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THE IRRATIONALITY OF SUMS OF
RADICALS VIA COGALOIS THEORY

Toma Albu

Abstract

In this paper we present an one-and-a-half-line proof, involving Co-
galois Theory, of a folklore result asking when is an irrational number a
sum of radicals of positive rational numbers. Some of the main ingredi-
ents of Cogalois Theory like G-Kneser extension, G-Cogalois extension,
etc., used in the proof are briefly explained, so that the paper is self-
contained. We also discuss some older and newer results on transcen-
dental and irrational numbers.

Introduction

The aim of this paper is three-fold: firstly, to discuss various aspects related

to transcendental and irrational numbers, including presentation of some open

questions on this matter, secondly, to present in this context a folklore result

asking when is a sum of radicals of positive rational numbers an irrational

number, with an one-and-a-half-line proof via Cogalois Theory, and thirdly,

to shortly explain those notions and facts of this theory used in that proof.

Finally, a few applications of Cogalois Theory, including an extension of the

folklore result from Q to any subfield of R, mainly answering some problems

discussed in the paper, are presented.
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tension, Galois extension, radical extension, Kummer extension, Cogalois Theory, Kneser
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Note that the first two sections are of a very elementary level, being ad-

dressed to anybody wishing to be acquainted with older as well as newer results

on transcendental and irrational numbers. The last two sections require, how-

ever, some knowledge of Field Theory, including the Fundamental Theorem of

Galois Theory.

1 Transcendental and irrational numbers

In this section we present some more or less known results on transcendental

and irrational numbers, including those related to the irrationality of ζ(n) and

of the Euler’s constant.

By N we denote the set {0, 1, 2, . . .} of all natural numbers, and by Z

(resp. Q, R, C) the set of all rational integers, (resp. rational, real, complex)

numbers. For any ∅ 6= A ⊆ C (resp. ∅ 6= X ⊆ R ) we denote A∗ := A \ {0}
(resp. X+ := {x ∈ X |x > 0 }. If a ∈ R∗+ and n ∈ N∗, then the unique

positive real root of the equation xn − a = 0 will be denoted by n
√

a.

Definitions 1.1. An algebraic number is any number a ∈ C which is a root of

a nonzero polynomial f ∈ Q[X], and a transcendental number is any number

t ∈ C which is not algebraic. ¤

Throughout this paper we will use the following notation:

A := the set of all algebraic numbers,

T := C \ A = the set of all transcendental numbers,

I := R \Q = the set of all irrational numbers.

Examples 1.2. (1) Q ⊆ A since any a ∈ Q is the root of the nonzero

polynomial f = X − a ∈ Q[X].
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(2) n
√

a ∈ A for any a ∈ Q∗+ and n ∈ N∗ because there exists f =

Xn − a ∈ Q[X] such that f( n
√

a) = 0.

(3) T ∩ R ⊆ I since Q ⊆ A.

(4) e := lim
n→∞

(
1 +

1
n

)n

∈ T, as this has been proved by Charles Hermite

(1822-1901) in 1873.

(5) π ∈ T, as this has been proved by Ferdinand von Lindemann (1852-

1939) in 1882. ¤

Clearly,

R = Q ∪ I and Q ∩ I = ∅,

therefore any real number defined by certain natural procedures like geometri-

cal constructions, limits of sequences, etc., can be either rational or irrational.

Therefore it is natural to ask the following

Problem 1.3. Decide whether a given real number is rational or irrational.

¤

As we will see below this problem is in general extremely difficult. However,

notice that in the real life we are dealing only with rational numbers, so the

problem makes no sense in this context.

Examples 1.4. (1)
√

2 ∈ I. Notice that
√

2 is precisely the length of the

diagonal of the square of side 1. It seems that this number, discovered by

Pitagora (∼ 570 - 495 BC) and Euclid (∼ 300 BC), was the first ever known

irrational number.

(2) π ∈ I because we have seen above that π ∈ T. This number appears

as the length of the circle with diameter 1. However, in the real life π = 3.141.

(3) e := lim
n→∞

(
1 +

1
n

)n

∈ I because we have noticed above that e ∈ T.

However, in the real life e = 2.718.

(4) ζ(2k) ∈ I, ∀ k ∈ N∗, where
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ζ(s) := lim
n→∞

(
1
1s

+
1
2s

+ · · ·+ 1
ns

)
, s ∈ C, <(s) > 1,

is the famous zeta function of Bernhard Riemann (1826-1866). Let us mention

that the well-known Riemann’s Hypothesis, raised in 1859 and saying that the

nontrivial zeroes z of the function ζ have <(z) = 1/2, is one of the seven

Millennium’s Problems.

Indeed, by a well-known result (see, e.g., Borevitch & Shafarevitch [11,

Chap. V, §8, Theorem 6], one has

ζ(2k) = (−1)k−1 (2π)2k

2 · (2k)!
·B2k,

where Bm ∈ Q, m ∈ N∗, are the so called Bernoulli’s numbers, introduced by

Jakob Bernoulli (1654-1705), but published posthumously only in 1713. It is

known that B1 = −1
2

and B2k+1 = 0, ∀ k ∈ N∗. Thus, ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, etc. Since π ∈ I and B2k ∈ Q one deduces that ζ(2k) ∈ I,

as desired. ¤

In view of Examples 1.4 (4) it is natural to ask the following:

Question 1.5. What about the irrationality of ζ(2k + 1), k ∈ N∗?

Answer : Up to now it is known that ζ(3) ∈ I, as this has been proved by Roger

Apéry (1916-1994) in 1978 (see [6] and [22]). The Apéry’s magnificent proof

is a mix of miracle and mystery. A more simple proof is due to Frits Beukers

[10], and an elementary very recent proof has been done by Yuri V. Nesterenko

[21]. In 2000, Tanguy Rivoal [23] proved that ζ(2k+1) ∈ I for infinitely many

k ∈ N∗ (see also [7]), and, one year later, Vadim Zudilin showed that at least

one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. ¤

One of the hardest question of Diophantine Analysis, which has not yet

been settled till now, is about the irrationality of the Euler’s constant

C := lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− ln n

)
∼ 0.27721

considered by Leonhard Euler (1707-1783) in 1735, that is:
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Question 1.6. Is the Euler’s constant irrational?

Answer : It is known that in case C ∈ Q then the denominator of C must

be > 10242,080. In 2009 there were known 29, 844, 489, 545 decimals of C

according to Wikipedia [25]. Let us mention that Alexandru Froda (1894-

1973), known by an irrationality criterion [13], has claimed [14] in 1965 that

his criterion can be applied to prove the irrationality of C; shortly after that it

appeared that his claim was wrong. A more recent paper in 2003 of Jonathan

Sondow [24] provides irrationality criteria for C. ¤

2 Sums of irrational numbers

In this section we discuss first the irrationality of the sum, product, and power

of two irrational numbers, including e and π. Then we examine when an n-

th radical of a positive real number is irrational, and, after that, we present

a nice folklore result asking when a sum of finitely many such radicals is

irrational. We provide an one-and-a-half line proof of this result by invoking an

important property enjoyed by the G-Cogalois extension naturally associated

with the radicals intervening in the folklore result. What are these G-Cogalois

extensions will be briefly explained in the next section.

As it is well-known, one cannot say anything about the irrationality of a

sum or product of two arbitrary irrational numbers α and β, i.e., they can

be either rational or irrational; e.g.,

α =
√

2 , β = −
√

2 =⇒ α + β = 0 6∈ I, α · β = −2 6∈ I,

α = 4
√

2 , β = 4
√

2 =⇒ α + β = 2 4
√

2 ∈ I, α · β =
√

2 ∈ I.

We have seen above that e ∈ I and π ∈ I, so the following natural question

arises:
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Question 2.1. What about the irrationality of e + π and e · π?

Answer : It is known that nothing is known. ¤

However, a more complicated number, namely the Gelfond’s constant eπ ∼
23.14069 is known to be irrational in view of the following nice result discovered

independently in 1934 by Aleksandr O. Gelfond and Theodor Schneider . This

result gives a positive answer to the 7th Problem out of the 23 Problems

launched by David Hilbert (1862-1943) at the 2nd International Congress of

Mathematicians, Paris, 6 - 12 August 1900.

Theorem 2.2. αβ ∈ T, ∀α, β ∈ A, α 6= 0, 1, β ∈ C \Q. ¤

Indeed, eπ = i−2i, where, for t, α ∈ C, t 6= 0,

tα := eα ln t, ln t := ln |t|+ i arg(z),

so, by Theorem 2.2, we deduce that eπ ∈ T.

Fact 2.3. It is not known whether πe ∈ T. ¤

We are now going to examine when is an irrational number a radical of a

positive real number.

The Fundamental Theorem of Arithmetic, FTA for short, discovered by

Euclid , says that each natural number a > 2 can be uniquely written up

to the order of factors as a = pn1
1 · . . . · pnk

k , with k, n1, . . . , nk ∈ N∗ and

p1, . . . , pk distinct positive prime numbers.

As an immediate consequence of the FTA, the following rational form of

the FTA, we abbreviate Q-FTA, holds: every a ∈ Q \ {0, 1,−1} can be

uniquely written up to the order of factors as

a = ε · pn1
1 · . . . · pnk

k ,

with ε ∈ {1,−1}, k ∈ N∗, n1, . . . , nk ∈ Z∗, and p1, . . . , pk distinct positive

prime numbers.
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Lemma 2.4. Let n ∈ N, n > 2, let a ∈ Q∗+, a 6= 1, and let a = pn1
1 · . . . ·

pnk

k , with k ∈ N∗, n1, . . . , nk ∈ Z∗, and p1, . . . , pk distinct positive prime

numbers, be the decomposition of a given by the Q-FTA. Then

n
√

a ∈ Q⇐⇒ n | ni, ∀ i, 1 6 i 6 k.

Proof. “⇐=”: If n | ni, ∀ i, 1 6 i 6 k, there exist mi ∈ N∗ such that

ni = nmi, ∀ i, 1 6 i 6 k. We deduce that

n
√

a = n

√
pn1
1 · . . . · pnk

k = n

√
pnm1
1 · . . . · pnmk

k = pm1
1 · . . . · pmk

k ∈ Q.

“=⇒”: If b := n
√

a ∈ Q, then b > 0 and b 6= 1, so by the Q-FTA, b has a

decomposition in prime factors b = ql1
1 · . . . · qls

s , with s ∈ N∗, l1, . . . , ls ∈ Z∗
and q1, . . . , qs distinct positive prime numbers. Thus

a = pn1
1 · . . . · pnk

k = ( n
√

a )n = bn = (ql1
1 · . . . · qls

s )n = qnl1
1 · . . . · qnls

s .

By the uniqueness part of the Q-FTA, we deduce that s = k, and by a

suitable reordering of numbers q1, . . . , qs one has pi = qi and ni = nli, in

other words, n | ni, ∀ i, 1 6 i 6 k, as desired.

Proposition 2.5. Let n ∈ N \ {0, 1} and x ∈ R∗+. Then n
√

x ∈ I if and only

if one and only one of the following conditions is satisfied:

(1) x ∈ I.

(2) x ∈ Q \ {0, 1} and there exists i, 1 6 i 6 k, with n - ni, where

x = pn1
1 · . . . · pnk

k , k ∈ N∗, pi are distinct positive prime numbers, and

ni ∈ Z \ {0} for all i, 1 6 i 6 k.

Proof. Assume that n
√

x ∈ I. There are two possibilities about x: either

x ∈ I, which is exactly condition (1), or x 6∈ I. In this last case, we have

neither x = 0 nor x = 1 because n
√

0 = 0 ∈ Q and 1
√

x = 1 ∈ Q, so

necessarily x ∈ Q \ {0, 1}. Therefore, by the Q-FTA, one can decompose x
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as x = pn1
1 · . . . · pnk

k , where k ∈ N∗, pi are distinct positive prime numbers,

and ni ∈ Z \ {0} for all i, 1 6 i 6 k. Because n
√

x ∈ I, by Lemma 2.4, we

cannot have n | nj , ∀ j, 1 6 j 6 k, so there exists i, 1 6 i 6 k, with n - ni,

as desired.

Assume that the condition (1) is satisfied, i.e., x ∈ I. Then necessarily
n
√

x ∈ I, for otherwise it would follow that x = ( n
√

x )n ∈ Q, which contradicts

our assumption. Assume now that the condition (2) is satisfied. By Lemma

2.4, we deduce that n
√

x ∈ I, which finishes the proof.

Proposition 2.5 provides a large class of irrational numbers. For instance,

4

√
100
1134

=
4

√
22 · 52

2 · 34 · 7 = 4
√

21 · 3−4 · 52 · 7−1 ∈ I

because 4 - 1.

The next examples deal with the irrationality of sums of two or three

square or cubic radicals of positive rational numbers, which naturally lead to

ask about the general case of the irrationality of sums of finitely many n-th

radicals of positive rational numbers.

Examples 2.6. (1)
√

2 +
√

3 ∈ I. Indeed, denote u :=
√

2 +
√

3 and suppose

that u ∈ Q. Now, square u−√2 =
√

3 to obtain u2 − 2u
√

2 + 2 = 3. Since

u 6= 0, we deduce that
√

2 =
u2 − 1

2u
∈ Q, which is a contradiction.

(2)
√

2 + 3
√

3 ∈ I. Indeed, as above, denote v :=
√

2 + 3
√

3 and suppose

that v ∈ Q. If we cube v−√2 = 3
√

3, we obtain v3− 3
√

2 v2 +6v− 2
√

2 = 3,

and so
√

2 =
v3 + 6v − 3

3v2 + 2
∈ Q, which is a contradiction.

(3) Similarly, with the same procedure, one can prove that for a, b, c ∈ Q∗+
the following statements hold:

√
a +

√
b ∈ Q⇐⇒ √

a ∈ Q &
√

b ∈ Q,
√

a + 3
√

b ∈ Q⇐⇒ √
a ∈ Q & 3

√
b ∈ Q,

√
a +

√
b +

√
c ∈ Q⇐⇒ √

a ∈ Q &
√

b ∈ Q &
√

c ∈ Q.
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(4) The procedure above of squaring, cubing, etc. does not work for radicals

of arbitrary order, e.g., what about 5
√

11 + 13
√

100 ∈ I ? ¤

So, the following natural problem arises:

Problem 2.7. When is a sum of radicals of form n
√

a , n ∈ N∗, a ∈ Q∗+ , a

rational/irrational number? ¤

More generally, one can ask the following

Problem 2.8. Which nonempty subsets S ⊆ I have the property that any

finite sum of elements of S is again an irrational number? ¤

The next result shows that

R := { n
√

r | n ∈ N, n > 2, r ∈ Q∗+, r 6∈ Qn },

where Q n = { rn | r ∈ Q }, is such a set.

Theorem 2.9. (Folklore). Let k, n1, . . . , nk ∈ N∗ and a1, . . . , ak ∈ Q∗+.

Then
n1
√

a1 + · · ·+ nk
√

ak ∈ Q ⇐⇒ ni
√

ai ∈ Q, ∀ i, 1 6 i 6 k,

or equivalently,

n1
√

a1 + · · ·+ nk
√

ak ∈ I ⇐⇒ ∃ i, 1 6 i 6 k, such that ni
√

ai ∈ I.

The result appears explicitly as a proposed problem in 1980 by Preda

Mihăilescu, Zürich (see [19]), a Romanian mathematician well-known for an-

swering in positive [20] the famous Catalan’s Conjecture raised in 1844 by

Eugène Charles Catalan (1814-1894):

The Diophantine equation xy − zt = 1 in positive integers x, y, z, t > 2

has as solutions only the numbers x = 3, y = 2, z = 2, t = 3.

Remark 2.10. Notice that the result in Theorem 2.9 fails for ±; indeed
√

12−√3− 4
√

9 = 0 ∈ Q but
√

12,
√

3, 4
√

9 ∈ I. ¤
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The original one-page proof of Mihăilescu [19] uses a variant of the Vahlen-

Capelli Criterion for Q and includes also as reference the classical Besicovitch’s

paper [9]. An one-and-a-half-line proof will be given in a few moments by

invoking a basic result concerning primitive elements of G-Cogalois extensions.

What are these extensions will be shortly explained in the next section. Note

that in Section 4 we will present an extension of Theorem 2.9 from Q to any

subfield of R, which, to the best of our knowledge, cannot be proved using

the approach in [19], but only involving the tools of Cogalois Theory.

In order to present the one-and-a-half-line proof in a very elementary man-

ner, that is accessible even at an undergraduate level, we will assign to the

numbers n1
√

a1, . . . , nk
√

ak considered in the statement of Theorem 2.9, the

set

Q (n1
√

a1 , . . . , nk
√

ak ).

What is this object? For short, we denote xi := ni
√

ai ∈ R∗+, 1 6 i 6 k, and

set

Q∗〈x1 , . . . , xk〉 := { a · xm1
1 · . . . · xmk

k | a ∈ Q∗, mi ∈ N, ∀ i, 1 6 i 6 k }.

Then

Q(x1 , . . . , xk) := {z1+. . .+zm | m ∈ N∗, zi ∈ Q∗〈x1 , . . . , xk〉, ∀ i, 1 6 i 6 k }∪{0}

is the set of all finite sums of elements (monomials) of Q∗〈x1 , . . . , xk〉 joined

with {0}, and is in fact a subfield of the field R. However, for the moment,

the reader is not assumed to have any idea about what a field is. Observe that

Q(x1 , . . . , xk) = Q⇐⇒ {x1 , . . . , xk} ⊆ Q .

To the best of our knowledge, there is no proof of the next result (which

is a very particular case of a more general feature of G-Cogalois extensions),

without the involvement of Cogalois Theory.
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Theorem 2.11. (Albu & Nicolae [4]). Let k, n1, . . . , nk ∈ N∗ and a1, . . . , ak ∈
Q∗+. Then

Q (n1
√

a1 , . . . , nk
√

ak ) = Q (n1
√

a1 + · · ·+ nk
√

ak ). ¤

We are now going to present the promised one-and-a-half-line proof of

Theorem 2.9:

Proof. If n1
√

a1 + · · ·+ nr
√

ar ∈ Q then Q (n1
√

a1 , . . . , nr
√

ar ) = Q (n1
√

a1 + · · ·+
nr
√

ar ) = Q by Theorem 2.11, so n1
√

a1 , . . . , nr
√

ar ∈ Q . QED

3 Some basic concepts and facts of Cogalois Theory

In this section we will briefly explain those basic concepts and results of Co-

galois Theory that have been used in proving the main result of Section 2.

In contrast with the results and facts presented in the previous two sections,

which can be easily understood even by a high school student, from now on,

the reader is assumed to have a certain background of Field Theory, including

the Fundamental Theorem of Galois Theory, at an undergraduate level.

Cogalois Theory , a fairly new area in Field Theory born approximately 25

years ago, investigates field extensions possessing a so called Cogalois corre-

spondence. The subject is somewhat dual to the very classical Galois Theory

dealing with field extensions possessing a Galois correspondence; this is the

reason to use the prefix “co”. In order to explain the meaning of such exten-

sions we start with some standard notation that will be used in the sequel.

A field extension, for short, extension, is a pair (F, E) of fields, where F

is a subfield of E, and in this case we write E/F . By an intermediate field

of an extension E/F we mean any subfield K of E with F ⊆ K, and the set

of all intermediate fields of E/F is a complete lattice that will be denoted by

I(E/F ).
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Throughout this section F always denotes a field and Ω a fixed algebraically

closed field containing F as a subfield. Any algebraic extension of F is sup-

posed to be a subfield of Ω. For an arbitrary nonempty subset S of Ω and

a number n ∈ N∗ we denote throughout this section S∗ := S \ {0} and

µn(S) := { x ∈ S | xn = 1 }. By a primitive n-th root of unity we mean any

generator of the cyclic group µn(Ω); ζn will always denote such an element.

When Ω = C, then we can choose a canonical generator of the cyclic group

µn(C) of order n, namely cos(2π/n) + i sin(2π/n).

For an arbitrary group G, the notation H 6 G means that H is a subgroup

of G. The lattice of all subgroups of G will be denoted by L(G). For any subset

M of G, 〈M〉 will denote the subgroup of G generated by M . For any set S,

|S| will denote the cardinal number of S.

For a field extension E/F we denote by [E : F ] the degree, and by

Gal (E/F ) the Galois group of E/F . If E/F is an extension and A ⊆ E,

we denote by F (A) the smallest subfield of E containing both A and F as

subsets, called the subfield of E obtained by adjoining to F the set A. For all

other undefined terms and notation concerning basic Field Theory the reader

is referred to Bourbaki [12], Karpilovsky [16], and/or Lang [18].

In general, I(E/F ) is a complicated-to-conceive, potentially infinite set of

hard-to-describe-and-identify objects, so, an interesting but difficult problem

in Field Theory naturally arises:

Problem 3.1. Describe in a satisfactory manner the set I(E/F ) of all in-

termediate fields of a given extension E/F . ¤

Another important problem in Field Theory is the following one:

Problem 3.2. Effectively calculate the degree of a given extension E/F . ¤

Answers to these two Problems are given for particular field extensions

by Galois Theory , invented by Évariste Galois (1811-1832), and by Kummer
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Theory invented by Ernst Kummer (1810-1893). We briefly recall the solution

offered by Galois Theory in answering the two problems presented above.

The Fundamental Theorem of Galois Theory (FTGT). If E/F is a

finite Galois extension with Galois group Γ, then the canonical map

α : I(E/F ) −→ L(Γ), α(K) = Gal(E/K),

is a lattice anti-isomorphism, i.e., a bijective order-reversing map. Moreover,

[E : F ] = |Γ|. ¤

Thus, Galois Theory reduces the investigation of intermediate fields of a

finite Galois extension E/F to the investigation of subgroups of its Galois

group Gal(E/F ), which are far more benign objects than intermediate fields.

But, the Galois group of a given finite Galois extension E/F is in general

difficult to be concretely described. So, it will be desirable to impose additional

conditions on the extension E/F such that the lattice I(E/F ) be isomorphic

(or anti-isomorphic) to the lattice L(∆) of all subgroups of some other group

∆, easily computable and appearing explicitly in the data of the given Galois

extension E/F . A class of such Galois extensions is that of classical Kummer

extensions, for which a so called Kummer Theory , including the Fundamental

Theorem of Kummer Theory (FTKT) has been invented. We will not discuss

them here.

On the other hand, there is an abundance of field extensions which are not

necessarily Galois, but enjoy a property similar to that in FTKT or is dual to

that in FTGT. These are the extensions E/F possessing a canonical lattice

isomorphism (and not a lattice anti-isomorphism as in the Galois case) between

I(E/F ) and L(∆), where ∆ is a certain group canonically associated with

the extension E/F . We call them extensions with ∆-Cogalois correspondence.

Their prototype is the field extension

Q (n1
√

a1 , . . . ,nr
√

ar )/Q ,
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where r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈ Q∗+ and ni
√

ai is the positive real

ni-th root of ai for each i, 1 6 i 6 r. For such an extension, the associated

group ∆ is the factor group

Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q∗.

Roughly speaking, Cogalois Theory investigates finite radical extensions,

i.e.,

F (n1
√

a1 , . . . , nr
√

ar )/F

where F is an arbitrary field, r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈ F ∗ and ni
√

ai ∈
Ω is an ni-th root of ai, ∀ i, 1 6 i 6 r. In the most cases

∆ = F ∗ 〈n1
√

a1 , . . . , nr
√

ar 〉/F ∗.

In our opinion, this theory was born in 1986 when the fundamental paper

of Cornelius Greither and David K. Harrison [15] has been published. Note

that, like in the case of Galois Theory, where an infinite Galois Theory exists,

an infinite Cogalois Theory has been invented in 2001 by Albu and Ţena

[5]. Further, the infinite Cogalois Theory has been generalized in 2005 to

arbitrary profinite groups by Albu and Basarab [2], leading to a so called

abstract Cogalois Theory for such groups.

We are now going to present the basic concept of Cogalois Theory, namely

that of G-Cogalois extension we referred after Remark 2.10. To do that,

we need first to define the following notions: Cogalois group, radical exten-

sion, Cogalois extension, G-radical extension, G-Kneser extension, strongly

G-Kneser extension, and Kneser group.

For any extension E/F we denote

T (E/F ) := { x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.

Clearly F ∗ 6 T (E/F ) 6 E∗, so it makes sense to consider the quotient group

T (E/F )/F ∗, which is nothing else than the torsion group t(E∗/F ∗) of the
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quotient group E∗/F ∗, called the Cogalois group of the extension E/F and

denoted by Cog (E/F ). This group, introduced by Greither and Harrison [15],

plays a major role in Cogalois Theory and is somewhat dual to the Galois group

of E/F , which explains the terminology.

Notice that the Cogalois group of a finite extension could be infinite, but

a nice result due to Greither and Harrison [15] states that the Cogalois group

of any extension of algebraic number fields is finite. Recall that an algebraic

number field is any subfield K of C such that K/Q is a finite extension.

Observe that for every element x ∈ T (E/F ) there exists an n ∈ N∗ such

that xn = a ∈ F , and in this case x is usually denoted by n
√

a and is called an

n-th radical of a. Thus, T (E/F ) is precisely the set of all “radicals” belonging

to E of elements of F ∗. This observation suggests to define a radical extension

as being an extension E/F such that E is obtained by adjoining to the base

field F an arbitrary set R of “radicals” over F , i.e., E = F (R) for some

R ⊆ T (E/F ). Obviously, one can replace R by the subgroup G = F ∗〈R〉
generated by F ∗ and R of the multiplicative group E∗ of E. Thus, any

radical extension E/F has the form E = F (G), where F ∗ 6 G 6 T (E/F ).

Such an extension is called G-radical . A finite extension E/F is said to be

G-Kneser if it is G-radical and |G/F ∗| = [E : F ]. The extension E/F is

called Kneser if it is G-Kneser for some group G.

The next result, due to Martin Kneser (1928-2004), is one of the major

tools of Cogalois Theory.

Theorem 3.3 (The Kneser Criterion [17]). The following assertions are

equivalent for a finite separable G-radical extension E/F .

(1) E/F is a G-Kneser extension.

(2) For every odd prime p, ζp ∈ G =⇒ ζp ∈ F , and 1± ζ4 ∈ G =⇒ ζ4 ∈ F .

¤

A subextension of a Kneser extension is not necessarily Kneser; so, it makes
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sense to consider the extensions that inherit for subextensions the property

of being Kneser, which will be called strongly Kneser . More precisely, an

extension E/F is said to be strongly G-Kneser if it is a finite G-radical exten-

sion such that, for every intermediate field K of E/F , the extension K/F is

K∗ ∩G-Kneser. The extension E/F is called strongly Kneser if it is strongly

G-Kneser for some group G. The next result relates these extensions with

those possessing a Cogalois correspondence:

Theorem 3.4. (Albu & Nicolae [3]). The following assertions are equivalent

for a finite G-radical extension E/F.

(1) E/F is strongly G-Kneser.

(2) E/F is G-Kneser with G/F ∗-Cogalois correspondence, i.e., the canoni-

cal maps

ϕ : I(E/F ) −→ L(G/F ∗), ϕ(K) = (K ∩G)/F ∗,

ψ : L(G/F ∗) −→ I(E/F ), ψ(H/F ∗) = F (H),

are isomorphisms of lattices, i.e., bijective order-preserving maps, in-

verse to one another. ¤

In the theory of strongly G-Kneser extensions the most interesting are

those which additionally are separable. They are called G-Cogalois extensions

and are completely and intrinsically characterized by means of the following

very useful criterion.

Theorem 3.5 (The n-Purity Criterion, Albu & Nicolae [3]). The follow-

ing assertions are equivalent for a finite separable G-radical extension E/F

with exp(G/F ∗) = n ∈ N∗.

(1) E/F is G-Cogalois.

(2) E/F is a G-Kneser extension with G/F ∗-Cogalois correspondence.
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(3) E/F is n-pure, i.e., µp(E) ⊆ F for all p, p odd prime or 4, with p | n.

¤

Recall that the exponent exp(T ) of a multiplicative group T with identity

element e is the least number m ∈ N∗ (if it exists) with the property that

tm = e, ∀ t ∈ T .

Theorem 3.6. (Albu & Nicolae [3]) Let E/F be an extension which is simul-

taneously G-Cogalois and H-Cogalois. Then G = H. ¤

In view of Theorem 3.6, the group G of any G-Cogalois extension E/F is

uniquely determined, so, it makes sense to define the Kneser group of E/F as

the factor group G/F ∗, denoted by Kne(E/F ). Observe that Kne(E/F ) 6
Cog(E/F ).

Examples 3.7. G-Cogalois extensions play in Cogalois Theory the same role

as that of Galois extensions in Galois Theory. The n-Purity Criterion (Theo-

rem 3.5) provides plenty of such extensions:

(A) Q (n1
√

a1 , . . . , nr
√

ar )/Q , with

Kne (Q (n1
√

a1 , . . . , nr
√

ar )/Q) = Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q.

(B) Cogalois extensions (i.e., radical extensions E/F such that |Cog (E/F )| =
[ E : F ] , or equivalently, T (E/F )-Kneser extensions), with

Kne(E/F ) = Cog (E/F ).

(C) Classical Kummer extensions E/F , E = F (n1
√

a1 , . . . , nr
√

ar )/F , and

various of its generalizations, including generalized Kummer extensions,

Kummer extensions with few roots of unity, and quasi-Kummer exten-

sions (see Albu [1] for definitions), with

Kne(E/F ) = F ∗ 〈n1
√

a1 , . . . , nr
√

ar 〉/F ∗. ¤
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4 Some applications of Cogalois Theory

Cogalois Theory has nice applications to elementary Field Arithmetic, to Alge-

braic Number Theory, to binomial ideals and Gröbner bases, etc. (see [1], [8]).

Many of them cannot be performed without involving the tools of Cogalois

Theory.

We present below four of these applications, especially those answering the

Problems 3.1 and 3.2 discussed in the previous section. Note that most of

these applications hold in a more general context.

A1. Effective degree computation: For any r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈
Q∗+, let ni

√
ai denote the positive real ni-th root of ai, 1 6 i 6 r. Then

[Q (n1
√

a1 , . . . , nr
√

ar ) : Q ] = |Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q∗|.

This follows immediately from the Kneser Criterion (Theorem 3.3). Indeed,

the extension Q (n1
√

a1 , . . . , nr
√

ar )/Q is clearly Q∗〈n1
√

a1 , . . . , nr
√

ar 〉 -Kneser

because there are no primitive p-th roots of unity, p > 3, inside the subfield

Q (n1
√

a1 , . . . , nr
√

ar ) of R. ¤

A2. Finding effectively all intermediate fields: We are going to describe

all the subfields of E := Q ( 4
√

12 , 6
√

108 ), that is, all the intermediate fields of

the extension E/Q. By Example 3.7 (A), the extension E/Q is G-Cogalois,

so, by Theorem 3.5, I(E/Q) is easily described by L(Kne(E/Q)), where

Kne(E/Q) = Q∗〈 4̂
√

12 , 6̂
√

108 〉/Q∗ and x̂ denotes for any x ∈ R∗ its coset

xQ∗ in the quotient group R∗/Q∗.

A simple calculation shows that Kne(E/Q) is a cyclic group of order 12

generated by ĉ, where c = 4
√

12 · 6
√

108 = 12
√

20, 155, 392. Consequently all its

subgroups are precisely:

〈 ĉ 〉, 〈 ĉ2 〉, 〈 ĉ3 〉, 〈 ĉ4 〉, 〈 ĉ6 〉, 〈 ĉ12 〉.

Thus, all the subfields of E are exactly

Q, Q(c), Q(c2), Q(c3), Q(c4), Q(c6),
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where c = 12
√

20, 155, 392. ¤

A3. Finding effectively a primitive element : Let F be an arbitrary subfield

of R, let k, n1, . . . , nk ∈ N∗, let a1, . . . , ak ∈ F ∗+ and let ni
√

ai denote the

positive real ni-th root of ai, 1 6 i 6 r. Then

F (n1
√

a1 , . . . , nr
√

ar ) = F (n1
√

a1 + · · ·+ nr
√

ar ).

Indeed, by the n-Purity Criterion (Theorem 3.5), the extension F (n1
√

a1 , . . . ,

nr
√

ar )/F is G-Cogalois because F (n1
√

a1 , . . . , nr
√

ar ) ⊆ R, and hence there

are no primitive p-th roots of unity, p > 3, inside F (n1
√

a1 , . . . , nr
√

ar ). By

Albu [1, Corollary 8.1.4], n1
√

a1 + · · · + nr
√

ar is a primitive element of the

extension F (n1
√

a1 , . . . , nr
√

ar )/F . ¤

A4. The generalized Folklore Theorem: With the notation and hypotheses

of A3, one has

n1
√

a1 + · · ·+ nk
√

ak ∈ F ⇐⇒ ni
√

ai ∈ F, ∀ i, 1 6 i 6 k,

Indeed, assume that n1
√

a1 + · · ·+ nk
√

ak ∈ F . Then

F (n1
√

a1 , . . . , nr
√

ar ) = F (n1
√

a1 + · · ·+ nr
√

ar ) = F

by A3, so n1
√

a1 , . . . , nr
√

ar ∈ F , as desired. ¤
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199-208.

[14] A. Froda, La constante d’Euler est irrationelle, Atti Accad. Naz. Lincei

Rend. 38 (1965), 338-344.

[15] C. Greither and D.K. Harrison, A Galois correspondence for radical ex-

tensions of fields, J. Pure Appl. Algebra 43 (1986), 257-270.

[16] G. Karpilovsky, “Topics in Field Theory”, North-Holland, Amsterdam,

New York, Oxford, and Tokyo, 1989.

[17] M. Kneser, Lineare Abhängigkeit von Wurzeln, Acta Arith. 26 (1975),

307-308.

[18] S. Lang, “Algebra”, Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1965.
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