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Bounds of Stanley depth

Dorin Popescu

Abstract

We answer positively a question of Asia Rauf for the case of inter-
sections of three prime ideals generated by disjoint sets of variables and
we present several inequalities on Stanley depth.

This is a detailed presentation of our talk at the conference on ”Funda-
mental structures of algebra” in honor of Prof. Serban Basarab at his 70-th
anniversary. Let S = K[x1, . . . , xn] be a polynomial algebra over a field K,
I ⊂ J ⊂ S two monomial ideals and M = J/I. The depth of M is a homolog-
ical invariant and depends on the characteristic of the field K. For example
if I is the Stanley-Reisner ideal associated to the triangulation of the pro-
jective real plane P2

R then depthS/I = 3 if and only if the characteristic of
K is not 2, otherwise depth S/I = 2 (see [16]). This is because the singular
homology H̃1(P2

R;K) = 0 if and only if the characteristic of K is not 2, oth-
erwise H̃1(P2

R;K) = K. In 1982 Stanley [18] introduces a new invariant the
so-called the Stanley depth, which is combinatorially defined and so does not
depend on the characteristic of the field K. Given a monomial u ∈ (J \ I)
and Z ⊂ {x1, . . . , xn}, we say that ûK[Z], û = u + J , is a Stanley space of
dimension |Z| if it is free over K[Z]. A Stanley decomposition of J/I is a
finite direct sum of Stanley spaces, D : J/I = ⊕s

i=1uiK[Zi], and we call
sdepth D = min{|Zi|} the Stanley depth of D . For example the Stanley
decomposition D : K[x, y]/(x2, xy) = K[y]⊕xK has sdepth D = 0. We define

sdepthS J/I = max{sdepth D : D Stanley decomposition of J/I}.
There exists an infinite set of Stanley decompositions and apparently it is
impossible to find sdepth in general. Herzog-Vladoiu-Zheng [5] reduced the
problem to find a partition of a finite ordered set. Stanley conjectured that
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sdepth J/I ≥ depth J/I. In [11] and [12] we showed that if n ≤ 5 and either
J = S or I = 0 then the Stanley’s Conjecture holds. Stanley depth shares
some common properties, as Apel noticed [1], with the usual depth as, for
example,

sdepth S/I ≤ minP∈Ass S/I dim S/P,

where Ass J/I denotes the associated prime ideals of J/I.
A. Rauf stated in [15] the following result:

Proposition 1. depthS S/(I : v) ≥ depthS S/I, for each monomial v 6∈ I.

It is worth to mention that these results hold only in monomial frame.
One could think about similar questions on Stanley depth. The following
proposition can be seen as a possible analog of the above proposition and it
is given in the arXiv version of [12] but not in the printed version, where the
paper had to be shorter.

Proposition 2. sdepthS (I : v) ≥ sdepthS I for each monomial v 6∈ I.

Proof. By recurrence it is enough to consider the case when v is a variable,
let us say v = xn. Let D : I = ⊕r

i=1uiK[Zi] be a Stanley decomposition of I
such that sdepth D = sdepthS I. We will show that

D′ : (I : xn) = (⊕xn|ui
(ui/xn)K[Zi])⊕ (⊕uj 6∈(xn),xn∈Zj

ujK[Zj ])

is a Stanley decomposition of (I : xn). Indeed, if a is a monomial such that
xna ∈ I then we have xna = uiwi for some i and a monomial wi of K[Zi]. If
xn 6 |ui then xn|wi and so xn ∈ Zi. If xn|ui then a = (ui/xn)wi, which shows
that

(I : xn) = (Σxn|ui
(ui/xn)K[Zi]) + (Σuj 6∈(xn),xn∈Zj

ujK[Zj ]).

It remains to show that the above sum is direct. If xn|ui, uj 6∈ (xn), xn ∈ Zj

and ujwj = (ui/xn)wi for some monomials wj ∈ K[Zj ], wi ∈ K[Zi] then
uj(xnwj) = uiwi belongs to uiK[Zi] ∩ ujK[Zj ], which is not possible.

Thus D′ is a Stanley decomposition of (I : xn) with sdepth D′ ≥ sdepth D =
sdepthS I, which ends the proof.

Corollary 3. ( Ishaq, [8]) Let I ∈ S be a monomial ideal with Ass(S/I) =
{P1, . . . , Ps}. Then sdepth(I) ≤ min{sdepth(Pi) : 1 ≤ i ≤ s}.
Proof. (After [8]) Let Pi ∈ Ass(S/I). Then Pi is a monomial ideal and there
exists a monomial wi ∈ I such that I : wi = Pi. By the above proposition, we
have sdepth(I) ≤ sdepth(I : wi) = sdepth(Pi).

Another interesting result of Ishaq is the following
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Theorem 4. ( Ishaq, [7]) sdepth(J/I) ≤ sdepth(
√

J/
√

I).

When J = S the result is given in [2], or in the case of depth in [3].
Next we present some bounds of sdepth(I), sdepth(S/I) given when I has

a small number of primary components.

Theorem 5. (Popescu-Qureshi, [14]) Let Q,Q′ be two primary monomial
ideals of S. If Q + Q′ is the maximal ideal of S then sdepth S/(Q ∩Q′) ≤

max{min{dim S/Q′, ddim(S/Q)
2

e}, min{dim(S/Q), ddim(S/Q′)
2

e}},

and the equality holds when Q,Q′ are irreducible (for example prime).

Always we can reduce the problem to the case when Q+Q′ is the maximal
ideal of S, since a free variable increases depth and sdepth by 1 as it is showed
in [5].

Corollary 6. If Q, Q′ are irreducible monomial ideals then the Stanley’s Con-
jecture holds for S/(Q ∩Q′).

Theorem 7. (Popescu-Qureshi, [14]) If Q,Q′ are irreducible monomial ideals
and Q + Q′ is the maximal ideal of S then

sdepthQ ∩Q′ ≥ ddim(S/Q)
2

e+ ddim(S/Q′)
2

e.

Corollary 8. Let Q,Q′, Q′′ be irreducible monomial ideals then the Stanley’s
Conjecture holds for Q ∩Q′ and S/(Q ∩Q′ ∩Q′′).

The above corollary is completed by Adrian Popescu as follows:

Theorem 9. (A. Popescu, [10]) The Stanley’s Conjecture holds for intersec-
tions of three prime ideals.

The proof of the above theorem relies on a special Stanley decomposi-
tion which we extend in [13]. Let r < n be a positive integer and S′ =
K[xr+1, . . . , xn], S′′ = K[x1, . . . , xr]. We suppose that one prime ideal Pi is
generated in some of the first r variables. If Pi = (x1, . . . , xr) we say that Pi

is a main prime. For a subset τ ⊂ [s] we set

Sτ = K[{xi : 1 ≤ i ≤ r, xi 6∈ Σi∈τPi}]

and let F be the set of all nonempty subsets τ ⊂ [s] such that

Lτ = (∩i∈τPi) ∩ S′ 6= (0), Jτ = (∩i∈[s]\τ Pi) ∩ Sτ 6= (0).
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For τ ∈ F we consider the ideals I0 = (I ∩K[x1, . . . , xr])S, and

Iτ = JτLτSτ [xr+1, . . . , xn].

Define the integers

Aτ = sdepthSτ [xr+1,...,xn] Iτ ≥ sdepthSτ
Jτ + sdepthS′ Lτ

and A0 = sdepthS I0 if I0 6= (0). Then

Theorem 10. (D. Popescu, [13]) sdepthS I ≥ min{A0, {Aτ}τ∈F}.
Corollary 11. (D.Popescu,[13]) The Stanley’s Conjecture holds for intersec-
tions of four prime ideals.

Our Theorem 10 has also some limits which can be seen in the next exam-
ple.

Example 12. ([13]) Let n = 10,

P1 = (x1, . . . , x7), P2 = (x3, . . . , x8),

P3 = (x1, . . . , x4, x8, . . . , x10),

P4 = (x1, x2, x5, x8, x9, x10),

P5 = (x5, . . . , x10).

We have P1 +P3 = P2 +P3 = P1 +P4 = P2 +P4 = P3 +P5 = P1 +P5 = m,
P2 + P5 = m \ {x1, x2}, P3 + P4 = m \ {x6, x7}, P4 + P5 = m \ {x3, x4},
P1 +P2 = m \ {x9, x10}. We have t(I) = 2, where t(I) is the big size of I (see
Definition [13]), and depthS S/I = 4. Applying Proposition 10 for P1 as main
prime we see that A

(1)
3,4 ≥ 3, that is Aτ for τ = {3, 4}. Indeed,

A
(1)
3,4 ≥ sdepthK[x6,x7](x6, x7)K[x6, x7]+

+ sdepthK[x8,x9,x10](x8, x9, x10)K[x8, x9, x10] = 3.

Similarly choosing P2 as a main prime we get A
(2)
3,4 ≥ 3 and taking P3,P4 as

main primes we get A
(3)
2,5 ≥ 3, respectively A

(4)
2,5 ≥ 3. Thus from these we

cannot conclude that sdepthS I ≥ depthS I. Fortunately, choosing P5 as a
main prime one can see that all Aτ ≥ 4, which is enough.

Let I = ∩s
i=1Pi, s ≥ 2 be a reduced intersection of monomial prime ideals

of S. We assume that Σs
i=1Pi = m = (x1, . . . , xn).
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Definition 13. Let e be the minimal number such that there exists e-prime
ideals among (Pi) whose sum is m. After Lyubeznik the size of I is e− 1. We
call the big size of I the minimal number t = t(I) < s such that the sum of
all possible (t + 1)-prime ideals of {P1, . . . , Ps} is m. In particular, there exist
1 ≤ i1 < . . . < it ≤ s such that Σt

k=1Pik
6= m and for all j ∈ [s] \ {i1, . . . , it}

we have Pj + Σt
k=1Pik

= m. Clearly the big size of I is bigger than the size of
I.

Remark 14. By Lyubeznik, depthS S/I is always greater than the size of I
and so if the size of I is 1 then necessary depthS I ≥ 2.

Example 15. Let n = 5, s = 4, P1 = (x1, x5), P2 = (x2, x5), P3 = (x3, x5),
P4 = (x1, x2, x3, x4). Since P1 + P2 + P3 6= m the big size of I = ∩4

i=1Pi is 3
but depthS S/I = 1 because Pi + P4 = m for all 1 ≤ i ≤ 3.

Corollary 16. If the big size of I is 1 then the Stanley’s Conjecture holds for
I.

It is easy to see that the above corollary holds for n ≤ 2. If n ≥ 3 then
sdepthS I ≥ 2 = depth I by Fløysted and Herzog [4]. A different proof is done
in [13] using Theorem 10. This theorem is extended for all monomial ideals
and has the following consequence:

Theorem 17. (Herzog, Popescu, Vladoiu, [6]) sdepth I ≥ 1 + size I.

Next we present some results on intersections of prime ideals generated by
disjoint sets of variables. A helpful result is the following:

Theorem 18. (D. Popescu, [13]) Let I = ∩s
i=1Pi be a reduced intersection of

monomial prime ideals of S. Assume that Pi 6⊂ Σs
1=j 6=iPj for all i ∈ [s]. Then

sdepthS I ≥ s = depthS I,

that is the Stanley’s Conjecture holds for I.

The above result is useful to show the following:

Theorem 19. ( Ishaq, [8]) Let I be a monomial ideal such that the prime
ideals of Ass S/I are generated by disjoint sets of variables. Then the Stanley’s
Conjecture holds for I and S/I.

When I is square free the above theorem is stated in [10]. A. Rauf [15]
asked if sdepth I ≥ 1+sdepth S/I. When I is the intersection of two irreducible
monomial ideals, this question has a positive answer (see [14]).
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Theorem 20. Let 1 ≤ r ≤ e ≤ q be some integers such that n = r + e+ q and
assume that P1 = (x1, . . . , xr), P2 = (xr+1, . . . , xr+e), P3 = (xr+e+1, . . . , xr+e+q)
and I = P1 ∩ P2 ∩ P3. Then

1. sdepthS I ≥ sdepthS S/I,

2. moreover sdepthS I ≥ 1 + sdepthS S/I except possible in the case when
either r = e is even and q is even, or r is odd and e = r + 1.

Proof. Choose P1 to be main prime and apply Theorem 10. Set A2, S2,
J2, L2 for τ = {2} and similarly for τ = {3} or τ = {2, 3}. Note that
S2 = S3 = S23 = S′′ and J2 = J3 = 0, J2,3 = P1 ∩ S′′. Then

A23 ≥ sdepthS2
(P1 ∩ S23) + sdepthS′(P2 ∩ P3 ∩ S′) ≥ dr

2
e+ dq + e

2
e,

the inequality being strict by [7, Corollaries 2.9, 2.10] (see also [17]) if q, e are
not both even, and d r

2e denotes the smallest upper integer greater than r/2.
It follows that A23 ≥ 1 + r + d q

2e except possible when r = e is even and q
is even. Using the next proposition sdepthS S/I ≤ r + d q

2e except possible
when e = r + 1 and r is odd. Hence sdepthS I ≥ 1 + sdepthS S/I except
possible in the cases when either r = e is even and q is even, or r is odd and
e = r + 1. In these two cases we may have only sdepthS I ≥ sdepthS S/I.
Finally, A0 = sdepthS′′(I ∩ S′′) + n− r ≥ 1 + dim S/P1 ≥ 1 + sdepthS S/I if
I ∩ S′′ 6= 0. The proof ends by applying Theorem 10.

Proposition 21. ( Ishaq,[8]) In the hypothesis of the above theorem it holds

sdepthS S/I < 1 + r + min{e, dq
2
e},

except in the case r is odd and e = r+1 when the upper bound could be possible
reached.
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