1, K = KM−1Γ−1, J = JΓ−1M−1 .
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In general, since the relations:

I ⊆ ∆Γ−1 ⊆ IM−1Γ−1, ∆ ⊆ IM−1 ⊆ ∆Γ−1M−1,

K ⊆ JΓ−1 ⊆ KM−1Γ−1, J ⊆ KM−1 ⊆ JΓ−1M−1,

hold, if (∗∗) holds, then (I,∆,K, J) is upper closed. Therefore, (∗) and (∗∗)
are equivalent.

As we have seen in § 3, an ideal, when M and Γ have strong right unities,
a prime ideal and an equiprime ideal are upper closed.

If a Morita context C = (R,Γ,M,L) is given, we obtain a new Morita
context C0 := (L, M, Γ, R), immediately.

Now we have:

Theorem 4.5. Let C = (R,Γ,M,L) be a Morita context for near-rings
and (I,∆,K, J) be an ideal of C. Then, we obtain a Morita context for near-
rings: (R/I,Γ/∆,M/K, L/J).

Proof. It is obvious that R̄ = R/I and L̄ = L/J are near-rings, while
Γ̄ = Γ/∆ and M = M/K are groups. We shall show only that M is an L-R-
bigroup. For l̄ ∈ L̄, x̄ ∈ M, define l̄x̄ := lx, and it is well-defined. Indeed, let
l′ = l + j, x′ = x + k, where j ∈ J, k ∈ K. Then

l′x′ = (l + j)(x + k) = l(x + k) + j(x + k) =

= (l(x + k)− lx) + (lx + j(x + k)− lx) + lx = k′ + lx,

where k′ ∈ K, since l(x + k)− lx ∈ L ∗K ⊆ K and lx + j(x + k)− lx ∈ K.
Therefore, l′x′ = lx.
It is easily to verify that M is a left L-group.
Similarly, by defining: x̄ · r̄ := xr, for any x̄ ∈ M, r ∈ R, M becomes a

right R-group (easy verification!).
Now M is an L̄-R̄-bigroup and Γ is an R̄-L̄-bigroup; using the function:

Γ × M → R, (γ̄, x̄) → γ̄x̄, defined by γ̄x̄ := γx, and similarly, x̄γ̄ := xγ, for
any x̄ ∈ M, γ̄ ∈ Γ, we see that (R,Γ,M, L) is a Morita context.

If we assume [Γ,M ]=R and [M,Γ] = L, then [Γ,M ]=R and [M, Γ] = L
since r = Σiγixi = Σiγixi = Σiγ̄ix̄i and l̄ = Σjyjωj = Σjyjωj = Σj ȳjω̄j .�
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5. An example of Morita context for near-rings

Let R be a unitary near-ring, and take 1R as the identity of R. Fixing
r ∈ R, let fr : R → R be a mapping defined by fr(x) = rx, for any x ∈ R;

let πj be a projection
(

R
R

)
→ R, where j ∈ {1, 2}, and σi be an injection

R →
(

R
R

)
, where i ∈ {1, 2}. Since R has identity, we have:

R ∼= fR := {fr ∈ Map(R,R) | r ∈ R}.

Let L be the sub-near-ring of Map

([
R
R

]
,

[
R
R

])
generated by

{σi ◦ fr ◦ πj | r ∈ R, i, j ∈ {1, 2}}.
Then L = M2(R), which is the matrix near-ring over R (see [3]).

Let P be the left R-right L-bisubgroup of Map

([
R
R

]
, R

)
, generated

by {fr ◦ πj | r ∈ R, j ∈ {1, 2}}.

Let Q be the left L-right R-bisubgroup of Map

([
R
R

])
, generated by

{σi ◦ fr | r ∈ R, i ∈ {1, 2}}.

Example 5.1. Γo = (R,P, Q, L) is a Morita context for near-rings.

Proof. By definitions of P and Q, it is easy to see that
(i) P is an R-L-bigroup and (ii) Q is an L-R-bigroup.
To show (iii), define P ×Q → R, by (p, q) → p◦q, mapping composition,

and p := fr ◦ π1 + fs ◦ π2, q := σ1 ◦ fu + σ2 ◦ fv.
Then p ◦ q(x) = (ru + sv)x, where ru + sv ∈ R.
It is easy to verify other relations like: (p + p′) ◦ q = p ◦ q + p′ ◦ q.
To show (iv), define Q× P → L, by (q, p) → q ◦ p, where

q ◦ p

[
x
y

]
:= q

(
p

[
x
y

])
, for all x, y ∈ R and p := fr ◦ π1 + fs ◦ π2,

q := σ1 ◦ fu + σ2 ◦ fv. Then q ◦ p

[
x
y

]
= σ1 ◦ fu ◦ π1 ◦ (σ1 ◦ fr ◦ π1

+ σ1 ◦ fs ◦ π2

[
x
y

]
+σ2 ◦ fv ◦ π1 ◦ (σ1 ◦ fr ◦ π1 + σ1 ◦ fs ◦ π2)

[
x
y

]
,

where σ1 ◦ fu ◦ π1 ◦ (σ1 ◦ fr ◦ π1 + σ1 ◦ fs ◦ π2)+

+σ1 ◦ fv ◦ π1 ◦ (σ1 ◦ fr ◦ π1 + σ1 ◦ fs ◦ π2) ∈ L.

The other relations are easily verified.
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(v) Since p ◦ q, q ◦ p are mapping compositions, we obtain p′ ◦ (q ◦ p′′) =
(p′ ◦ q) ◦ p′′ and (q′ ◦ p) ◦ q′′ = q′ ◦ (p ◦ q′′), for all p, p′, p′′ ∈ P, q, q′, q′′ ∈ Q.

Remarks 5.2. (1) Taking

 R
...
R

 instead of
(

R
R

)
, we can obtain a

Morita context Γo = (R,P, Q, L), where L = Mn(R).
(2) One of the important roles of Morita contexts is to investigate the

close relations between R and L (see § 6). To aim this we must construct a
special ideal. For Γ0 = (R,P, Q, L), where L = M2(R), let A < R and define

A2 :=
{

x ∈ L|x
[

R
R

]
⊆
[

A
A

]}
. Then A2 is an ideal of L, generated by

{σ1 ◦ fa ◦ πj | a ∈ A, i, j ∈ {1, 2}}, since σi ◦ fr ◦ πj

(
1R

1R

)
=
[

r
0

]
or[

0
r

]
∈
[

A
A

]
. Therefore, AQ−1 C P and A2P

−1 C Q.

Now we have

Proposition 5.3. For the Morita context Γo = (R,P, Q, L), where
L = M2(R), ∆ := (A,AQ−1, A2P

−1, A2) is an ideal of Γo.

Proof. (1) Since AQ−1 C P , we have R∗(AQ−1) ⊆ AQ−1 and (AQ−1)L ⊆
AQ−1. By the definition of AQ−1, (AQ−1)Q ⊆ A. We shall show that Q ∗

(AQ−1) ⊆ A2. For any q ∈ Q, p ∈ P, δ ∈ AQ−1,

[
x
y

]
∈
[

R
R

]
,

(q(p + δ)− qp)
[

x
y

]
= q

(
p

[
x
y

]
+ δ

[
x
y

])
− qp

[
x
y

]
= q(r + a)− qr,

where p

[
x
y

]
= r, δ

[
x
y

]
= a.

We prove that δ

[
x
y

]
∈ A.

Let δ := r1π1 + r2π2 ∈ AQ−1. Then (r1π1 + r2π2)π1 = r1π1σ1 = r1 ∈ A.
Thus r1 = a1 ∈ a. (r1π1 + r2π2)σ2 = r2π2σ2 = r2 ∈ A. Thus r2 = a2 ∈ A.

Thus, δ = a1p1 + a2p2 and so δ

[
x
y

]
=a1p1

[
x
y

]
+a2p2

[
x
y

]
=a1x + a2y ∈

A, since A C R.

Taking q(u) =
[

tu
su

]
, where t, s ∈ R, then

q(r + a)− qr =
[

t(r + a)− tr
s(r + a)− sr

]
∈
[

A
A

]
.

Therefore, Q ∗ (AQ−1) ⊆ A2.
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(2) Since A2P
−1 C Q, we have {(A2P

−1)R ⊆ A2p
−1, L ∗ (A2P

−1) ⊆
⊆ A2P

−1, (A2P
−1)P ⊆ A2, by the definition of A2P

−1. We shall show P ∗
(A2P

−1) ⊆ A.
For any p ∈ P, q ∈ Q, δ ∈ A2P

−1, x ∈ R, (p(q + δ)− pq)x =
= p(qx + δx)− p(qx).
Let δ = σ1r1 + σ2r2. Since (Σijσi · rij · πj) (σ10 + σ20) = σ10 + σ20 = 0, for
l(q +a)− lq ∈ L∗ (A2P

−1), where l ∈ L, q ∈ Q, a ∈ A2P
−1, putting q = 0, we

have la ∈ L ∗ (A2P
−1). Thus L(A2P

−1) ⊆ L ∗ (A2P
−1)(⊆ A2P

−1) and then
L(A2P

−1) ⊆ A2P
−1. Thus[

1R 0
0 0

]
δ =

[
1R 0
0 0

]
(σ1r1 + σ2r2) = σ1r1 ∈ A2P

−1,[
0 0
0 1R

]
δ = σ2r2 ∈ A2P

−1.

Then σ1r1p1 ∈ A2, σ1r2π2 ∈ A2,

δx = (σ1r1 + σ2r2) x = σ1r1x + σ2r2x =
[

r1x
r2x

]
= (σ1r1) π1

[
x
x

]
+

+(σ2r2) π2

[
x
x

]
∈
[

A
A

]
, since σiriπi ∈ A2.

Let δx =
[

a1

a2

]
, where a1, a2 ∈ A, and qx =

[
t
s

]
. Then

p(qx + δx)− p(qx) = p

([
t
s

]
+
[

a1

a2

])
− p

[
t
s

]
.

Putting p = kπ1 + hπ2,

= (kπ1 + hπ2)
[

t + a1

s + a2

]
− (kπ1 + hπ2)

[
t
s

]
=

= kπ1

[
t + a1

s + a2

]
+ hπ2

[
t + a1

s + a2

]
− ((kπ1)

[
t
s

]
+ hπ2

[
t
s

]
) =

= k(t + a1) + h(s + a2)− (kt + hs) = k(t + a1) + h(s + a2)− hs− kt =

= (k(t + a1)− kt) + (kt + (h(s + a2)− hs)− kt) ∈ A,

since a1, a2 ∈ A C R.
(3) Since A C R, we have AR ⊆ A and R ∗ A ⊆ A. Since (AP )Q AR A,

we have AP ⊆ AQ−1. We shall show that Q ∗ A ⊆ A2P
−1. To end, we show
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that (Q ∗A)P ⊆ A2. For any q ∈ Q, r ∈ R, a ∈ A, p ∈ P,

[
x
y

]
∈
[

R
R

]
,we

have

(q(r + a)− qr)p
[

x
y

]
= q(rs + as)− q(rs), where s = p

[
x
y

.

]

Putting q(u) =
[

hu
ku

]
, where h, k, u ∈ R,

we get the membership
[

h(rs + as)− h(rs)
k(rs + as)− k(rs)

]
∈
[

A
A

]
. �

(4) For A2, since A2 < L , we have A2L ⊆ A2, L ∗A2 ⊆ A2 .
Since (A2Q)P ⊆ A2L ⊆ A2, we obtain A2Q ⊆ A2P

−1.
Now, we shall show P ∗A2 ⊆ AQ−1, that is, (P ∗A2)Q ⊆ A.
For any p ∈ P, l ∈ L, a ∈ A2, q ∈ Q, x ∈ R,

(p(l + a)− pl)q(x) = p

(
l

[
t
s

]
+ a

[
t
s

])
− pl

[
t
s

]
,

where q(x) =
[

t
s

]
.

Putting l

[
t
s

]
=
[

u
v

]
, a

[
t
s

]
=
[

a1

a2

]
, we have

(p(l + a)− pl)q(x) equal to p

([
u
v

]
+
[

a1

a2

])
− p

[
u
v

]
in A,

as we have shown that P ∗ (A2P
−1) ⊆ A in (2). �

Remarks 5.4. For the Morita context Γ = (R,P, Q, L), where L =
Mn(R), we have an ideal (A,AQ−1, AnP−1, An), where A C R, R 3 1R and

An :=

x ∈ Mn(R) | x

 R
...
R

 ⊆
 A

...
A


 .

6. A representation of a Morita context for near-rings

Let C = (R,Γ,M,L) be a Morita context for near-rings. Using the near-
ring R and the right R-group MR from C, we can construct a Morita
context for near- rings: (R,M∗,M, S) [see [2], Example 3], where M∗ =
MapR(M,R) := {f | f : M → R is a function such that f(xr) = f(x)r,
for all x ∈ M and r ∈ R}, and S = MapR(M,M) :=
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:= {s | s : M → M is a function such that s(xr) = s(x)r, for all x ∈ M and
r ∈ R}.

Theorem 6.1. Suppose that (R,Γ,M,L) is a Morita context for near-
rings. Assume γM = 0 implies γ = 0 and M has a strong left unity. Then

(1) Γ ∼= M∗ as bigroups;
(2) L ∼= MapR(M,M) as near-rings.
Assume xΓ = 0 implies x = 0 and Γ has a strong left unity. Then
(3) M ∼= Γ∗ as bigroups;
(4) R ∼= MapR(Γ,Γ) as near-rings.

Proof. (1) Consider a map Γ → M∗, γ → γ̄, where, for ∀m ∈ M,
γ̄(m) := γm ∈ R. Since γ̄(mr) = γ(mr) = γ̄(m)r, then γ̄ ∈ M∗. For any
m ∈ M, γ + γ′(m) = (γ + γ′)m = γm + γ′m = γ̄(m) + γ̄′(m)(γ̄ + γ̄′)(m).

Therefore γ + γ′ = γ̄ + γ̄′ and similarly rγ = rγ̄, γl = γ̄l.
Therefore ,,−” is a bigroup homomorphism. To see it is injective, let γ = ω,

then for any m ∈ M, γ̄(m) = ω(m), γm = ωm, (γ + (−ω))m = 0.
By the assumption ”γM = 0 ⇒ γ = 0”, we obtain γ + (−ω) = 0, that is

γ = ω.
Let (e, δ) be a left unity of M. For any f ∈ M∗, f(e) ∈ R and then

f(e)δ ∈ Rδ ⊆ Γ.
For any x ∈ M, f(e)δ(x) = (f(e)δ)x = f(e)(δx) = f(eδx) = f(x).
Therefore, f(e)δ = f.
Therefore, ,,−” is surjective and therefore it is a bigroup isomorphism.
(2) Now consider the mapping ,,−” : L → MapR(M,M), l 7−→ l̄, where

for any m ∈ M, l̄(m) := lm ∈ M. By straightforward calculations, we prove
that ,,−” is an isomorphism of near-rings. From the Morita context C =
(R,Γ,M,L), we obtain a Morita context C ′ = (L,M,Γ, R).

From C ′, we have a Morita context (L,Γ∗,Γ, U), where Γ∗ = MapL(Γ, L)
and U = MapL(Γ,Γ).

Under the assumptions ,,xΓ = 0 ⇒ x = 0” and the existence of a strong
left unity (ω, f) of Γ, i.e., ωfγ = γ for all γ ∈ Γ, we obtain, similarly, (3) and
(4).�

Corollary 6.2. Let (R,Γ,M,L) be a Morita context for near-rings.
Assume γM = 0 implies γ = 0 and xΓ = 0 implies x = 0, both M and
Γ having strong left unities; then M ∼= (M∗)∗ and Γ ∼= (Γ∗)∗ as bigroups;
R ∼= MapMapR(M,M)(M∗,M∗) and
L ∼= MapMapR(Γ,Γ)(Γ∗,Γ∗) as near-rings.�

Remark 6.3. If Γ has a strong right unity (f, ω), then γM = 0 implies
γ = 0, since γM = 0, and then γf = 0f = 0, whence γ = γfω = 0ω = 0.

Similarly, if M has a strong right unity (ω, f), then xΓ = 0 implies x = 0.
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Thus, both M and Γ have strong unities, then Theorem 6.1 and Corollary
6.2 hold.

7. Equivalence between a category of right R-groups and a
category of right L-groups for a Morita context (R,Γ,M,L)

Let (R,Γ,M,L) be a Morita context. Let [M,R] := {Σimiri ∈ M | mi ∈
M, ri ∈ R}. Then, for any x ∈ M, xωf ∈ [M,R] and so [M,R] = M, where
(ω, f) is a right strong unity of M.

If xR = 0, then x = xωf = 0, since ωf ∈ R.
In the following, G(R) denotes the category of right R-groups where the

morphisms are R-group homomorphisms, that is, let GR, G′
R be right R-

groups, a map f : G → G′ is said to be an R-group homomorphism if
f(g1 + g2) = f(g1) + f(g2) and f(gr) = f(g)r , for all g1, g2, g ∈ G and
r ∈ R.

Similarly, G(L) denotes the category of right L-groups over L where mor-
phisms are L-group homomorphisms.

The following theorem gives the equivalence of the categories G(R) and
G(L).

Theorem 7.1. Let (R,Γ,M,L) be a Morita context for near-rings. As-
sume R = [Γ,M ], L = [M,Γ], M has a strong right unity and Γ has a strong
right unity. Then the categories of right R-groups and right L-groups are
equivalent.

Proof. Let G ∈ 0bG(R). Let A be a free additive group generated by the
set of ordered pairs (g, γ), where g ∈ G, γ ∈ Γ, and let B be the subgroup of
elements Σimi(gi, γi) ∈ A, where mi are integers such that Σimigi(γix) = 0,
i.e. B := {Σimi(giγi) ∈ A | Σimigi(γix) = 0, for all x ∈ M}. Then B is a
normal subgroup of A. Indeed, for any a ∈ A and b ∈ B, x ∈ M,

(a + b− a)x = ax + bx− ax = ax + 0− ax = 0,

where for a = Σimi(giγi) and x ∈ M, we define ax := Σimigi(γix).
Therefore, we can make a factor group A/B and denote it by [G, Γ]. Denote

by [g, γ] the coset (g, γ)+B. We have [g1, γ]+[g2, γ] = [g1 +g2, γ] and [gr, γ] =
[g, rγ]. Each element in [G, Γ] can be expressed as a finite sum Σi[gi, γi].

[G, Γ] is a right L-group with respect to the external operation

(σi[gi, γi]) l = Σi[gi(γilf), ω] = [Σigi(γilf), ω] ∈ [G, Γ],

since l = lfω, lf ∈ M and γi(lf) ∈ R.
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An R-group homomorphism f : GR → HR determines an L-group ho-
momorphism f̄ : [G, Γ] → [H,Γ] by f (Σi[gi, γi]) := Σi[f(gi), γi], where gi ∈
G, γi ∈ Γ.

Since Σi[gi, γi] = Σj [g′j , γ
′
j ] implies, for any x ∈ N , the equality:

Σigi(γix) = Σjg
′
j(γ

′
jx), we can show that f̄ is well-defined.

Now, let us verify that [G, Γ] ∈ 0bG(L).
For any Σi[gi, γi], Σi[g′i, γ

′
i] ∈ [G, Γ] and l, l′ ∈ L,

(Σi[gi, γi] + Σi[g′i, γ
′
i]) l = [Σigi(γilf) + Σjg

′
j(γ

′
j lf), ω] =

= [Σigi(γilf), ω] + [Σig
′
i(γ

′
ilf), ω] = Σi[gi, γi]l + Σj [g′j , γ

′
j ]l

and
Σi[gi, γi](ll′) = Σigiγi(ll′)f, ω] = [Σigi(γilfωl′)f, ω] =

= [Σigi(γilf), ω]l′ = (Σi[gi, γi]l) l′.

Similarly, for U ∈ 0bG(L), we can define a right R-group [U,M ] and show
[U,M ] ∈ 0bG(R).

The above defined f̄ is also an L-group homomorphism.
Similarly, an L-group homomorphism h : UL → VL determines an R-group

homomorphism h̄ : [U,M ]R → [V,M ]R by h̄ (Σj [uj , xj ]) := Σj [h(uj), xj ].
Let f1 and f2 be R-group maps f1 : A → B, f2 : B → C.
Let f̄1 and f̄2 be the L-group homomorphisms determined by f1 and f2,

respectively.
Then, f2 ◦f1 : A → C determines an L−group homomorphism p : [A,Γ] →

[C,Γ], where p = f̄2 ◦ f̄1. Indeed, for any Σi[ai, γi] ∈ [A,Γ], we have

p (Σi[ai, γi]) = Σi[f2 ◦ f1(ai), γi] = Σi[f2(f1(ai)), γi] =

= f̄2 (Σi[f1(ai), γi]) = f̄2 ◦ f̄1 (Σi[ai, γi]) .

Clearly, 1A : A → A determines 1[A,Γ] : [A,Γ] → [A,Γ].
Thus, we have functors:

F : G(R) → G(L) and H : G(L) → G(R),

where for A ∈ 0bG(R), F (A) = [A,Γ] and for U ∈ 0bG(L), H(U) = [U,M ], HF (A) =
H ([A,Γ]) = [[A,Γ],M ] and FH(U) = F ([U,M ]) = [[U,M ],Γ].

Define ηA : A = AR = A[Γ,M ] → [[A,Γ],M ] by a = Σairi → [Σi[ai, riδ], e].
Assume [Σi[ai, riδ], e] = 0.Then 0 = ([Σi[ai, riδ]) e, by definition of [[A,Γ],M ]

and for any γ ∈ Γ, 0 = Σi[ai(riδ(eγf)), ω], by definition of [A,Γ]× L.
We get further:
0 = Σi [ai(riγf), ω] , by Definition 1.1 (v),(iii),
0 = Σi [airi(γf), ω] , since M is a right R-group,
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0 = Σi [airi, (γf), ω] , since [ar, ω] = [a, rω] ,
0 = [Σiairi, γ(fω)] , by Definition 1.1(iii),
0 = [Σiairi, γ] , by using the fact that fω is a strong unity of Γ.
Putting γ=δ, we obtain [Σiairi, δ] = 0. Then, for any x ∈ M,Σiai(riδx) =

0,and by taking x = e,Σiai(riδe) = Σiaixi = 0.
Therefore, ηA is an injection.
For any b = Σj [Σi [aij , γij ] , xj ] ∈ [[A,Γ] ,M ] , there exists an element

a = Σj (Σiaij (γijxj)) ∈ AR = A,such that ηA(a) = b.
Therefore, ηA is a bijection.
To see ηA is an R-group homomorphism, for any a = Σiairi, b = Σibjsj ∈

A, r ∈ R , we verify the conditions:

ηA(a + b) = [Σi [ai, riδ] + Σi [bj , sjδ] , e] =

= [Σ [ai, riδ] , e] + [Σj [bj , sjδ] , e] = ηA(a) + ηA(b).

ηA(ar) = [Σi [ai, riδer] , e] = [Σi [ai, riδe] rδ, e] = [Σi [ai, riδ] , e] r = ηA(a)r.

For an R-group homomorphism f : AR → BR and for a = Σiairi =
Σiai(riδ)e ∈ A, we have

HF (f)ηA(a) = HF (f)ηA (Σiai (riδ) e) = HF (f)Σi [[ai, riδ] , e] =

= Σi[F (f)([ai, riδ], e]) = Σi[f(ai), riδ], e] = ηBf(a).

Therefore, we have the following commutative diagram:

Thus, HF = 1G(R). Similarly, we obtain FH = 1G(L).
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