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Orientable small covers over products of a
prism with a simplex

Yanchang Chen, Yanying Wang

Abstract

In this paper, we determine the number of D-J equivalence classes
of all orientable small covers over products of a prism with a simplex.

1 Introduction

A small cover, defined by Davis and Januszkiewicz in [6], is a smooth closed
manifold M™ with a locally standard (Z)™—action such that its orbit space
is a simple convex polytope. For instance, the real projective space RP™
with a natural (Zy)™—action is a small cover over an n-simplex. This gives a
direct connection between equivariant topology and combinatorics and makes
it possible to study the topology of small covers through the combinatorial
structure of quotient spaces.

In recent years, several studies have attempted to enumerate the number
of equivalence classes of all small covers over a specific polytope. Garrison and
Scott used a computer program to calculate the number of homeomorphism
classes of all small covers over a dodecahedron [7]. The number of homeo-
morphism classes of small covers over cubes has also been counted [5, 9]. In
[2], Cai, Chen and Lii calculated the number of equivariant homeomorphism
classes of small covers over prisms. Choi determined the number of equivariant
homeomorphism classes of small covers over cubes [3].

There are few results about orientable small covers. From [8], There exist
orientable small covers over every simple convex 3-polytope. There also exist
non-orientable small covers over every simple convex 3-polytope, except the
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3-simplex. An orientable 3-dimensional small cover corresponds to a 4-colored
simple convex 3-polytope and the existence of an orientable small cover over
every simple convex 3-polytope is closely related to the four color theorem
(see [1] for the four color theorem). In [4], Choi calculated the number of D-J
equivalence classes of orientable small covers over cubes. The objective of this
paper is to give a general formula to calculate the number of D-J equivalence
classes of all orientable small covers over P3(m)x A™ (see Theorem 3.1), where
by P3(m) and A™ we denote an m-sided prism (i.e., the product of an m-gon
and the interval T) and an n-simplex respectively.

The paper is organized as follows. In Section 2, we review the basic theory
about orientable small covers. In Section 3, we determine the number of D-J
equivalence classes of orientable small covers over P3(m) x A”™.

2 Preliminaries

A convex polytope P™ of dimension n is said to be simple if every vertex of
P" is the intersection of exactly n facets (i.e. faces of dimension (n — 1)) [10].
An n-dimensional smooth closed manifold M" is said to be a small cover if it
admits a smooth (Zg)"—action such that the action is locally isomorphic to
a standard action of (Z3)™ on R™ and the orbit space M™/(Z3)™ is a simple
convex polytope of dimension n.

Let P™ be a simple convex polytope of dimension n and F(P") = {Fy,--- , Fy}
be the set of facets of P™. Suppose that 7 : M™ — P" is a small cover over
P™. Then there are ¢ connected submanifolds 7 =*(Fy), - - , 7~ (F,). Each sub-
manifold 7= !(F;) is fixed pointwise by a Zs—subgroup Zs(F;) of (Z2)", so
that each facet F; corresponds to the Zy—subgroup Zs(F;). Obviously, the
Zs—subgroup Zo(F;) actually agrees with an element v; in (Z2)™ as a vector
space. For each face F' of codimension wu, since P" is simple, there are u
facets Fj,,---,F; such that FF = F; N---NF;,. Then, the corresponding
submanifolds 7= !(F;,),---,m 1(F;,) intersect transversally in the (n — u)-
dimensional submanifold 7= (F), and the isotropy subgroup Zs(F) of 7~1(F)
is a subtorus of rank u and is generated by Zo(F;,), - ,Zo(F;,) (or is deter-
mined by v;,, -+ ,v;, in (Z2)™) [6].

Consider a map A : F(P") — (Z2)™ which satisfies the non-singularity
condition: A(Fy,), -, A(F;,) are a basis of (Z2)™ whenever the intersection
F; n---NF;, is non-empty. We call A a characteristic function. If we regard
each nonzero vector of (Zs)™ as being a color, then the characteristic function
A means that each facet is colored by a color. Here we also call A a (Z3)"-
coloring on P".

In fact, Davis and Januszkiewicz gave a reconstruction process of a small
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cover by using a (Zg)"-coloring A : F(P") — (Zy)™. Let Zy(F;) be the
subgroup of (Zy)™ generated by A(F;). Given a point p € P™, by F(p) we
denote the minimal face containing p in its relative interior. Assume F(p) =
F; NN F;, and Zy(F(p)) = @j_, Zo(F;;). Note that Zy(F(p)) is a u-
dimensional subgroup of (Z3)". Let M (\) denote P™x(Z2)"™/ ~, where (p, g) ~
(q,h) if p=qand g~*h € Zy(F(p)). The free action of (Z2)™ on P"™ x (Z3)"
descends to an action on M (\) with quotient P™. Thus M () is a small cover
over P™ [6].

Two small covers My and My over P™ are said to be weakly equivariantly
homeomorphic if there is an automorphism ¢ : (Z2)™ — (Z2)™ and a homeo-
morphism f : M; — Ms such that f(t-z) = ¢(¢t) - f(z) for every t € (Za)"
and x € M. If ¢ is an identity, then M; and Ms are equivariantly homeo-
morphic. Following [6], two small covers M7 and M, over P™ are said to be
Davis-Januszkiewicz equivalent (or simply, D-J equivalent) if there is a weakly
equivariant homeomorphism f : M; — M, covering the identity on P™.

By A(P™) we denote the set of all (Z3)"-colorings on P™. Then we have

Theorem 2.1([6]). All small covers over P™ are given by {M(\)|A € A(P™)}
up to D-J equivalence.

In fact, for each small cover M™ over P", there is a (Z3)"-coloring A with
an equivariant homeomorphism M(\) — M™ covering the identity on P™.
Nakayama and Nishimura found an orientability condition for a small cover [8].

Theorem 2.2. For a basis {e1, - ,e,} of (Z2)", a homomorphism ¢ :
(Z2)" — Zoy = {0,1} is defined by e(e;) = 1(i = 1,--- ,n). A small cover
M(X) over a simple convex polytope P™ is orientable if and only if there exists
a basis {e1,- -+ ,e,} of (Za)™ such that the image of e\ is {1}.

We call a (Zy)™-coloring which satisfies the orientability condition in The-
orem 2.2 an orientable coloring of P™. We know the existence of orientable
small cover over P3(m)x A™ by existence of orientable colorings and determine
the number of D-J equivalence classes.

By O(P™) we denote the set of all orientable colorings on P™. There is a
natural action of GL(n,Zz) on O(P™) defined by the correspondence A —
oo\, and the action on O(P"™) is free. Assume that Fy,--- , F}, of F(P™) meet
at one vertex p of P". Let e1,--- ,e, be the standard basis of (Z2)™. Write
B(P™) ={\ € O(P™)|\(F;) = €;,i=1,--- ,n}. It is easy to check that B(P™)
is the orbit space of O(P™) under the action of GL(n,Zs).

Remark 1. In fact, we have B(P") = {\ € O(P")|\(F;) = e;,i =1,--- ;nand
forn+1< 7 < E,/\(Fj) = ej, t+ ¢, +..'+ej2hj+1,1 <j1 < jJoe <0 <
J2n;4+1 < n}. Below we show that A(F}) = e; +ej, + - + €jan,+1 TOT

n+1<j <L IfXe O(P"), there exists a basis {e},---,el} of (Za)"
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such that for 1 <i < ¢, A(F;) = €], +-~-+e;2fﬁl,1 <ip <o <ldaf41 <

Since \(F;) = ej,i=1,--- ,n, then e; = €] +---+ e;wﬁl. So we obtain that
for n+1 < j < ¢, there aren’t ji,- - - , jox such that A(F}) = e;, +---+ej,,,1 <
J1 < <Jok <.

Two orientable small covers M (A1) and M (\z) over P™ are D-J equivalent
if and only if there is 0 € GL(n,Zs) such that Ay = o o Ag. So the number of
D-J equivalence classes of orientable small covers over P™ is | B(P™)|. We shall
particularly be concerned with the case in which the simple convex polytope
is P3(m) x A™.

3 The number of D-J equivalence classes

In this section, we calculate the number of D-J equivalence classes of all ori-
entable small covers over P3(m) x A™.

To be convenient, we introduce the following marks. By s} and s, we
denote the top and bottom facets of P3(m) respectively, and by a},--- ,a’,
we denote all sided facets of P3(m) in their general order. For an n-simplex
A", by by,--- b, we denote all facets of A™. Set F" = {51 = 5] X A", 55 =
sh X A", a; = af x A™|1 <i <m} and I = {b; = P*(m) x V|1 < j <n+1}.
Then F(P3(m) x A™) = F' JT".

Next we give a criterion for a map A : F(P3(m) x A") — (Z2)" "3 to be
a characteristic function. The non-singularity condition of the characteristic
function means the following:

(1) {\(s1), Ma1), Maz), A(b1),- -, A(bn)} is a basis of (Zg)"*3.

(2) M(bp41) satisfies that {A(bn11), A(bky )5+ 5 A(bk,_, )5 A(s1), A(a1), A(az)}
is a basis of (Z2)"*3, where ki < ks < --- < kp_1 and ky,--- Kk, 1 €
{15 25 Tty n}

(3) A(s2) satisfies that {A(sz2), A(a1), A(a2), A(bp,), -+, A(bn, )} is a basis of

(Zg)n+3, where hy < hg <--- < hy and hy, -+ ,h, € {1,2,~-~ ,n—|—1}.
(4) Mag), -+, Mam) satisfy that both {A(a;), AMai—1), A(sg), A(br,), -,
by, )} and {X(am), Mai), A(sk), A(bp,),-++, A(bp, )} are bases of (Zg)"+3,
k=12 hy < hy < --- < hy and hy,--- ,h, €

where [ = 3,---,m,
{15 25 LN
+ 1),

Theorem 3.1. By N we denote the set of natural numbers. Let a, b, c,d, e be
functions from N x N to N with the following properties:

(1) a(j,n) = 2"a(j — 1,n) + 22" a(j —2,n) with a(1,n) = 1,a(2,n) = 2";
(2) b(j,n) = b(j — 1,n) + 27+1b(j — 2,n) with b(1,n) = b(2,n) = 1;
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c(j,n) = 2¢(j—1,n)+2" e(—2,n) — (2" 1 +2)c(j —3,n) — (2" T1 1)
c(j—4,n)+2" te(j—5,n) with c¢(1,n) = ¢(2,n) = 1,¢(3,n) = 3,¢(4,n)
= +1+3 c(5,n) =3-2n*H +5;
(4) d(j,n) = 2""Yd(j—1,n)+22"d(j—2,n) withd(1,n) = 1,d(2,n) = 2"71;
(5) e(j,n) = 2"e(j—1,n)+2%"e(j—2,n)—3-23""2¢(j -3, ) 324" te(j—4,
)—1—25” 3e(j — 5,n) with e(1,n) = 1,e(2,n) = 2" e(3,n) = 3 -

2m=2 e(4,n) = 723773 e(5,n) = 17 - 24n4,

Then the number of D-J equivalence classes of orientable small covers over
P3(m) x A" is

(1) a(m—1,n)+2b(m—1,n)+e(m—1,n)+ (1+(~1))[(2" ~1)(2"+1) % 14

(2")% + 1] for n even,

(2) 2" a(m — 1,n) + 2d(m — 1,n) +e(m — 1,n)] + 2b(m — 1,n) + c¢(m —

1,n) + (27 + 1) - HEDY for p odd.

(3)

Proof. Let e1,- -+ ,e,13 be the standard basis of (Z3)"*3, then (Z)"3 con-
tains 2”3 — 1 nonzero elements (or 2"™3 — 1 colors). We choose s1, a1, as
from F’ and bq,--- ,b, from F”, then s1,a1,as,b1, -+ ,b, meet at one vertex

of P3(m) x A™ and
B(Pg(m)XAn) = {)\ S O<P3( )XA” |/\(81) = 61,)\(0,1) = 62,)\(@2) =
ez, A(b;) = eirs,1 <i <n}.

The calculation of |B(P3(m) x A™)]| is divided into two cases: (I) n even,
(IT) n odd.

Bo(P3(m) x A™) = {A € B(P3(m) x AM)A(bur1) = €4+ -+ enis+e1),
By(P3(m) x A™) = {\ € B(P3(m) x A" A(bns1) = ea+--- +enys + €2},
Ba(P3(m) x A™) = {X € B(P3(m) x A™)[A(by+1) = €4+ +eny3 +es},
B3(P3(m) x A™) = {\ € B(P3(m) x A")|A(bp+1) = es+ -+ ent3+er +

By Remark 1, we have |B(P3(m) x A")| = 23: |B;(P3(m) x A™)|. Then,
our argument proceeds as follows. i
Case 1. Calculation of |By(P3(m) x A™)|.

By Remark 1, we have A(s2) = e1,e1 + e + e3. Write

BY(P3(m) x A™) = {\ € Bo(P3(m) x A™)|A(s2) = e1},
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Bé(P3(m) X An) = {)\ S Bo(P3(m) X An)|)\(82) =e1 +e3+ 63}.
Then, we have |Bo(P2?(m) x A™)| = |BJ(P3(m) x A™)| + |B}(P3(m) x A")]|.

(1.1) Calculation of |BJ(P3(m) x A™)|.

By Remark 1, we have that A(a,,) = es+eg, +--+eg,, 1 < ks < - <k
n+43,k1 #3,-- ki # 3,i even and 0 < i < n + 2. Set BYY(P3(m) x A™)
{A € BY(P3(m) x A™)[Xam—1) = e2 e +---+ep, 1 < fi <--- < fj
n+3,f1#23,---,fj #2,3,j evenand 0 < j < n+ 1} and Bg’l(P3(m) X
A™) = BY(P3(m) x A™) — BY°(P3(m) x A™). Take an orientable coloring A
in BY(P3(m) x A™). Then Aam_2), Mam) € {e3 + ex, + -+ ex;, 1 < by <
o< ki <n+3,k; #3,--- ki #3,ieven and 0 < ¢ < n+2}. In this case, we
see that the values of A restricted to a,,—1 and a,, have 227+! possible choices.
Thus, |BY?(P3(m) x A™)| = 227+ BY(P3(m — 2) x A™)|. Take an orientable
coloring X in By (P3(m) x A™). Then A(am_1) = ez +ex, +---+ex,, 1 < by <
o<k <n+3,kr #3,--+ ki 3,1 even and 0 < ¢ < n + 2. In this case, if
we fix any value of A(am,—1), then it is easy to see that A(a,,) has 2" possible
values. Thus |BY"(P3(m) x A™)| = 27|B(P3(m — 1) x A™)|. Further, we
have that

IA 1IN

| BY(P?(m)x A™)| = 27| BJ(P?(m—1)x A")|[+22" 1 BY (P? (m—2) x A™)|.
A direct observation shows that |BY(P3(2) x A™)| = 1 and | B§(P3(3) x A")| =
2", Thus, |BY(P3(m) x A™)| = a(m — 1,n).

(1.2) Calculation of |B§(P3(m) x A™)|.
In this case, A(am) = es, A(am—1) = €2, - , A@m—2;) = ez, AM(am—2i—1) =
ea,--- . Thus, |B(P3(m) x A™)| = HELT,
So, we have |By(P3(m) x A™)| = a(m — 1,n) + w
Case 2. Calculation of |By(P3(m) x A™)|.

In this case, we have A(s2) = e1 + e, + - +¢,,2 <} < -+ <;
n+ 3,7 even and 0 < i < n + 2. Write
BY(P3(m) x A™) = {\ € B1(P3(m) x A™)|\(s2) = e1},
BH(P3(m) x A™) = {X € B1(P?*(m) x A™)|X(s2) = e1+ep, +---+ep,,4 <
fi<--<fj<n+3,jevenand 2 < j < n},
B2(P3(m) x A™) = {X € B1(P3(m) x A")|A(s2) = e1 +ea+ep +- +
ef;,4 <

IN

fi<--<fj<n+3,joddand 1< j<n},
B} (P3(m) x A™) = {\ € B1(P3(m) x A™)|\(s2) = e +e3 +ep +oo
ef;,4 <
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fl<...<fj§n+3,j0ddand1§j§n}7

BH(P3(m) x A") = {\ € B1(P3(m) x A™)|A(s2) = e1 +ea+ez+ep 4+ +
e 4< fi<--<fj<n+3,jevenand 0 < j < nj}.

4
Then, we have | By (P3(m) x A")| = Y |Bi(P3(m) x A")|.
i=0

(2.1) Calculation of |BY(P3(m) x A™)|.

By Remark 1, we have A(ap,) =es+ep, +--+ep, 1 <k <---
n+3,ki #3,-- ki #3,i even and 0 < i < n + 2. Set BY(P3(m)
{re B?SP?’(m) X A™)|A(apm_1) = ez} and BY(P3(m) x A™) = BY(
A™) — BY%(P3(m) x A™). Take an orientable coloring X in B (P3(m
We then have A(am—2),Nam) € {es +ex, + - +ep,, 1 <k < -
n43,k1 #3,-- ki #3,i even and 0 < i < n+ 2}, so |BYY(P3(m) x A™)
271 B9(P3(m —2) x A™)|. Take an orientable coloring A in BY"! (P3(m) x A™
We have A(a;,—1) = es+ep, +-+ep, 1 <kt < -+ <k <n+3k #
3,-+-,k; # 3,i even and 0 < i < n + 2, but A(a,,) has only one possible
value whichever possible value of A(am,_1) is chosen, so | B! (P3(m) x A™)| =
|BY(P3(m —1) x A™)|. We see that |BY(P3(2) x A™)| = |BY(P3(3) x A")| = 1.
Thus, |BY(P3(m) x A™)| = b(m — 1,n).

> A
S

3

X
T — S

> A x &
3 [>3

3
A~ X Il IA
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(2.2) Calculation of |Bf(P3(m) x A™)|.

In this case, no matter which value of A(sz2) is chosen, we have A(a,,) =
es+ ey + - +eg,l < ki < - <ki<n+3k #3,---,k # 3,i even
and 0 < i < n+2. Set By'*(P3(m) x A™) = {\ € BH(P3*(m) x A™)|A(am_1) =
es} and B (P3(m) x A™) = BH(P3*(m) x A™) — BP'°(P3(m) x A™). Take
an orientable coloring X in B}*°(P3(m) x A™). Then Aam_2), A(anm) € {es +
ep, +- - tep, 1l <k < - <k <n+3k #3,--- ki #3,ieven and 0 <
i <n+2}. Thus, |By°(P3(m) x A™)| = 2"+ B}(P3(m — 2) x A™)|. Take an
orientable coloring A in Bj**(P3(m) x A™). We have A(ap_1) = es+ex, +- -+
e, 1 <ki<--- <k <n+3,kt #3,--- ,k; #3,ievenand 0 < i < n+2, but
A(am) has no possible values whichever possible value of A(a,,—1) is chosen.
Further, we have | B} (P3(m) x A")| = 2" B} (P3(m —2) x A™)|. We see that
|B1(P3(2) x A™)| = 2n~! — 1 and |B}(P3(3) x A™)| = 0. So, |B}(P3(m) x
An)' _ 1+(;1)m . (2n71 _ 1)(2n+1)%71.

(2.3) Calculation of |BZ(P3(m) x A™)|.
Similarly to above (2.2), |B2(P3(m) x A™)| = HEUT gn=1(gnt1y5 -1,

(2.4) Calculation of |Bf(P3(m) x A™)|.



78 YANCHANG CHEN, YANYING WANG

Similarly to above (2.2), |B}(P3(m) x Am)| = ZHEDT gn=1(gny5 -1,
(2.5) Calculation of |Bf(P3(m) x A™)|.

Similarly to above (2.2), |Bf(P3(m) x Am)| = ZEDT gn=1(gny 5 -1,
Thus, |B; (P?(m) x A™)| = b(m —1,n) + FEH [(2n —1)(2n+1) 5 -1 4 (2m) 7).
Case 3. Calculation of |Ba(P3(m) x A™)|.

In this case, we have A(s2) = e1+ ¢, +---+e€,,2 <1 < -+ <; <
n+ 3,7 even and 0 < ¢ < n+ 2. If we interchange e, and e3, then the problem
is reduced to above Case 2, so | Ba(P3(m) x A™)| = b(m—1,n)+ H'(+1)[(2”—
@ hE-t+ (27 %]

Case 4. Calculation of |B3(P3(m) x A™)|.

By Remark 1, we have A(s2) = e1,e1 + ea + e3. Write

BY(P3(m) x A™) = {\ € B3(P3(m) x A™)|\(s2) = e1},

Bi(P3(m) x A™) = {\ € B3(P3(m) x A™)|A(s2) = e1 + €3 + e3}.

Then, we have |B3(P3(m) x A")| = |B(P3(m) x A™)| + |B3(P3(m) x A")].
(4.1) Calculation of |BS(P3(m) x A™)|.

In this case, we have A(an,) = e3,e3 4+ €1 + ez. Set BY(P3(m) x A") =
{A € BY(P3(m) x A™)|A(am_1) = ea}, By (P3(m) x A™) = {\ € BY(P3(m) x
A™)[Mam-1) = e3,e3 + €1 + ey}, and BY?(P3(m) x A™) = {\ € BY(P3(m) x
AM)[Mam-1) = €2 +ep, + - tex, e +ep, +tep, L <k <o <k <
n+3,k #2,3,-+ ki #2,3,i even and 2 < i < n+ 1}. Then |BY(P3(m) x
A™)| = [By*(P3(m) x A™)| + | B3 (P*(m) x A™)| + |By*(P3(m) x A™)|. An
easy argument shows that | By’ (P3(m) x A™)| = 2|BY(P3(m — 2) x A™)| and
| B3 (P3(m) x A™)| = |BY(P3(m — 1) x A™)], so

[ B3(P?(m) x A™)| = |B§(P?(m — 1) x A™)| +2|B§(P*(m — 2) x A")| +

| B (PP (m) x A™). (2)
Set B'(m,n) = {\ € By*(P3(m) x A™)|A(am_2) = e3 + e1 + ea}. Then we
see that

d\Bg’z(P3(m) x AM)| = |B3*(P3(m—1) x A™)| +|B'(m, n)| (3)
|B'(m,n)| = (21 =2)| B3 *(P3(m—2) x A")|+ (2" —2)|B§(P*(m —4) x
A™)[+ (2" =2)[B§(P?(m—5) x A")|+|B'(m —2,n)] (4)

Combining Eqs. (2), (3) and (4), we obtain
|[BS(P*(m) x A™)| = 2|B§(P(m — 1) x A™)| 4+ 2" B§(P*(m — 2) x
A™)| = (27T 4+ 2)[ B§(P?(m = 3) x A")| — (2! — 1)|B§(P®(m — 4) x A™)| +
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2n T BY(P3(m — 5) x A™)].

A direct observation gives that |BJ(P3(2) x A™)| = |B(P3(3) x A")| =
L, |B3(P?(4) x A™)| = 3,|B§(P*(5) x A™)| = 27143, and |B§(P?(6) x A")| =
3271 + 5. Thus, we have |BY(P3(m) x A")| = ¢(m — 1,n).
(4.2) Calculation of |B3(P3(m) x A™)|.

In this case, A(am) = €3, A(am—1) = €2, , AMam—2i) = e3, Nam—2i—1) =
ea,--- . Thus, |B}(P3(m) x A™)| = HELUT,
So, |Bs(P3(m) x A™)| = ¢(m — 1,n) + HEUT

(IT) n odd

Write
Bo(P3(m) x A™) = {\ € B(P3(m) x A™)|[A(bps1) =es + -+ enis},
Bl(P3(m)><A") = {)\ c B(P3(m)xA”)|)\(bn+1) =e4+-- ~+€n+3—|—61+€2}7
BQ(P3(m)XA") = {)\ S B(Pg(m)xA”)|)\(bn+1) = 64+' . '+€n+3+61+63}7
B3(P3(m)xA") = {\ € B(P3(m)xA")|A(byy1) = €4+ - -+eni3+eates}.

3
By Remark 1, we have that |B(P3(m) x A™)| = Y |B;(P3(m) x A")|.
i=0

Then, our argument proceeds as follows.
Case 1. Calculation of |By(P3(m) x A™)|.

In this case, we have A(s2) = e; +e, + - +e¢,,2 <} < -+ <[; <
n+ 3,7 even and 0 < i < n + 2. Write

BJ(P3(m) x A™) = {X € Bo(P*(m) x A™)|X(s2) = e1+ep, +---+ep,,4 <
fi<--<fij<n+3,jevenand 0 <j < n},
BY(P3(m) x A) = {A € Bo(P*(m) x AM)[A(s2) = e1 + €2 + e, + - +
e, 4 <
fi<--<fi<n+3,joddand 1 <j <n},
B3(P3(m) x A") = {A € Bo(P*(m) x AM)[A(s2) = e1 + €5 + g, + - +
e, 4 <
fi<---<fi<n+3,joddand 1<j <n},
Bg(Pg(m)XAn) Z{/\EBQ(P3(m)XAn)|)\(82) :€1+62+63+6f1+"'+
e, 4< fi<--<fj<n+3,jevenand 0 < j < nj}.

3
Then, we have |Bo(P3(m) x A")| = Y |Bi(P3(m) x A"™)|.
i=0

(1.1) Calculation of |BJ(P3(m) x A™)|.
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Similarly to (1.1) in (I), |BY(P3(m) x A™)| = 2" ta(m — 1,n).

(1.2) Calculation of |B(P3(m) x A™)|.

“ee <
ki <nmn+3,k #3,---,k; #3,ieven and 0 < i < n + 2. Set Bé’O(P3(m) X
A™) = {X € B§(P3(m) x A™)[AMam-1) =e2+eg + - +eg,4< g1 <+ <
g < n+3,kevenand 0 < k < n} and By (P3(m) x A™) = B}(P3(m) x
A™) — By?(P3(m) x A™). Take an orientable coloring A in By (P3(m) x A™).
Then A(am—2),A(am) € {es +ex, + - +ep,1 <k < - < k; < n+
3,k #3,--+ ki # 3,i even and 0 < ¢ < n + 2}. In this case, we see that
the values of A restricted to a,,—1 and a,, have 22" possible choices. Thus,
|By2(P3(m) x A™)| = 227| B} (P3(m—2) x A™)|. Take an orientable coloring A
in Byt (P3(m) x A™). Then A(am_1) = es+ep, +---+ep,, 1 <k <--- < k; <
n+3,k #3,--- ,k; # 3,i even and 0 < i < n + 2. In this case, if we fix any
value of A(a,,_1), then it is easy to see that A(a,,) has 2"~! possible values.
Thus | By (P3(m) x A™)| = 2"~ 1 BA(P3(m — 1) x A™)|. A direct observation
shows that |B§(P3(2) x A™)| = 27! and |BY(P3(3) x A™)| = 22772, So,
|B§(P3(m) x A™)| = 2""1d(m — 1,n).

(1.3) Calculation of |BZ(P3(m) x A™)|.

If we interchange es and eg, then the case is reduced to above (1.2) in (II),
so |B2(P3(m) x A™)| =2""td(m — 1,n).

(1.4) Calculation of |B3(P3(m) x A™)|.

In this case, no matter which value of A(sz) is chosen, we have A(a.,,) =
esteg +teg,2< g1 < - <gr<n+3,91#3,---, 9k # 3,k even and
0 <k <n+1 Set BY(P3(m) x A™) = {\ € B3(P3(m) x A™)|A(am_1) =
extep +--tep,4 < h <o <hy <n+3,jevenand 0 < j < n},
By (P3(m) x A™) = {\ € B3(P?(m) x A™)|AM(am_1) = ez +eg +---+eg,2 <
< - -<gr<n+3,9g #3,--,9r #3,kevenand 0 < k < n+ 1}, and
BY?(P3(m) x A™) = {\ € B3(P3(m) x A™)[Mam_1) = ea +e1 +en, +---+
€n; €3+ €1 +ep, +-tep,4<hy < - <hj<n+3,joddand 0 < j <
n}. Then |B3(P?(m) x A™)| = |Bg*(P3(m) x A™)| + By (P?(m) x A")| +
|B3?(P3(m) x A™)|. An easy argument shows that |By°(P3(m) x A™)| =
22n=1B3(P3(m —2) x A™)| and | B3 (P3(m) x A™)| = 21| B3(P3(m — 1) x
A™)|, so

| B3 (P?(m) x A™)| = 2" 71| B3 (P?(m — 1) x A™)|+ 22" BF(P*(m - 2)
x A™)| + |Bg (P2 (m) x A"). 2)

(
Set B”(m,n) ={\ € BS”2(P3(m) X AM)|Mam—2) = ez+ea+ep, +---Fep;, 4 <
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hiy <---<hj<n+3,jodd and 0 < j < n}. Then we see that

| By (P (m) x A™)| = 2771 | B (P8 (m—1) x A™)[+|B"(m,n)|  (3)
and

|B”(m, n)| = 22771 By*(P3(m — 2) x A™)| + 24773 B (P*(m — 4) x
A2 BYP m—5) X A 4222 B =2,m)
Combining Eqs. (2), (3) and (4), we obtain

| BG(P*(m) x AM)| = 2" BF(P*(m — 1) x A")| + 22" Bj(P*(m — 2) x
AM)| — 3 - 23772 |B3(P3(m — 3) x A™)| — 3 - 244 B3(P3(m — 4) x A™)| +
25n=3| B3(P3(m — 5) x A")|.

A direct observation gives that |B3(P3(2) x A™)| = 2771 |B3(P3(3) x
AM)| = 2272 |B3(P3(4) x A™)| = 323773 |B3(P3(5) x A")| = 7. 24n—4
and |B3(P3(6) x A")| = 17 - 25775, Thus, we have |B3(P3(m) x A")| =
2n~Lle(m —1,n).

So, |Bo(P3(m) x A™)| = 2" t[a(m — 1,n) + 2d(m — 1,n) + e(m — 1,n)].
Case 2. Calculation of |B1(P3(m) x A™)|.

By Remark 1, we have A(s3) = e1,e1 + ea + e3. Write

BY(P3(m) x A") = {\ € B1(P3(m) x A™)|A(s2) = e1},

Bi(P3(m) x A") = {\ € B1(P3(m) x A™)|\(s2) = e1 + €2 + e3}.
Then, we have | By (P2?(m) x A™)| = |BY(P3(m) x A™)| + |Bi (P3(m) x A")|.
(2.1) Calculation of |BY(P3(m) x A™)|.

Just as Case (2.1) in (I), |[BY(P3(m) x A™)| = b(m — 1,n).
(2.2) Calculation of |Bf(P3(m) x A™)|.

In this case, A(am) = €3, A(am—1) = €2, - , Mam—2i) = ez, NMam—2i—1) =
eg,--- . Thus, |B}(P3(m) x A™)| = HELT,
So, |Bi(P3(m) x A™)| = b(m — 1,n) + HEUT
Case 3. Calculation of |By(P3(m) x A™)|.

In this case, A\(s2) = e1,e1 + e2 + e3. If we interchange es and eg, then the

case is reduced to above Case 2 in (II), so |Ba(P3(m) x A™)| =b(m —1,n) +
14(—)™
.

Case 4. Calculation of |B3(P3(m) x A™)|.

We have A(s2) = e1+e, +---+¢,,2 <l < -+ <l; <n+3,ieven
and 0 <17 <n+ 2. Write
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BY(P3(m) x A™) = {\ € B3(P3(m) x A™)|\(s2) = e1},
Bi(P3(m) x A™) = {\ € B3(P3(m) x A™)|\(s2) =e1+e, +---+ep,,2 <
Ih<---<li<n+3,ieven and 2 <i<n+2}.
Then, |B3(P*(m) x A™)| = [BJ(P?(m) x A™)| + [Bj(P?(m) x A™)|.

(4.1) Calculation of |BS(P3(m) x A™)|.
Just as Case (4.1) in (I), |BY(P3(m) x A™)| = c¢(m — 1,n).

X

(4.2) Calculation of |Bi(P3(m) x A™)|.

No matter which value of A(sz2) is chosen, we have A(an,) = ez, A(am—1) =
€, ,)\(am,gi) = 63,)\(am,2i,1) = €9, " . ThUS, \Bé(P?’(m) X An)| =
(2n 1 —1)- HEDT Qo |By(P3(m) x A™)| = e(m—1,n)+ (27 +! —1). T

The proof is completed. O

Remark 2. Using the formula in Theorem 3.1, we may calculate the number
|B(P3(m) x A™)| of D-J equivalence classes of orientable small covers over
P3(m) x A™ for several small m and n = 1, 2.

m 3 4 5 6
[B(P3(m)x AD)[ | 8 43 90 331
IB(P3(m) x A%)[ | 7 151 365 3537

Note that from Theorem 3.1 we can determine the number |O(P3(m) x A"

of all orientable colorings on P3(m) x A”™.
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