
An. Şt. Univ. Ovidius Constanţa Vol. 20(1), 2012, 505–517

Noor Iterative Approximation for Solutions to

Variational Inclusions with k-Subaccretive

Type Mappings in Reflexive Banach Spaces

Shuyi Zhang, Xinqi Guo and Jun Wang

Abstract

In this paper, we introduce and study a new class of nonlinear vari-
ational inclusion problems with Lipschitz k-subaccretive type mappings
in real reflexive Banach spaces. The existence and uniqueness of such
solutions are proved and the convergence and stability of Noor iterative
sequences with errors are also discussed. Furthermore, general conver-
gence rate estimates are given in our results, which essentially improve
and extend the corresponding results in Chang[1, 2], Ding[3], Gu[5, 6, 7],
Hassouni and Moudafi[8], Kazmi[9], Noor[11, 12], Siddiqi and Ansari[13],
Siddiqi, Ansari and Kazmi[14] and Zeng[16].

1 Introduction and Preliminaries

Let X be an arbitrary real Banach space with norm ‖ · ‖ and dual X∗,
and J denote by the normalized duality mapping from X into 2X

∗

given by

J(x) =
{

f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
}

, ∀x ∈ X, where 〈·, ·〉 is the gener-

alized duality pairing. In the sequel, I denotes the identity operator on X,
D(T ) denote the domain of the mapping T .

Let T,A,B : X → X,N (·, ·, ·) : X × X × X → X, g : X → X∗, η :
X∗ ×X∗ → X∗ be mappings and ϕ : X∗ ×X → R ∪ {+∞} be such that for
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each fixed y ∈ X,ϕ(·, y) is a proper convex lower semicontinuous function, we
consider the following problem. For any given f ∈ X, to find u ∈ X such that

{

g (u) ∈ D (∂ηϕ(·, u)) ,
〈N (Tu,Au,Bu)− f, η (v, g (u))〉 ≥ ϕ (g (u), u)− ϕ (v, u) , ∀v ∈ X∗,

(1.1)
where ∂ηϕ(·, u) denotes the η-subdifferential of ϕ(·, u).

Now we consider some special cases of (1.1).
(1) If N (x, y, z) = N (x, y) , ϕ(x1, y) = ϕ(x1), ∀x, y, z ∈ X, ∀x1 ∈ X∗, then

the problem (1.1) reduces to problem (1.2). For any given f ∈ X, to find
u ∈ X such that

{

g (u) ∈ D (∂ηϕ) ,
〈N (Tu,Au)− f, η (v, g (u))〉 ≥ ϕ (g (u))− ϕ (v) , ∀v ∈ X∗,

(1.2)

where ∂ηϕ denotes the η-subdifferential of ϕ which has been studied in Gu[5,
6].

(2) If N (x, y, z) = N (x, y) , ϕ(x1, y) = ϕ(x1) and η (x1, y1) = x1 − y1 for
all x, y, z ∈ X and x1, y1 ∈ X∗, then the problem (1.1) reduces to problem
(1.3). For any given f ∈ X, to find u ∈ X such that

{

g (u) ∈ D (∂ϕ) ,
〈N (Tu,Au)− f, v − g (u)〉 ≥ ϕ (g (u))− ϕ (v) , ∀v ∈ X∗,

(1.3)

where ∂ϕ denotes the subdifferential of ϕ which has been studied in Zeng[16].
(3) N (x, y, z) = x − y, ϕ(x1, y) = ϕ(x1) and η (x1, y1) = x1 − y1 for all

x, y, z ∈ X and x1, y1 ∈ X∗, then the problem (1.1) reduces to problem (1.4).
For any given f ∈ X, to find u ∈ X such that

{

g (u) ∈ D (∂ϕ) ,
〈Tu−Au− f, v − g (u)〉 ≥ ϕ (g (u))− ϕ (v) , ∀v ∈ X∗,

(1.4)

where ∂ϕ denotes the subdifferential of ϕ which has been studied in Chang[1,
2] and Gu[7].

(4) If X is a Hilbert space H, ϕ(x1, y) = ϕ(x1), N (x, y, z) = x − y and
η (x1, y1) = x1 − y1 for all x, y, z ∈ X and x1, y1 ∈ X∗, then the problem (1.1)
reduces to problem (1.5). For given f ∈ H, to find u ∈ H such that

{

g (u) ∈ D (∂ϕ) ,
〈Tu−Au− f, v − g (u)〉 ≥ ϕ (g (u))− ϕ (v) , ∀v ∈ H,

(1.5)

(1.5) is said to be a variational inclusion problem in a Hilbert space which has
been studied in Ding[3], Hassouni and Moudafi[8] and Kazmi[9]. If ϕ = δK ,
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where K is a nonempty closed convex subset of H and δK is the indicator
function of K, i.e.,

δK(x) =

{

0, x ∈ K,
+∞, x /∈ K.

Then the variational inclusion problem (1.5) is equivalent to to find u ∈ K for
given f such that

{

g (u) ∈ K,
〈Tu−Au− f, v − g (u)〉 ≥ 0, ∀v ∈ K,

(1.6)

(1.6) is said to be the strongly nonlinear quasi-variational inequality problem
which has been studied in Noor[11,12], Siddiqi and Ansari[13] and Siddiqi,
Ansari and Kazmi[14].

The following definitions and lemmas will be needed in the sequel.

Definition 1.1 ([15]). An operator T : D(T ) ⊂ X → X is called k-
subaccretive, if for all x, y ∈ D(T ), there exist j(x − y) ∈ J(x − y) and a
constant k ∈ (−∞, +∞) such that

〈Tx− Ty, j(x− y)〉 ≥ k ‖x− y‖2 .

It is clear that k-subaccretive operator must be accretive and strongly
accretive operator, respectively. However, the converse doesn’t hold in gen-
eral(see[15]). It is well known that T is accretive if and only if

‖x− y‖ ≤ ‖x− y + r(Tx− Ty)‖ (1.7)

for all x, y ∈ D(T ) and r > 0.

Definition 1.2 ([4]). Let X be a real Banach space, and η : X × X → X
be a mapping. A proper convex function ϕ : X∗ → R ∪ {+∞} is said to be
η-subdifferentiable at x0 ∈ X if there exist f ∈ X∗ such that

ϕ (y)− ϕ (x0) ≥ 〈f, η (y, x0)〉 , ∀y ∈ X,

where f is called a η-subgradient of ϕ at x0. The set of all η-subgradients of
ϕ at x0 is denoted by ∂ηϕ(x0).

Suppose that T is an operator on X . Let x0 be a point in X and let
xn+1 = f (T, xn) (n ≥ 0) denote an iteration procedure which yields a se-
quence of points {xn} in X. Assume that F (T ) = {x ∈ X : Tx = x} 6= ∅ and
that {xn} converges strongly to q ∈ F (T ) . Let {yn} be an arbitrary sequence
in X and set εn = ‖yn+1 − f (T, yn)‖. If lim

n→∞
εn = 0 implies that lim

n→∞
yn = q,
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then the iteration procedure defined by xn+1 = f (T, xn) is said to be T -stable.

Lemma 1.1. Let X be a real reflexive Banach space, then the following
conclusions are equivalent
(i) x∗ ∈ X is a solution of the variational inclusion problem (1.1).
(ii) x∗ ∈ X is a fixed point of the mapping S : X → 2X , where

S (x) = f − (N (Tx,Ax,Bx) + ∂ηϕ (g (x), x)) + x, ∀x ∈ X.

(iii) x∗ ∈ X is a solution of equation f ∈ N (Tx,Ax,Bx) + ∂ηϕ (g (x), x).

Proof. (i)⇒(iii). If x∗ is a solution of the variational inclusion problem
(1.1), then g(x∗) ∈ D(∂ηϕ(·, x

∗)) and

〈N(Tx∗, Ax∗, Bx∗)− f, η(v, g(x∗))〉 ≥ ϕ(g(x∗), x∗)− ϕ(v, x∗), ∀v ∈ X∗.

By the definition of η-subdifferential ∂ηϕ(·, x
∗), we have

f −N(Tx∗, Ax∗, Bx∗) ∈ ∂ηϕ(g(x
∗), x∗).

therefore, x∗ ∈ X is a solution of equation f ∈ N (Tx,Ax,Bx)+∂ηϕ (g (x), x) .
(iii)⇒(ii). If (iii) is holds, then it is easy to see that x∗ ∈ f−(N(Tx∗, Ax∗,

Bx∗) + ∂η(g(x
∗), x∗)) + x∗ = Sx∗. This implies that x∗ is a fixed point of S

in X.
(ii)⇒(i). If (ii) is holds, then f − N(Tx∗, Ax∗, Bx∗) ∈ ∂ηϕ(g(x

∗), x∗),
hence from the definition of ∂ηϕ(·, x

∗), it follows that

ϕ(v, x∗)− ϕ(g(x∗), x∗) ≥ 〈f −N(Tx∗, Ax∗, Bx∗), η(v, g(x∗))〉, ∀v ∈ X∗,

i.e.,

〈N(Tx∗, Ax∗, Bx∗)− f, η(v, g(x∗))〉 ≥ ϕ(g(x∗), x∗)− ϕ(v, x∗), ∀v ∈ X∗.

This implies that x∗ is a solution of the variational inclusion problem (1.1).
This completes the proof.

Lemma 1.2 ([5,6]). Let X be an arbitrary real Banach space and T : X → X
be continuous k-subaccretive operator. If k > −1 , then the equation x+Tx =
f has a unique solution for any f ∈ X.

Lemma 1.3 ([10]). Suppose that {an} and {bn}are nonnegative sequence
satisfying the following inequality

an+1 ≤ λan + bn, n ≥ 0,

where λ ∈ (0, 1) and lim
n→∞

bn = 0, Then lim
n→∞

an = 0.
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2. Main Results

Theorem 2.1. Suppose that X is a real reflexive Banach space. Let T,A,B :
X → X,N (·, ·, ·) : X ×X ×X → X, g : X → X∗, η : X∗ ×X∗ → X∗ be map-
pings and ϕ : X∗ ×X → R ∪ {+∞} be such that for each fixed y ∈ X,ϕ(·, y)
is a proper convex lower semicontinuous function with η-subdifferential ∂ηϕ.
Assume that {un}, {vn} and {wn} are sequences in X, and that {αn} is se-
quence in (0, 1

2 ) ⊂ (0, 1) and {βn} and {γn} are sequences in [0, 1), satisfying
the following conditions
(i)N (T (·), A(·), B(·)) + ∂ηϕ (g (·), ·) − I : X → X is a Lipschitz continuous
k-subaccretive with k ∈ (−1, 1) and Lipschitz constant L ≥ 1;
(ii) βnL (1 + L (1 + γnL)) + αnL

(

1 + L+ βnL
(

L− 1 + γnL
2
))

≤ 1 + k − µ,
where µ ∈ (0, 1 + k);
(iii) 0 < a ≤ αn, n ≥ 0, where a is a constant;
(iv) lim

n→∞
‖un‖ = lim

n→∞
‖vn‖ = lim

n→∞
‖wn‖ = 0.

For arbitrary f ∈ X define the operator S : X → X by

S (x) = f − (N (Tx,Ax,Bx) + ∂ηϕ (g (x), x)) + x, ∀x ∈ X.

For arbitrary x0, u0, v0, w0 ∈ X define Noor iterative sequence with errors
{xn} by







zn = (1− γn)xn + γnSxn + wn

yn = (1− βn)xn + βnSzn + vn
xn+1 = (1− αn)xn + αnSyn + un.

(2.1)

Let {gn} be any sequence in X and define {εn} by







εn = ‖gn+1 − (1− αn) gn − αnSξn − un‖
ξn = (1− βn) gn + βnSηn + vn
ηn = (1− γn) gn + γnSgn + wn.

(2.2)

Then the following conclusions hold:

(I) The variational inclusion problem (1.1) has a unique solution x∗ ∈
X, and Noor iterative sequence with errors {xn} defined by (2.1) converges
strongly to the unique solution x∗ of the variational inclusion (1.1); moreover,

‖xn − x∗‖ ≤
(

1−
µa

2

)n

‖x0 − x∗‖+











2(1−(1−(1/2)µa)n)M
µa(1+k) , if − 1 < k < 0,

2(1−(1−(1/2)µa)n)M
µa

, if 0 ≤ k < 1,

where n ≥ 0 andM = sup
n≥0

{

L(L+ 1) ‖vn‖+ (L+ 1) ‖un‖+ L2 (1 + L) ‖wn‖
}

.
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(II)

‖gn+1 − x∗‖ ≤ ‖gn − x∗‖+ εn

+







1
1+k

(

L(L+ 1) ‖vn‖+ (L+ 1) ‖un‖+ L2 (1 + L) ‖wn‖
)

, if − 1 < k < 0,

L(L+ 1) ‖vn‖+ (L+ 1) ‖un‖+ L2 (1 + L) ‖wn‖ , if 0 ≤ k < 1,

for all n ≥ 0.
(III) lim

n→∞
gn = x∗ if and only if lim

n→∞
εn = 0.

Proof. Since N (T (·), A(·), B(·)) + ∂ηϕ (g (·), ·) − I is continuous and k-
subaccret- ive, by Lemma 1.2, for any given f ∈ X , the equation x +
(N(Tx,Ax,Bx) + ∂ηϕ (g (x), x)) − x) = f has a unique solution x∗ ∈ X,
i.e., the equation N (Tx,Ax,Bx) + ∂ηϕ (g (x), x)) = f has a unique solution
x∗ ∈ X. From X is a reflexive Banach space, hence, using Lemma 1.1, we
know that x∗ is a unique solution of the variational inclusion problem (1.1),
and so x∗ is also the unique fixed point of S in X, i.e., Sx∗ = x∗.

Now we prove Noor iterative convergence and stability and give conver-
gence rate estimate for solutions to the variational inclusion problems (1.1)
with k-subaccretive operator. From conditions (i), the mapping N(T (·), A(·),
B(·))+∂ηϕ (g (·), ·)−I is k-subaccretive with k ∈ (−1, 1). Hence, by Definition
1.1 for all x, y ∈ X, there exists j(x− y) ∈ J(x− y) such that

〈Sx− Sy, j (x− y)〉 = 〈f − (N(T (x), A(x), B(x)) + ∂ηϕ(g(x), x)) + x

− (f − (N(T (y), A(y), B(y)) + ∂ηϕ(g(y), y)) + y), j(x− y)〉

=−〈(N(T (x), A(x), B(x)) + ∂ηϕ(g(x), x)− x)

− (N(T (y), A(y), B(y)) + ∂ηϕ(g(y), y)− y), j(x− y)〉 ≤ −k ‖x− y‖2 . (2.3)

From (2.3), we have

〈(−S − kI)x− (−S − kI) y, j (x− y)〉 ≥ 0.

Hence −S − kI is an accretive operator, and it follows from (1.7) that

‖x− y‖ ≤ ‖x− y − r [(S + kI)x− (S + kI) y]‖ (2.4)

for all x, y ∈ X and r > 0. Using (2.1), we easily conclude that for all n ≥ 0,

(1− αn)xn = (1 + kαn)xn+1 − αn (S + kI)xn+1 + αnSxn+1 − αnSyn − un.
(2.5)

Note that
(1− αn)x

∗ = (1 + kαn)x
∗ − αn (S + kI)x∗, (2.6)
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for all n ≥ 0 . It follows from (2.4), (2.5) and (2.6) that

(1− αn) ‖xn − x∗‖

≥ (1 + kαn)

∥

∥

∥

∥

xn+1 − x∗ −
αn

1 + kαn

[(S + kI)xn+1 − (S + kI)x∗]

∥

∥

∥

∥

− αn ‖Sxn+1 − Syn‖ − ‖un‖

≥ (1 + kαn) ‖xn+1 − x∗‖ − αn ‖Sxn+1 − Syn‖ − ‖un‖ ,

which means that

‖xn+1 − x∗‖

≤
1− αn

1 + kαn

‖xn − x∗‖+
αn

1 + kαn

‖Sxn+1 − Syn‖+
‖un‖

1 + kαn

=

(

1−
αn(1 + k)

1 + kαn

)

‖xn − x∗‖+
αn

1 + kαn

‖Sxn+1 − Syn‖+
‖un‖

1 + kαn

(2.7)

for all n ≥ 0.

Because N (T (·), A(·), B(·)) + ∂ηϕ (g (·), ·)− I is a Lipschitz mapping with
the Lipschitz constant L, then it is easy to know by definition of S that S is
also a Lipschitz mapping with the Lipschitz constant L. Hence from (2.1) we
have the following estimates

‖zn − x∗‖ ≤ (1 + γnL) ‖xn − x∗‖+ ‖wn‖ ,

‖yn − x∗‖ ≤ (1− βn) ‖xn − x∗‖+ βn ‖Szn − x∗‖+ ‖vn‖

≤ (1− βn) ‖xn − x∗‖+ βnL ‖zn − x∗‖+ ‖vn‖

≤
(

1 + βn

(

L− 1 + γnL
2
))

‖xn − x∗‖+ βnL ‖wn‖+ ‖vn‖ ,

‖xn − Syn‖ ≤ ‖xn − x∗‖+ ‖Syn − x∗‖

≤ ‖xn − x∗‖+ L
(

1 + βn

(

L− 1 + γnL
2
))

‖xn − x∗‖

+ βnL
2 ‖wn‖+ L ‖vn‖

=
(

1 + L+ βnL
(

L− 1 + γnL
2
))

‖xn − x∗‖

+ βnL
2 ‖wn‖+ L ‖vn‖ ,

‖xn − yn‖ ≤ βn ‖Szn − xn‖+ ‖vn‖

≤ βn (L ‖zn − x∗‖+ ‖xn − x∗‖) + ‖vn‖

≤ βn (1 + L (1 + γnL)) ‖xn − x∗‖+ βnL ‖wn‖+ ‖vn‖ ,
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and

‖Sxn+1 − Syn‖ ≤ L ‖(1− αn)xn + αnSyn + un − yn‖

≤L ‖xn − yn‖+ αnL ‖Syn − xn‖+ L ‖un‖

≤
{

βnL(1 + L (1 + γnL)) + αnL
(

1 + L+ βnL
(

L− 1 + γnL
2
))}

‖xn − x∗‖

+L2 (1 + αnL)βn ‖wn‖+ L (1 + Lαn) ‖vn‖+ L ‖un‖ . (2.8)

for all n ≥ 0.
If −1 < k < 0, then 1 + kαn > 1 + k > 0 because αn < 1. If 0 ≤ k < 1, then
1 + kαn ≥ 1, so we have

0 <
µa

2
≤

µαn

1 + kαn

≤











µαn

1 + k
<

(1 + k)αn

1 + k
= αn < 1, if − 1 < k < 0,

µαn < (1 + k)αn < (1 + 1) 12 = 1 , if 0 ≤ k < 1,
(2.9)

for all n ≥ 0. Substituting (2.8) into (2.7), and by condition (ii) and (2.9), we
infer that

‖xn+1 − x∗‖ ≤

(

1−
αn [1 + k − βnL (1 + L (1 + γnL))

1 + kαn

−
αnL

(

1 + L+ βnL
(

L− 1 + γnL
2
))]

1 + kαn

)

‖xn − x∗‖

+
L2 (1 + αnL)αnβn ‖wn‖+ L (1 + Lαn)αn ‖vn‖+ (Lαn + 1) ‖un‖

1 + kαn

≤

(

1−
µαn

1 + kαn

)

‖xn − x∗‖+Bn ≤
(

1−
µa

2

)

‖xn − x∗‖+Bn, (2.10)

for all n ≥ 0, where

Bn =
L2 (1 + αnL)αnβn ‖wn‖+ L (1 + Lαn)αn ‖vn‖+ (Lαn + 1) ‖un‖

1 + kαn

≤















1
1+k

(

L(L+ 1) ‖vn‖+ (L+ 1) ‖un‖+ L2 (1 + L) ‖wn‖
)

, if − 1 < k < 0,

L(L+ 1) ‖vn‖+ (L+ 1) ‖un‖+ L2 (1 + L) ‖wn‖ , if 0 ≤ k < 1,
(2.11)

for all n ≥ 0. Note that Bn → 0 as n → ∞ in (2.11). Set λ = 1 − µa
2 , an =

‖xn − x∗‖, bn = Bn, n ≥ 0. By (2.10) and Lemma 1.3 ensures that xn → x∗

as n → ∞, that is, {xn} converges strongly to the unique solution x∗ of the
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variational inclusion problem (1.1). Furthermore, using (2.10) and (2.11), we
have

‖xn − x∗‖ ≤
(

1−
µa

2

)

‖xn−1 − x∗‖+











M

1 + k
, if − 1 < k < 0,

M, if 0 ≤ k < 1

≤
(

1−
µa

2

)n

‖x0 − x∗‖+























2 (1− (1− (1/2)µa)
n
)M

µa (1 + k)
, if − 1 < k < 0,

2 (1− (1− (1/2)µa)
n
)M

µa
, if 0 ≤ k < 1

for all n ≥ 0, completing the proof of (I).
Put pn = (1− αn) gn + αnSξn + un for all n ≥ 0. Note that

‖gn+1 − x∗‖ ≤ ‖pn − x∗‖+ εn (2.12)

for all n ≥ 0. Similar to (2.7) and (2.8), by (2.2), we have also the following

‖pn − x∗‖ ≤

(

1−
αn(1 + k)

1 + kαn

)

‖gn − x∗‖

+
Lαn

1 + kαn

‖pn − ξn‖+
‖un‖

1 + kαn

, (2.13)

‖ηn − x∗‖ ≤ (1 + γnL) ‖gn − x∗‖+ ‖wn‖ ,

‖ξn − x∗‖ ≤ (1− βn) ‖gn − x∗‖+ βn ‖Sηn − x∗‖+ ‖vn‖

≤
(

1 + βn

(

L− 1 + γnL
2
))

‖gn − x∗‖+ βnL ‖wn‖+ ‖vn‖ ,

‖gn − Sξn‖ ≤ ‖gn − x∗‖+ ‖Sξn − x∗‖

≤
(

1 + L+ βnL
(

L− 1 + γnL
2
))

‖gn − x∗‖

+ βnL
2 ‖wn‖+ L ‖vn‖ ,

‖gn − ξn‖ ≤ βn ‖Sηn − gn‖+ ‖vn‖

≤ βn (1 + L (1 + γnL)) ‖gn − x∗‖+ βnL ‖wn‖+ ‖vn‖ ,

and

‖pn − ξn‖ = ‖(1− αn) gn + αnSξn + un − ξn‖

≤ ‖gn − ξn‖+ αn ‖Sξn − gn‖+ ‖un‖

≤
{

βn [1 + L (1 + γnL)] + αn

(

1 + L+ βnL
(

L− 1 + γnL
2
))}

‖gn − x∗‖

+L (1 + αnL)βn ‖wn‖+ (1 + Lαn) ‖vn‖+ ‖un‖ , (2.14)

for all n ≥ 0 .
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Substituting (2.14) into (2.13), and by condition (ii) and (2.9), we obtain
that

‖pn − x∗‖ ≤

(

1−
µαn

1 + kαn

)

‖gn − x∗‖+Bn

≤
(

1−
µa

2

)

‖gn − x∗‖+Bn. (2.15)

for all n ≥ 0, where Bn = L2(1+αnL)αnβn‖wn‖+L(1+Lαn)αn‖vn‖+(Lαn+1)‖un‖
1+kαn

.
Therefore, (II) follows immediately from (2.11),(2.12) and (2.15).

Suppose that lim
n→∞

εn = 0. Note that µa
2 ∈ (0, 1), Bn → 0 as n → ∞. It

follows from (2.12), (2.15) and Lemma 1.3 that gn → x∗ as n → ∞. Suppose
that lim

n→∞
gn = x∗. Using (2.2) and (2.15), we immediately conclude that

εn = ‖gn+1 − (1− αn) gn − αnSξn − un‖ ≤ ‖gn+1 − x∗‖+ ‖pn − x∗‖

≤ ‖gn+1 − x∗‖+ (1−
1

2
µa)‖gn − x∗‖+Bn → 0

as n → ∞. That is, lim
n→∞

εn = 0. Hence, (III) holds. This completes the proof.

Remark 2.2. Theorem 2.1 improves and extends Theorem 2.1 of [5] in the
following aspects:
(1) The mapping N(T (·), A(·)) : X → X is replaced by N(T (·), A(·), B(·)) :
X ×X ×X → X.
(2) ϕ : X∗ → R ∪ {+∞} is replaced by ϕ : X∗ × X → R ∪ {+∞} , where
for each fixed y ∈ X,ϕ(·, y) is a proper convex lower semicontinuous function
with η-subdifferential ∂ηϕ.
(3) The condition L(L+1)(αn+βn)+L(L2−L)αnβn ≤ 1− t− r of Theorem
2.1 in [5] is replaced by the more general

βnL (1 + L (1 + γnL)) + αnL
(

1 + L+ βnL
(

L− 1 + γnL
2
))

≤ 1 + k − µ,

where n ≥ 0, t = max{0,−k} ∈ (0, 1), r ∈ (0, 1− t) , L ≥ 1, µ ∈ (0, 1 + k)
and −1 < k < 1.

(4) The un = u′
n + u′′

n, ‖u′
n‖ = o (αn) and

∞
∑

n=0
‖u′′

n‖ < ∞ are replaced by the

‖un‖ → 0 (n → ∞).
(5) General convergence rate estimates are given in our results.
(6) Extend Ishikawa iterative process with errors to the more general Noor
iterative process with errors.
(7) It is proved that the Noor iterative process with errors is S-stable in The-
orem 2.1.
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Example 2.3. LetX,T,A,N(·, ·, ·), g, η, ϕ be as in Theorem 2.1 andN (x, y, z)
= N (x, y) , ϕ(x1, y) = ϕ(x1), ∀x, y, z ∈ X, ∀x1 ∈ X∗, 0 < k < 1, L ≥ 2,

αn =
1

L (1 + L)
, βn = γn = 0, un = vn =

1

n+ 1
, wn = 0 for all n ≥ 0. Then

the conditions of the Theorem 2.1 are satisfied with µ = k and 0 < µ < 1+ k.

But the Theorem 2.1 in [5] cannot be applied, since αnL (1 + L) =
1

L (1 + L)
·

L (1 + L) = 1 > 1− r for all r ∈ (0, 1).

Remark 2.4. Theorem 2.1 improves and extends Theorem 2.1 of [6] in the
following aspects:
(1) The mapping N(T (·), A(·)) : X → X is replaced by N(T (·), A(·), B(·)) :
X ×X ×X → X.
(2) ϕ : X∗ → R ∪ {+∞} is replaced by ϕ : X∗ × X → R ∪ {+∞} , where
for each fixed y ∈ X,ϕ(·, y) is a proper convex lower semicontinuous function
with η-subdifferential ∂ηϕ.
(3) It abolishes the restriction that {∂ϕ(g(xn))} and {xn} are bounded.
(4) Sequences {αn} and {βn} need not converge to zero.
(5) It abolishes the restriction that the mapping x → N(x, y) is µ-Lipschitz
continuous with respect to T and the mapping y → N(x, y) is ξ-Lipschitz
continuous with respect to A.

(6) The ‖u′
n‖ → 0 as n → ∞ and

∞
∑

n=0
‖u′′

n‖ < ∞ is replaced by ‖un‖ → 0 as

n → ∞.
(7) General convergence rate estimates are given in our results.
(8) Extend Ishikawa iterative process with errors to the more general Noor
iterative process with errors.
(9) It is proved that the iterative process with mixed errors is S-stable in The-
orem 2.1.

Example 2.5. Let N,X, T,A,B, η, ϕ, L be as in Example 2.3 and αn = βn =
1 + k

4L(L+ 1)
, γn = 0, vn = un =

1

n+ 1
, wn = 0 for all n ≥ 0 and −1 < k < 1.

Then the conditions of the Theorem 2.1 are satisfied with µ = 7(1+k)
16 . But the

Theorem 2.1 in [6] cannot be applied, since {αn} and {βn} do not converge
to 0.

Remark 2.6. Theorem 2.1 also extends and improves the corresponding re-
sults of Chang[1, 2], Ding[3], Gu[7], Hassouni and Moudafi [8], Kazmi [9], Noor
[11, 12], Siddiqi and Ansari [13], Siddiqi, Ansari and Kazmi [14] and Zeng [16].

Remark 2.7. If ϕ = 0 in Theorem 2.1, then we obtain the corresponding
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result of the variational inequality.

Remark 2.8. If k = 0 and 0 < k < 1 in Theorem 2.1, then we get the
corresponding results of the accretive and k-strongly accretive, respectively.

Remark 2.9. In Theorem 2.1, if γn = 0, wn = 0, n ≥ 0, then zn =
xn, ηn = gn, n ≥ 0, this implies the corresponding results of Ishikawa iter-
ative sequences, we omit it here.
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