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ON VARIABLE EXPONENT AMALGAM
SPACES

ISMAIL AYDIN

Abstract

‘We derive some of the basic properties of weighted variable exponent
Lebesgue spaces A (R™) and investigate embeddings of these spaces
under some conditions. Also a new family of Wiener amalgam spaces
W(Lﬁ(') , L) is defined, where the local component is a weighted vari-
able exponent Lebesgue space Lﬂ(‘) (R™) and the global component is a
weighted Lebesgue space L (R™). We investigate the properties of the
spaces W(Lﬁ,(‘)7 LY). We also present new Holder-type inequalities and
embeddings for these spaces.

1 Introduction

A number of authors worked on amalgam spaces or some special cases
of these spaces. The first appearance of amalgam spaces can be traced to
N.Wiener [26]. But the first systematic study of these spaces was undertaken
by F. Holland [18], [19]. The amalgam of LP and [9 on the real line is the
space (LP,1%) (R) (or shortly (LP,1?) ) consisting of functions f which are
locally in L? and have [? behavior at infinity in the sense that the norms over
[n,n + 1] form an 17 -sequence. For 1 < p, g < co the norm

g L
n+1 p|?

o= | 2 | [lr@rds| | <o

/]

n=—oo

Key Words: Variable exponent Lebesgue spaces, Amalgam spaces, embedding, Fourier
transform

2010 Mathematics Subject Classification: Primary 46E30; Secondary 43A25.

Received: April, 2011.

Revised: April, 2011.

Accepted: January, 2012.



6 ISMAIL AYDIN

makes (LP,19) into a Banach space. If p = ¢ then (L?,1?) reduces to LP. A
generalization of Wiener’s definition was given by H.G. Feichtinger in [10],
describing certain Banach spaces of functions (or measures, distributions) on
locally compact groups by global behaviour of certain local properties of their
elements. C. Heil [17] gave a good summary of results concerning amalgam
spaces with global components being weighted L4 (R) spaces. For a historical
background of amalgams see [16]. The variable exponent Lebesgue spaces (
or generalized Lebesgue spaces) LPO) appeared in literature for the first time
already in a 1931 article by W. Orlicz [22]. The major study of this spaces was
initiated by O. Kovacik and J. Rakosnik [20], where basic properties such as
Banach space, reflexivity, separability, uniform convexity, Holder inequalities
and embeddings of type LP() — L9() were obtained in higher dimension Eu-
clidean spaces. Also there are recent many interesting and important papers
appeared in variable exponent Lebesgue spaces (see, [4], [5],[6] [8], [9]). The
spaces LP() and classical Lebesgue spaces LP have many common properties,
but a crucial difference between this spaces is that LP() is not invariant under
translation in general ( Ex. 2.9 in [20] and Lemma 2.3 in [6]). Moreover , the
Young theorem || f gl < [Ifll,, lgll; is not valid for f € LP0) (R™) and
g € L' (R™). But the Young theorem was proved in a special form and derived
more general statement in [25]. Aydin and Giirkanl [3] defined the weighted
variable Wiener amalgam spaces VV(LP(')7 L3) where the local component is
a variable exponent Lebesgue space LP() (R™) and the global component is
a weighted Lebesgue space L% (R™). They proved new Holder-type inequal-
ities and embeddings for these spaces. They also showed that under some
conditions the Hardy-Littlewood maximal function does not map the space
W(LPC)| L9) into itself.

Let 0 < p(Q) < oco. It is known that LI (Q) — LPL)(Q) if and
only if p(x) < ¢(x) for a.e. & € Q by Theorem 2.8 in [20]. This paper is
concerned with embeddings properties of ) (R™) with respect to variable
exponents and weight functions. We will discuss the continuous embedding
Lﬁi(') (R™) — Lﬁ}l(') (R™) under different conditions. We investigate the prop-
erties of the spaces W(Lﬁ}('), L2). We also present new Holder-type inequalities
and embeddings for these spaces.

2 Definition and Preliminary Results

In this paper all sets and functions are Lebesgue measurable. The Lebesgue
measure and the characteristic function of a set A C R™ will be denoted by
1 (A) and x4, respectively. Let (X, ||.||y) and (Y, ||.]ly) be two normed linear
spaces and X C Y. X — Y means that X is a subspace of Y and the iden-
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tity operator I from X into Y is continuous. This implies that there exists a
constant C' > 0 such that
[ully < Clullx

for all u € X.

The space L}, (R™) consists of all (classes of ) measurable functions f
on R™ such that fyx € L'(R") for any compact subset K C R". Tt is
a topological vector space with the family of seminorms f — | fxx|;1. A
Banach function space (shortly BF-space) on R™ is a Banach space (B, ||.||5)
of measurable functions which is continously embedded into Lj,, (R™), i.e. for
any compact subset K C R™ there exists some constant C'xr > 0 such that
I fxrll: < Ck||fllg for all f € B. A BF-space (B, ||.||5) is called solid if
g € L. (R"), f € B and |g(z)| < |f(z)| almost everywhere (shortly a.e.)
implies that ¢ € B and ||g||z < ||f|lz.- A BF- space (B, |.||5) is solid iff it
is a L*°(R™)-module. We denote by C.(R™) and CS°(R™) the space of all
continuos, complex-valued functions with compact support and the space of
infinitely differentiable functions with compact support in R™ respectively.
The character operator M, is defined by M, f(y) = (y,t) f(y), y € R™ t € R™.
(B, |I.Il 3) is strongly character invariant if M;B C B and ||M.f||z = || f|| 5 for
all f € BandteR"™

We denote the family of all measurable functions p : R™ — [1,00) (called
the variable exponent on R™) by the symbol P (R™). For p € P (R™) put

Py = ess infp(x), p* = ess supp().
IERTI $ER7L

For every measurable functions f on R™ we define the function
o) = [11@F ds
R’!‘L

The function g, is a convex modular; that is, ¢,(f) > 0, 0,(f) = 0 if and only
if f=0, 0p(—f) = 0p(f) and g, is convex. The variable exponent Lebesgue
space LP()(R™) is defined as the set of all y—measurable functions f on R”
such that g,(Af) < oo for some A > 0, equipped with the Luxemburg norm

1£1,0) = inf{)\ >0 0(0) < 1}.

If p* < oo, then f € LPO(R™) iff op(f) < oo. If p(x) = p is a constant
function, then the norm ||.||, ) coincides with the usual Lebesgue norm |||,
The space L”(‘)(R”) is a particular case of the so-called Orlicz-Musielak space
[20]. The function p always denotes a variable exponent and we assume that
p* < o0.
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Definition 2.1. Let w be a measurable, positive a.e. and locally u—
integrable function on R™. Such functions are called weight functions. By a
Beurling weight on R™ we mean a measurable and locally bounded function
w on R™ satisfying 1 < w(z) and w(z + y) < w(z)w(y) for all z,y € R™. Let
1 < p < oo be given. By the classical weighted Lebesgue space LE (R™) we
denote the set of all p—measurable functions f for which the norm

1/p

1l = Il = / F@w@)Pdr | < oo

We say that w; < ws if and only if there exists a C' > 0 such that w;(z) <
Cwy(x) for all x € R™. Two weight functions are called equivalent and written
wy = wa, if w; < we and wy < wy [13], [15].

Lemma 2.2. (a) A Beurling weight function w is also weight function in
general.

(b) For each p € P (R™), both wP() and w=P) are locally integrable.

Proof. (a) Let any compact subset K C R™ be given. Since w is locally
bounded function, then we write

supw(z) < oo.
zeK

Hence

JRCIE (supw<z>) u(K) < oo.

TEK

K
(b) Since w(x) > 1, then

/ w(z)P@dy < / w(z) da < (supw(a;)P*) B(K) < oo.

zeK
K K

Also w(z) # 0 and w(x)~t <1

/w(a:)*p(””)dx < /w(m)*p*d:c < <supw(x)p*) wK) < 0.

TeEK
K K

O

Let w be a Beurling weight function on R™ and p € P (R™). The weighted

variable exponent Lebesgue space ) (R™) is defined as the set of all mea-
surable functions f, for which

1y = @l < 00
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The space (Lfv(') (R™), ||.Hp(.)7w) is a Banach space. Throughout this paper
we assume that w is a Beurling weight.

Proposition 2.3. (i) The embeddings 2 (R") « LP() (R™) is conti-
nous and the inequality

1 oy < 1F oy e
is satisfied for all f € L5 (R™).
(ii) C.(R™) c LB (R™).
(iii) C.(R") is dense in L5 (R™).
(iv) e (R™) is a BF-space.
(v) Lﬁ,(') is a Banach module over L*° with respect to pointwise multipli-

cation.
Proof. (i) Assume f € A (R™). Since w(x)P® > 1, then
F@P < f)w(),
op(f) 0p.w(f) < 0.

This implies that L5 (R™) ¢ LP() (R™). Also by using the inequality | f(z)| <
|f(z)w(z)| and definition of .|, ), then

||f||p(.) < ||fw||p(,) = ||f||p(.),w :

(ii) Let f € C.(R™) be any function such that suppf = K compact.
For p* < oo it is known that C.(R") c LP() (R") by Lemma 4 in [1] and
0p(f) < co. Hence we have

<
<

opuw(f) = gp(fw):/|f(a;)|f)<f)w(x)p(m>dm
K

< (Supw(x)p*> op(f) < o0
zeK
and C.(R") C AR (R™).
(iil) It is known that C2°(R™) is dense in Lﬁ,(')(R”) by Corollary 2.5 in [2].
Hence C,(R™) is dense in L4 (R™).
(iv) Let K C R™ be a compact subset and ﬁ + - = 1. By Holder

q(.)
inequality for generalized Lebesgue spaces [20], we write

| @l

IN

¢ ||XK||q(.) ||f||p(.)

IN

C ||XK||q(_),w Hf”p(.),w
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for all f € qu(') (R™), where xx is the charecteristic function of K. It is known

that [[xk (.., < oo if and only if 4., (xK) < 00 for ¢* < co. Then we have
0g.w(XK) = /w(x)q(x)dx = (supw(w)q*) w(K) < co.
reK
K

That means Lﬁ](') (R™) — Lllm, (R™).
(v) We know that A (R™) is a Banach space. Also it is known that
L*> (R™) is a Banach algebra with respect to pointwise multiplication. Let

(f,g) € L™ (R™) x Lﬁ,(‘) (R™) .Then

ops(f9) =./v@mmw@wuwﬂm
< max {1111} /ﬂg (@) da < oo.

We also have

(A9 [ @e@P /WﬂW” )"

pyw <

Tl nmmﬂmﬁﬂ, LAIEE Ngl,
Qp,w(i) <L
191l 0

Hence by the definition of the norm ||. H » Of the weighted variable exponent
Lebesgue space, we obtain || fg[,, ,, < ||f||LOQ 1911,y ), - The remaining part
of the proof is easy. O

Proposition 2.4. (i) The space qu(')(R") is strongly character invariant.
(ii) The function t — M, f is continuous from R"™ into Lﬁ(')(R”).

Proof. (i) Let take any f € Lﬁ(')(R"). We define a function g such that
g(x) = M f(x) for all t € R™. Hence we have

lg(@)| = M f(2)] = [< @t > f(x)] = [f(2)]
and
M fllpy 0 = N9y = 10 0 -
(ii) Since C.(R™) is dense in Lﬂ(')(R") by Proposition 2.3, then given any
fe Lﬁ,(‘)(R") and & > 0, there exists g € C.(R") such that

9
1 =gl < 5
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Let assume that suppg = K. Thus for every t € R™, we have supp(Mg — g) C
K. If one uses the inequality

[Mig(z) —g(x)] = |<z,t>g(x)—g(@)]=lg(x)]|<z,t> -1
< lg(@)lswp |<az,t> -1 =lgl@)ll< .t > 1l
€

we have
| Mg — 9||p(,),w <l<ot>-1 ok ||g||p(,),w .
It is known that [|< ., > —1[| ; — 0 for £ — 0. Also, we have
[Mef = fllpyw < IMef = Migllyyw + 19 = gl + 1 = 9l
= 20 = gllpyw 1< 8> =l & N9llp ) 0
Let us take the neighbourhood U of 0 € R™ such that

5
< t>—-1| o x < 5577
309l )
for all t € U. Then we have
2¢e €
IMef = fllpyw < 5 T a9l w=c¢
P()s 3 3||g||p(.),w p();
forallteU. O

Definition 2.5. Let p;(.) and ps(.) be exponents on R™. We say that
p2(.) is non-weaker than p;(.) if and only if ®,, (z,t) = t*2(*) is non-weaker
than @, (z,t) = t*'(*) in the sense of Musielak [21], i.e. there exist constants
Ky, Ky > 0and h € L' (R™), h > 0, such that for a.e. z € R™ and all t > 0

O, (z,t) < K1 Py, (2, Kot) + h(x).

We write p1(.) = pa2(.).

Let p1(.) =< p2(.). Then the embedding LP2() (R") « LP1() (R™) was
proved by Lemma 2.2 in [6].

Proposition 2.6. (i) If wy < wo, then L4 (R™) — LES) (R™).

(ii) If wy =~ wo, then LB (R™) = LES) (R™).

(iii) Let 0 < p () < o0, @ C R™. If w; < wy and pi1(.) < pa(.), then
L2 () — LY ().

Proof. (i) Let f € Lﬁg) (R™). Since wy < wa, there exists a C' > 0 such that
wi () < Cwy(z) for all z € R™. Hence we write

[ (@)w:(z)] < C[f(@)ws()]-
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This implies that
||f‘|p(,)7u}1 S C ||f||p()7’w2 .

for all f € LB, (R™).

(ii) Obvious.

(iii) Let f € qué(') (©) be given. By using (i), we have f € A (©) and
fwy € LP20)(Q). Since py(.) < pa(.), then LP2) (Q) < LP1() (Q) by Theorem
2.8 in [20] and

[fwill,, () Crllfwill,,

C1Ce |||

IAN A

p2(.),w2

Hence L2 (Q) — L0 (Q). O

Proposition 2.7. If p1(.) = pa(.) and w; < wg, then Lﬁf?(') (R™) —
LP1(~) (Rn)
w1 .

Proof. Since p;(.) < pa(.), then L2 (R") — L2.) (R™) by Theorem 8.5 of
[21]. Also by using Proposition 2.6, we have L5, (R") < LA (R). O

Remark 2.8. By the closed graph theorem in Banach space, to prove
that there is a continuous embedding L2 (R™) — LELY) (R™), one need only
prove L2 (R") ¢ L2 (R™).

Let wy, wg be weights on R™. The space Lﬁ}l(') (RM)N Lﬁé(') (R™) is defined
as the set of all measurable functions f, for which

FIEP2 = E 1 o 1l ea < 00

Proposition 2.9. Let wi, ws, ws and wy be weights on R™. If wy < w3
and wy < wa, then LEL (R™) N LY (R™) — LAY (R™) 0 L2 (R™).

Proof. Obvious. O

Corollary 2.10. If w; = w3 and wy = wy, then Lﬁg(') (R™) OL%;(') (R™) =
Y ®my N LY (R,
Proposition 2.11. If py(z) < pa(z) < p3(z) and ws < wy, then

LerO (R™) 0 LE2O) (R™) < LP20) (R™).
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Proof. Since p1(x) < pa(z) < ps(z), then we write

[f(@)wr (@) < | F@)wn (@) Xl f@yun )1 <1} +
+ £ @)w1 (@) X (e @y @)121)

Hence Lﬁ}l(') (R™) N Lﬂi(') (R™) — Lﬁfl(') (R™). Also by using Proposition 2.6,
we have L2 (R") — 1220) (R™). O
Corollary 2.12. Let 1 < p, < p(z) < p* < oo for all z € R™ and wg < wy,

then
Le: (R™) N L5, (R™) — LAL) (R™).

Proof. The proof is completed by Proposition 2.11. O

For any f € L'(R"), the Fourier transform of f is denoted by fand defined
by
floy = [eesar
R’ﬂ

It is known that f is a continuos function on R™, which vanishes at infin-
ity and the inequality Hf” < ||fll; is satisfied. Let the Fourier algebra
oo

{f: fe Ll(R”)} with by A (R™) and is given the norm HfHA = fll;-
Let w be an arbitrary Beurling’s weight function on R™. We next introduce
the homogeneous Banach space

4 ®") = {f: f e LL®R")}

with the norm HfH = ||f||1w It is known that A“ (R™) is a Banach algebra
under pointwise multiplication [23]. We set A% (R") = A“ (R™) N C, (R")
and equip it with the inductive limit topology of the subspaces A% (R") =
AY (R™") N Ck (R™), K C R™ compact, equipped with their ||.||, norms. For
every h € A% (R") we define the semi-norm ¢, on A% (R™)" by ¢, (h') =
|< h,h' >|, where A% (R™)" is the topological dual of A% (R™). The locally
convex topology on A% (R™)' defined by the family (q5),,. A2 (R) of seminorms
is called the topology o (4% (R")", A (R™)) or the weak star topology.
Lemma 2.13. Let 7* < co. Then A%, (R™) is continuously embedded into

L) (R™) for every compact subsets K C R™, i.e A% (R™) — Ly (R,

Proof. Using the classical result A% (R") < L7+ (R™)NL! (R™) and LTy (R™)N
L7 (R") < L) (R™) by Corollary 2.12, then A% (R™) < Li\) (R™). 0



14 ISMAIL AYDIN

Theorem 2.14. L5 (R") is continuously embedded into A% (R™)'.

Proof. Let f € LY (R™) and h € A§ (R™). By definition of A§ (R™), there
exists a compact subset K C R™ such that h € A% (R™). Suppose that
ﬁ + % = 1. Then by Hdlder inequality for variable exponent Lebesgue
spaces and by Lemma 2.13, there exists a C' > 0 such that

|< f,h>

/ f(@)h(z)dz| < / |F(@)h(z)| da
/ J

IN

Cl Ny 1allecy < CUFlpeyw Py w <00 (1)
Hence the integral

< fyh>= [ f(x)h(x)dx
R[

is well defined. Now define the linear functional < f,. >: AY (R") — C for
ferr (R™) such that

< fyh>= [ f(x)h(x)dx.
/

It is known that the functional < f,. > is continuous from A§ (R™) into C if
and only if < f,. > | Aw s continuous from A% (R™) into C for all compact
subsets K C R™. By Lemma 2.13, there exists a Mk > 0 such that

1Bl < M 1Bl - (2)
By (1) and (2),
< Lh> < Ol 1Bl
< OMg||fllyy lIBll, = Dic 1B, (3)

where Dx = CMk || f| ., Then we have the inclusion 5" (R") C Ay (R™)'.

Define the unit map I : L5 (R") — A% (R™)". Let h € A% (R") be given.
Then there exists a compact subset K C R™ such that h € A% (R™). Take
any semi-norm g5, € (qx), h € A% (R™) on A (R™)". By using (3) we obtain

an (L) = an (f) = 1< £,0 > < Bic 1y

where Bg = CMk ||h]|,. Then I is continuous map from Lﬂ(') (R™) into
A¥ (R™). The proof is completed. O
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3 Weighted Variable Exponent Amalgam Spaces W(L]Z}('), L9)

The space (Lﬁ,(') (R"))l consists of all (classes of ) measurable functions
oc

f on R” such that fyxx € LPO) (R™) for any compact subset K C R”, where
Xk 1s the characteristic function of K. Since the general hypotheses for the
amalgam space V[/(Lﬁ(')7 L%) are satisfied by Lemma 2.13 and Theorem 2.14,
then W(Lﬁ,('), L2) is well defined as follows as in [10].

Let us fix an open set Q C R™ with compact closure. The variable exponent

amalgam space W (Lfv('), LZ) consists of all elements f € (LZ(') (R"))l such
oc
that Fp(z) = ||sz+Q||p(_) ., belongs to LI (R™); the norm of W (Lf,,('), LZ) is

£y (505 = 150

Given a discrete family X = (x;),.; in R" and a weighted space L, (R"),

the associated weighted sequence space over X is the appropriate weighted £7 -

space €4, the discrete w being given by w(i) = w(x;) for i € I, (see Lemma 3.5 in [12]).
The following theorem, based on Theorem 1 in [10], describes the basic

properties of W (Lﬁ('), Lg).

Theorem 3.1. (i) W (qu('), L%) is a Banach space with norm ||.||W(Lp<_> Lq).
(ii) W (pr('), Lg) is continuously embedded into (LZ(‘) (R"))
(iii) The space

loc

Ay = {f e LPO) (R™) : supp (f) is compact}

is continuously embedded into W (qu('), Lg).

(iv) W (Lﬁ('), Lg) does not depend on the particular choice of @, i.e. dif-
ferent choices of () define the same space with equivalent norms.

By (iii) and Proposition 2.3 it is easy to see that C. (R") is continuously
embedded into W (Lﬁ(')7 Lg).

Now by using the techniques in [14], we prove the following proposition.

Proposition 3.2. W (Lﬁ,('),Lg) is a BF-space on R"”.

Proposition 3.3. W (Lﬁ(')7 LZ) is strongly character invariant and the

map t — M, f is continuous from R"™ into W (Lﬁ,('), L%).
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Proof. 1t is known that qu(')(R") is strongly character invariant and the func-

tion t — M, f is continuous from R™ into Lfv(')(R") by Proposition 2.4. Hence
the proof is completed by Lemma 1.5. in [24]. O

Proposition 3.4. w;, wy, ws, v1, v2 and vz be weight functions. Suppose
that there exist constants C7,Cs > 0 such that

Vh e L) (R™),Vk € L220) (R™),  ||hk]| < Cu Ly, () IE]

p3(.),ws p2(.),w2
and
Vu e LE (R™), V9 € LE (R™), [[udlly, o, < C2llully, v, 1914, 0,
Then there exists C' > 0 such that
||fg||W<Lﬁ,33('),Lg%> S CHf”W(Lﬁ,ll('),Lgll) HgHW(Lﬁg('),ng)
forall f € W (Lﬂll('), L;?l) and g e W (Lff2('), LZ%}). In other words
w(zo© p ) w(pel, 1) c w (Lm0, 1s).
Proof. If fe W (Lﬁ}l('), L?}l) and ge W (Lﬁi('), ng), then we have
50y (120 015) = 17930l
= [1xe40) (@4
q3,v3
< Ol 19Xl
= ClF Tl gy 05 < C1C2M1F4M oy o 1Fgll 4y 0
= Ol aas00) Dol 1250005)
and the proof is complete. O

Proposition 3.5. (i) If p1(.) < pa(.), g2 < ¢1, w1 < we and v1 < vg, then
w (1t ) cw (19,18
(ii) If p1(.) < pa2(.), g2 < q1, w1 < w2 and v; < ve, then

w(nO oo, nn) cw (oo, ry).
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Proof. (i) Let fe W (Lﬁ,QQ(')7LZQ2) be given. Since p1(.) < p2(.) and wy < wy
then 122 (z+Q) = ot (z+ Q) and

Ixet@llp g = Clrlz+ @)+ DXt ().,
< C (N’ (Q) + 1) ||sz+Q||p2(,),w2

for all z € R™ by Theorem 2.8 in [20], where p is the Lebesgue measure. Hence
by the solidity of L2 (R™) we have

w (10, 15) cw (1), 1)
It is known by Proposition 3.7 in [12], that
W (Lm(.) qu) cCwW (Lm(.) L‘“)
w1 I v w1 ? U1
if and only if £72 C £1!, where £72 and ]! are the associated sequence spaces of
L2 (R™) and L3 (R™) respectively. Since g2 < ¢ and v; < vg, then o2 C el

[14]. This completes the proof.
(ii) The proof of this part is easy by (i). O

The following Proposition was proved by [3].
Proposition 3.6. Let B be any solid space. If g3 < g1 and vy < v9, then
we have

W (B,L% NL%2) =W (B,L%) .

Corollary 3.7. (i) If pi,p; < oo, Lﬁ}l(') (R™) C Lff;') (R™), g2 < qu,
qs < q3, qa < q2, U1 < V2, V3 < V4 and vy < vy, then

w (Lo, s nrs) cw (L0, e nrs).

(ii) If p1(z) < p3(x), pa(z) < pa(x), @2 < @1, @1 < @35 @1 < G2, W1 < w3,
Wy < Wy, V1 < Uz, U3 < U4 and vy < V4, then

w (O ot L ) c w(pnd n el L nLs ).

Proposition 3.8. If 1 < ¢ < oo and v € LY (R"™), then A (R™) C
W (Lﬁ,(‘),Lg).
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Proof. If 1 < ¢ < o0 and v € L7 (R™), we have

Il (ozosy = [1relhol],,

Q=

I
c
)

[ 15xesally , vit:)ds

n

Q=

IN

JAT e
— s

p(.)w ||U||q .

Hence L2 (R") Cc W (Lﬁ}('), Lg). Similarly, for ¢ = oo, we obtain
71 (a0.2) = (1@l < W8l e

Then L (R") ¢ W (L{L“,LgO). O

Proposition 3.9. Let 1jgo,q1 < oo. If pg (.) and p; (.) are variable expo-
nents with 1 < p;. <pi < oo, j =0,1. Then, for § € (0,1), we have

o]

b o) o s ) o s )

1 _ 1-9 0 1 _1-0
where + p1(z)’ qo q0 +

_ 1-6 1-6, 0
po(x) po(x)

— 0 —
,w=wy wi and v =1y "].

Sle

1

Proof. By Theorem 2.2 in [11] the interpolation space [W (L”w%('), Lw ) W (Lﬁ}f'), Lo )} ’

— [ 96
v Hug g Ul][a]_LU and

is W ({LIZUOD('),L{;;(”} o [ LQI}[QO . We know that [L% , L4

by Corollary A.2. in [7] that [LZOO('),Lﬁll(')Le] — 12C). This completes the
proof. O
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