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Generalized System for Relaxed Cocoercive
Mixed Variational Inequalities and Iterative
Algorithms in Hilbert Spaces

Shuyi Zhang, Xinqi Guo and Dan Luan

Abstract
The approximate solvability of a generalized system for relaxed co-
coercive mixed variational inequality is studied by using the resolvent
operator technique. The results presented in this paper extend and im-

prove the main results of Chang et al.[1], He and Gu [2] and Verma [3,
4].

1 Introduction and Preliminaries

In this paper, the approximate solvability of a system of nonlinear varia-
tional inequalities involving two relaxed cocoercive mappings in Hilbert spaces
is studied, based on the convergence of resolvent method.

Let H be a real Hilbert space, whose inner product and norm are denoted
by (-,-) and || - ||. Let I be the identity mapping on H, and T(-,-),S(:,-):
H x H — H be two nonlinear operator. Let 0 denote the subdifferential of
function ¢, where ¢ : H — R U {400} is a proper convex lower semicontinu-
ous function on H. It is well known that the subdifferential 0y is a maximal
monotone operator. consider a systems of nonlinear variational inequalities (
for short, SNVI) as follows: Find z*,y* € H, such that

(PT(y*, x*) +2* —y*, o —x*) + o(x) — p(z*) > 0,Vo € H,p>0; (1.1)
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mSy*,z") +y" —a" e —y) +¢(x) —Y(y) 20,Ve e H,n>0.  (1.2)
It is easy to know that the SNVT (1.1) and (1.2) is equivalent to the fol-
lowing projection equations:
z* = Jy(x* — pT(y*,z%)), p > 0;
y* = Ju(y" = nS(",y7)),n >0,
where J, = (I +0p)~ 1, Jy = (I +0¢)~ L.
Next we consider some special cases of the problem (1.1) and (1.2).

() If T = S, then the SNVI (1.1) and (1.2) reduces to the following system
of nonlinear variational inequalities: find z*,y* € H such that

(PT(y*,z*) +2* —y*,z — ") + o(x) —p(z*) >0,Ve € H,p>0; (1.3)

T (" a™) +y" —a" o —y") +9(x) —¢(y") 20, Ve € Hyn>0. (1.4)
(IT) If ¢ = 4, then the SNVI (1.1) and (1.2) reduces to the following system
of nonlinear variational inequalities: find z*,y* € H such that

(PT(y*,z*) +2* —y* ',z —z*) + o(x) —p(x*) > 0,Ve € H,p>0; (1.5)

mS(y™,a") +y* —a*x—y") + (@) —e(y*) 2 0,Ve € H,n > 0. (1.6)
(III) If T = S, ¢ = 1, then the SNVI (1.1) and (1.2) reduces to the following
system of nonlinear variational inequalities: find z*,y* € H such that

(pT(y*,x*) +a* —y*, o — ) + ¢(x) —p(x*) > 0,Yz € H,p>0; (1.7)

T (y*, ") +y* —a* 2 —y*) + o) —e(y*) >0,Vz € Hin>0. (1.8)

which was studied by He and Gu in [2].
(IV) If K is closed convex set in H, ¢ = ¢ and ¢(z) = Ix(x) for
all x € K, where Ix is the indicator function of K defined by Ix(z) =
0, ze K . .
o0, otherwise ’ then the SNVI (1.7) and (1.8) is equivalent to the fol-
lowing SNVTI: find z*,y* € K such that

(pT(y*,z*) +z* —y*,x —z*) > 0,Vz € K,p > 0; (1.9)

T (y* ") +y* —2*,z—y") >0,Yz € K,n> 0. (1.10)

The problem (1.9) and (1.10) have been studied by Chang et al. (see [1]).
(V) If T,S : H — H are univariate mappings, then the SNVI (1.1) and
(1.2) is collapsed to the following SNVI: find z*,y* € H such that

(PT(y*) +=* —y*,x —x*) + p(x) — p(z*) > 0,Yax € H,p > 0; (1.11)
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mS(x*) +y* — %,z —y*) +(x) —(y*) > 0,Vz € Hnp>0.  (1.12)

Further, if K is closed convex set in H, S = T,1 = ¢ and ¢(x) = Ik (x) for
all z € K, where I is the indicator function of K, then the SNVI (1.11) and
(1.12) is equivalent to the following SNVI: find z*,y* € K such that

(pT(y*) +a* —y*,xz —a*) > 0,Vz € K,p > 0;
(T (z*) +y* —a*,x —y*) > 0,Yz € K,n > 0,

which was studied by Verma in [3].
The following definitions and lemma are needed in the sequel.

Definition 1.1.
(i) A mapping T : H — H is called r-strongly monotone, if for each
z,y € H, we have

2
(T(x)-T(y) ,z—y) =7z —yl",
for a constant r > 0. This implies that
[Tz =Tyl = rllz—yl,

that is, T is r-expansive and when r = 1, it is expansive.
(ii) A mapping T : H — H is called u-cocoercive, if there exists a constant
i > 0 such that

(T(x) = T(y) , & —y) = pl|T(z) = T(y)||I* . Vo, y € H.

Clearly, every p-cocoercive mapping 1 is i— Lipschitz continuous.

(iii) A mapping T : H — H is said to relaxed y-cocoercive, if there exists
a constant v > 0
such that

(T(z) - T(y), z—y) > —7||T(z) — T(y)|*.

(iv) T : H — H is said to be relaxed (v,r)-cocoercive, if there exists
constants vy, r > 0
such that

(T(z) = T(y) , & —y) = =7 |T(x) = TW)II* +rllz - y|*, Yo,y € H.

Remark 1.1. It follows from the above definitions that a r-strongly mono-
tone mapping must be a relaxed (v, r)-cocoercive mapping for v = 0, but the
converse is not true. therefore the class of the relaxed (v, r)-cocoercive map-
pings is more general class.
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Definition 1.2.
(1) A two-variable mapping T : H x H — H is said to be relaxed (v, r)-
cocoercive, if there exist constant v, > 0 such that

(T(z,u) =T (y,v), 2 —y) > =T (x,u) —T(y,v)||* +rl|lz—y||* Vo, y,u,v € H.

(2) A mapping T': H x H — H is said to be p-Lipschitz continuous in the
first variable, if there exists a constant p > 0 such that

1T (2, w) = T(y, )| < plle = yl, Ve, y,u,0 € H.

Lemma 1.1. Suppose that {a,}, {b,} and {c,} are nonnegative sequence
satisfying the following inequality

An+41 S (1 - tn) an + bn + Cn, M Z 07

where t,, € (0, 1), > ¢, =00, by =0(tn), Y. ¢n < 00, then lim a, =0.
n—oo

n=0 n=0

2. Algorithms

In this section, the general two-step models for approximate solutions to
the SNVI (1.1) and (1.2) are given.

Algorithm 2.1. For arbitrary chosen initial points xg,yo € H compute the
sequences {z,} and {y,} such that

{ Tong1 = (1 —an — 0n) Tn + anJo(Yn — P (Yn, Zn)) + Ontin (2.1)

Yn = (1 - ﬁn - )\n) Ty + ﬁan(xn - nS(xnayn)) + )\nvna

where J, = (I + 0¢)~ ', Jy = (I +0¢)~', p and > 0 are constants and
{an}, {Bn}, {An},{0n} are sequences in [0, 1] and {uy},{v,} are bounded
sequences in H.

If S =T, then Algorithm 2.1 is reduced to the following:

Algorithm 2.2. For arbitrary chosen initial points zg,yo € H compute the
sequences {z,} and {y,} such that

{ Tnt+1 = (]- — Op — 5n) Tn + aan(yn - pT(ynvxn)) + dpun
Yn = (1= Bn — An) Tn + Ban(xn - nT(xmyn)) + Apn,

where J, = (I + 9¢)~ ', Jy = (I +0¢)~', p and n > 0 are constants and
{an}, {Bn}, {An},{0n} are sequences in [0, 1] and {uy},{v,} are bounded
sequences in H.
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If ¢ = ¢, then Algorithm 2.1 is reduced to the following;:

Algorithm 2.3. For arbitrary chosen initial points xg,yo € H compute the
sequences {x,} and {y,} such that

{ Tpt+1 = (1 — Op — 6n) Tn + an']ga(yn - PT(yn,JUn)) + nun
Yn = (]' - ﬂ" - /\n) Tn + BTLJSD(:ETL - US(ana yn)) + )\nvna

where J, = (I +9¢)~!, p and n > 0 are constants and {a,}, {8}, { n}, {0n}
are sequences in [0, 1] and {u,}, {v,} are bounded sequences in H.
If S=T,9¥ = ¢, then Algorithm 2.1 is reduced to the following:

Algorithm 2.4. For arbitrary chosen initial points xg,yo € H compute the
sequences {x,} and {y,} such that

{ Tn1 = (1 - Qp — 671) Tp + O‘nJga(yn - pT(ynvxn)) + dnun
Yn = (1 = Bn — /\n) T + BTLJQD("EH - nT(l‘n, yn)) + AnUn,

where J, = (I +9¢)~!, p and n > 0 are constants and {a,, }, {B8n}, { n}, {0n}
are sequences in [0, 1] and {u,}, {v,} are bounded sequences in H.

3. Main Results

Based on Algorithm 2.1, the approximation solvability of the SNVI (1.1)
and (1.2) is presented.

Theorem 3.1. Let H be a real Hilbert spaces. Let T(-,-) : H x H — H be
two-variable relaxed (71, r1)-cocoercive and p1-Lipschitz continuous in the first
variable; S(-,-) : H x H — H be two-variable relaxed (vz,72)-cocoercive and
o-Lipschitz continuous in the first variable. Suppose that (z*,y*) € H x H is
a solution of the problem (1.1) and (1.2) and that {x,}, {y,} are the sequences
generated by Algorithm 2.1. If {a, }, {80}, { s} and {4, } are four sequences
in [0 1] satlsfylng the following conditions

(i) Z Oy =00, Z O, <00,
=0
(11) hm (1 — Bn) =0,\, = oa,),
2(ri—mpl) 2(ra—v2443)
(111)0<,0<T1, 0<n< =7,
(iv) r; > viu2, i = 1,2, then the sequences {x,} and {y,} converges strongly
to x* and y*, respectively.
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Proof. Since z* and y* are a solution to the SNVI (1.1) and (1.2), then

z* = Jy(a* — pT'(y*,x*)), p > 0;
y* = Jy(y* —nS(x*,y")),n >0,

It follows from (2.1) that

”xn-&-l - 1‘*” = H (1 — Op — 6n) Tn + O‘njtp(yn - pT(yna xn))
—(I—ap—0n)x" —anduo(y™ — pT(y", 2")) + dpun — 276y
< (1= an —6n)llzn — %[ + 0n ([[unll + lz7[])
+ anllyn —y* = p(T(yn, z0) — T(y",2"))]|. (3.1)

From the relaxed (1, 71) cocoercive and p;-Lipschitz continuity in the first
variable on T', we have

lyn =" = p(T(yn, zn) — T(y*, 2"))|?
=lyn — 11> = 20(T (Yn> n) — T(Y*, %),y — ")
+ PP NT (Yns ) — T(y*, 2*)||?
<lyn — y* 11> + P21 llyn — y* 11> = 2071 llyn — v*II?
<lyn —y P2udllyn —y prillyn —y
+ 20| T (Y, 2n) — Ty, )|
< (14 p*ui = 2pr1 + 207103 |lyn — y¥|1% (3.2)

Substituting (3.2) into (3.1) and simplifying the result, we have

[#n1 — 2" = (1 = an = &) [|on — 27| + bromlyn — y7 || + n ([Junll + [[=7]]) -
(3.3)

where 0; = /1 + p2pu? — 2pry + 2py1 43 < 1 by Condition (iii).
Now we make an estimation for ||y, — y*||. It follows from (2.1) that

lym — vl

[ (1= Bn = An) Zn + Bndy(Tn — 1S(T0, Yn))

(1= Bn =) Y" = Bndy(y" = nS(@",4")) + Anvn — y" Al

(L= Bn = A)llzn =y + Bullzn — 2" = nl|S(2n, yn) — S(@", y7)||
An([[oall + Iy 1)

(L= Bn = An)llzn — 2| + (1 = Bn — An)llz" — 7|

Ballzn — ™ = n[S(@n, yn) — S@", ¥y + Anlllval + v (3.4)

+ IN + A

Next we estimate ||z, — z* — n[S(Tn,yn) — S(z*,y*)]||. From the relaxed
(72, 72) cocoercive and puo-Lipschitz cocoercive in the first variable on S, we
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get

20 — 2% = 0[S (zn, yn) — S(*, y")]|I?
= [lzn — 2*[* = 20(S (#n, yn) — S(@*, y*), xn — )
+772||S(xmyn) - S(x*,y*)||2
<Nwn — 21 + 0?3l zn — *||* + 207215 (20, yn) — S(z*,y*)|?
— 2|z, — 2|
< (L4073 = 20 + 20y203) |l — 2*|%. (3.5)

Let 0 = /141272 — 2nra + 2ny2u3 < 1 by Condition (iii). Substituting
(3.5) into (3.4), we have

lyn —y*l < (1= Bn = An)llon — 2%+ (1 = Bn = An)llz" — ¢
+ Buballzn — 2| + An(llonll + ly*[)- (3.6)

Combining (3.6) and (3.3), we obtain that

[#n41 — 2]
= (L=an =) lzn — 27| + Oranllyn — y* | + on(luall + [l2[])
< (I—an=0n) |lzn — 2| + O1an[(1 = By — An) 20 — 27|
+ (1 =Bu = A)llz" =y
+ Bnballzn — 2| + Anllonll + ly" D] + S ([lunll + 7))
< (A= =b)an)l[zn — 2" + an[(l = Bn — An)llz™ — ¢
+ Anllloall + 11y D] + n (llunll + [|2*]])- (3.7)

Set ar, = |lzn =2, tn = (1=01)n, by = an[(1=Bn = An)[[2" —y* [+ An ([ +
lly*IN] and ¢, = 6, (|un || +]|z*||) in (3.7). By Lemma 1.1 ensures that x,, — =*
as n — oo. This completes the proof.

Remark 3.2. Theorem 2.1 extends and improves the main results of [1],
[2], [3] and [4], respectively.
The following theorems can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let H be a real Hilbert spaces. Let T'(-,:) : H x H — H
be two-variable relaxed (71, r1)-cocoercive and pu-Lipschitz continuous in the
first variable. Suppose that (z*,y*) € H x H is a solution of the problem
(1.3) and (1.4) and that {z,}, {yn} are the sequences generated by Algorithm
2.2, If {an}, {Bn}, {\n} and {0, } are four sequences in [0, 1] satisfying the
following conditions

. oo oo
(i) > ap =00, > 0, <00,
n=0 n=0
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ii) lim (1—75,) =0,\, = o(an),
n—oo
M3
iv) 7“z > 'yl,uz, i = 1,2, then the sequences {z,} and {y,} converges strongly
to x* and y*, respectively.

(
(iii) 0 < p < 2i=7ed) M““l), 0<p< 22opr)
(i

Theorem 3.4. Let H be a real Hilbert spaces. Let T'(-,-) : H x H — H be
two-variable relaxed (71, r1)-cocoercive and u1-Lipschitz continuous in the first
variable; S(-,+) : H x H — H be two-variable relaxed (72, 72)-cocoercive and
po-Lipschitz continuous in the first variable. Suppose that (z*,y*) € H x H is
a solution of the problem (1.5) and (1.6) and that {x,}, {yn} are the sequences
generated by Algorithm 2.3. If {ay, }, {B8n}, {An} and {9, } are four sequences
in [0 1] satlsfymg the following conditions

(i) Ean—oo Z(S <00,

n=0
(i) hm (1 . Bn) = 0 An = o(ay),
(7"1 71#1) 2(7’2 72#2)
(111)0<,0<7M1 ,0<77<7M ,
(iv) 7; > vip?, i = 1,2, then the sequences {x,} and {y,} converges strongly
to z* and y*, respectively.

Theorem 3.5. Let H be a real Hilbert spaces. Let T'(-,:) : H x H — H
be two-variable relaxed (71, 71)-cocoercive and p1-Lipschitz continuous in the
first variable. Suppose that (z*,y*) € H x H is a solution of the problem
(1.7) and (1.8) and that {z,}, {yn} are the sequences generated by Algorithm
2.4, If {an}, {Bn}, {\n} and {0, } are four sequences in [0, 1] satisfying the
following conditions

(i) E Oy, =00, Z 0y, <00,
(11) hm (1 . Bn) = 0 An = o(ay),

2(r1 =) 2(r2—7243)
(111)0<p< p Lo 0<n< 2 2,

(iv) 7; > viu?, i = 1,2, then the sequences {x,} and {y,} converges strongly
to z* and y*, respectively.
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