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EXISTENCE AND ASYMPTOTIC

BEHAVIOUR OF POSITIVE SOLUTIONS

FOR SOME NONLINEAR PARABOLIC

SYSTEMS IN THE HALF-SPACE

Abdeljabbar Ghanmi and Faten Toumi

Abstract

We are concerned with the nonlinear parabolic system

∆u− au−

∂u

∂t
= λp(x, t)f (v) ,

∆v − bv −

∂v

∂t
= µq(x, t)g (u) ,

in R
n

+ × (0,∞), subject to some Dirichlet boundary conditions, where
the potentials p, q, a and b are allowed to satisfy some hypotheses related
to the parabolic Kato class P∞ (Rn

+), the functions f and g are nonneg-
ative nondecreasing and continuous. More precisely, we shall prove the
existence of positive continuous solutions with precise global behaviour.
We will use some potential theory arguments.

1 Introduction

In this work, we deal with the existence of positive continuous solutions ( in
the sense of distributions) and their asymptotic behaviour for the following
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parabolic system

(P)























∆u− a(x, t)u− ∂u
∂t = λp(x, t)f (v) , in R

n
+ × (0,∞) ,

∆v − b(x, t)v − ∂v
∂t = µq(x, t)g (u) , in R

n
+ × (0,∞) ,

u(x, 0) = ϕ1 (x) , in R
n
+,

v(x, 0) = ϕ2 (x) , in R
n
+,

u(x, t) = 0; v(x, t) = 0, on ∂Rn
+ × (0,∞) ,

where R
n
+ = {(x1, x2, ..., xn) ∈ R

n, xn > 0} , λ, µ ≥ 0, the initial conditions
ϕ1, ϕ2 : Rn

+ → [0,∞) are continuous.
As a motivation to our study, we give a short historic account. Both the
parabolic problem

{

∆u+ V (x, t)f(u)− ∂u
∂t = 0 in D × (0,∞) ,

u(x, 0) = u0(x) in ∂D,
(1.1)

and its elliptic counterpart

∆u+ V (x)f(u) = 0 in D

have been widely studied.
In the case of the whole space D = R

n(n ≥ 3), Zhang [14] established an
essentially optimal condition on the potential V = V (x, t) so that the problem
(1.1) has global positive continuous solutions for f (u) = up (p > 1). Indeed,
the author gave a general integrability condition, which controls both the
global growth and local singularity of V . More precisely, he introduced the
parabolic Kato class P∞ (Rn) for such potentials ( see [14, 15]).
Inspired by the works of Zhang [14] and Zhang and Zhao [15], Mâatoug and
Riahi [9] introduced for the case of the half space a parabolic Kato class
P∞ (

R
n
+

)

and gave an existence result of the problem (1.1), where f (u) =
up (p ≥ 1) with bounded smooth initial condition u0.
In [6], Mâagli et al treated the following problem











∆u− uϕ(., u)−
∂u

∂t
= 0 in R

n
+ × (0,∞) ,

u = 0 on ∂Rn
+ × (0,∞)

u(x, 0) = u0(x), x ∈ R
n
+,

where u0 was allowed to be not bounded. Then using arguments based on
potential theory tools, they proved under some assumptions the existence of
a positive continuous solution u in R

n
+ × (0,∞) satisfying for each t > 0 and

x ∈ R
n
+

cPtu0(x) ≤ u(x, t) ≤ Ptu0(x),

where c ∈ (0, 1) and Ptu0 is defined below by (1.3).
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Similar results are given for various domains D, namely for D = R
n and for

the case of unbounded domain of Rn with compact boundary, we refer the
readers to [7, 8, 10, 14, 15] and references therein.

In this work, we are inspired by the elliptic counterpart of (P) which was
studied in [13] for D = R

n
+ and in [5] for unbounded domain D of Rn(n ≥ 3)

with compact boundary. More precisely, Zeddini [13] considered the following
system

(Q)



























∆u = λp(x)g (v) , in R
n
+,

∆v = µq(x)f (u) , in R
n
+,

u/∂Rn
+
= aϕ, lim

xn→+∞
u(x)

xn
= α

v/∂Rn
+
= bψ, lim

xn→+∞
v(x)

xn
= β,

where λ, µ ≥ 0, the functions f, g : (0,∞) → [0,∞) are continuous nonde-
creasing, the functions p, q are measurable and nonnegative belonging to the
elliptic Kato class K∞(Rn

+) introduced and studied in [2] and [3]. We remark
that the parabolic Kato class P∞ (

R
n
+

)

is a generalization of the elliptic one
K∞(Rn

+). For a given λ0, µ0 > 0, the author proved the following result:

Theorem 1. For each λ ∈ [0, λ0) and each µ ∈ [0, µ0), the problem (Q) has
a positive continuous solution (u, v) satisfying







(

1− λ
λ0

)

(αxn + aHϕ (x)) ≤ u (x) ≤ αxn + aHϕ (x)
(

1− µ
µ0

)

(βxn + bHψ (x)) ≤ v (x) ≤ βxn + bHψ (x) ,

where Hψ denotes the unique bounded harmonic function in R
n
+ with boundary

value the nonnegative bounded continuous function ψ.

We would like to mention that the difference between the counterpart of the
problem (P) and the problem (Q) is essentially in the presence of the linear
terms associated to the potentials a and b.

Hereinafter, the point x ∈ R
n
+ is denoted by (x′, xn) with x′ ∈ R

n−1, xn > 0.
Note that x −→ ∂Rn

+ means that x = (x′, xn) tends to a point (ξ, 0) of ∂Rn
+.

As done for the elliptic systems that is many results are claimed for elliptic
systems by using the tools and techniques of the elliptic scalar equation (
See [5, 13]). We will here treat the parabolic system (P) by adopting similar
techniques as in [6] based on potential theory arguments. So, let us recall
briefly some notions related to the potential theory and we refer the reader
to [1, 4, 11] for more details. We denote by Γ (x, t, y, s) the heat kernel in
R

n
+ × (0,∞) with Dirichlet boundary condition u = 0 on ∂Rn

+ × (0,∞) given
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by

Γ (x, t, y, s) = (4π)
−n

2

(

1− exp

(

−
xnyn

(t− s)

))

G 1
4
(x, t, y, s) ,

where

Gc (x, t, y, s) :=
1

(t− s)
n
2

exp

(

−c
|x− y|

2

t− s

)

, (1.2)

for t > s , x, y ∈ R
n
+ and for each c > 0.

For each nonnegative measurable function f on R
n
+, we put

Ptf(x) := Pf(x, t) =

∫

Rn
+

Γ (x, t, y, 0) f(y)dy, t > 0, x ∈ R
n
+. (1.3)

The family of kernels (Pt)t>0 is a semigroup, that is Pt+s = PtPs for s, t > 0.
We mention that for each nonnegative function f on R

n
+, the map (x, t) −→

Ptf(x) is lower semicontinuous on R
n
+ × (0,∞) and it is continuous if f is

further bounded. Moreover, let w be a nonnegative superharmonic function on
R

n
+, then for every t > 0, Ptw ≤ w and consequently the mapping t −→ Ptw

is nonincreasing.
Now, let (Xt, t > 0) be the Brownian motion in R

n
+ and P x be the probability

measure on the Brownian continuous paths starting at x. For a nonnegative
Borel measurable function q in R

n
+×(0,∞), we denote by Vq the kernel defined

by

Vqf(x, t) =

∫ t

0

Ex

(

exp

(

−

∫ s

0

q(Xr, t− r)dr

)

f(Xs, t− s)

)

ds, (1.4)

where Ex is the expectation on P x and f is a nonnegative measurable function
on R

n
+ × (0,∞). In particular, for q = 0, V0 = V is given by

V f(x, t) :=

∫ t

0

∫

Rn
+

Γ (x, t, y, s) f (y, s) dyds =

∫ t

0

Pt−sf (., s) ds,

Note that V = − (∆− ∂t)
−1

.
Using Markov property, we have for each nonnegative Borel measurable func-
tion q such that V q <∞, the following resolvent equation

V = Vq + Vq(qV ) = Vq + V (qVq). (1.5)

So for each measurable function u in R
n
+ × (0,∞) such that V(q|u|)< ∞, we

have
(I − Vq(q.))(I + V (q.))u = (I + V (q.))(I − Vq(q.))u = u. (1.6)

Next, let us intoduce a function class of nonnegative superharmonic functions
w in R

n
+ which satisfy condition (H0).
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Definition 1. A nonnegative superharmonic function w satisfies condition
(H0) if ω is locally bounded in R

n
+ such that the map (x, t) −→ Ptω(x) is

continuous in R
n
+ × (0,∞) and limx→∂Rn

+
Ptω(x) = 0, for every t > 0.

To clarify condition (H0), we give some examples of functions satisfying (H0)
and for further examples see [6, Sect.6] .

Example 1. Let w be a nonnegative bounded superharmonic function in R
n
+,

then w satisfies (H0).

Example 2. The harmonic function defined on R
n
+ by ω(x) := xβn, β ∈ (0, 1]

satisfies (H0). In fact, a simple calculs yields ∆ω (x) = β (β − 1)xβ−2
n and

then the function ω is superharmonic. Moreover using Tonelli Theorem and
the semigroup’s property we obtain

ω (x)− Ptω(x) = β (1− β)

∫ t

0

Psω
1− 2

β (x) ds.

Hence Pω ≤ ω and so limx→∂Rn
+
Ptω(x) = 0. Furtheremore, the function

(x, t) → ω (x)−Ptω(x) is upper semicontinuous, which ensures the continuity
of the function (x, t) → Ptω(x).

From now on, we fix a nonnegative superharmonic function ω satisfying con-
dition (H0), we suppose that a, b ∈ P∞ (

R
n
+

)

and we adopt the following
hypotheses:
(H1) The functions f, g : (0,∞) −→ [0,∞) are nondecreasing and continuous.
(H2) For i = 1, 2, there exists a constant ci > 1 such that the function ϕi

satisfies
1

ci
ω (x) ≤ ϕi (x) ≤ ciω (x) (1.7)

and

lim
t→0

Ptϕi (x) = ϕi (x) (1.8)

for each x ∈ R
n
+.

(H3) The functions p and q are measurable nonnegative on R
n
+ × (0,∞) such

that for each c > 0

pc :=
pf (cPω)

Pω
and qc :=

qg (cPω)

Pω

belong to the parabolic Kato class P∞ (
R

n
+

)

.
Before stating our main result let us give an example where the hypothesis
(H3) is satisfied.
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Example 3. Let p and q be nonnegative nontrivial functions in P∞ (
R

n
+

)

.
Moreover suppose that f and g are continuous functions such that there exists
a constant δ > 0 satisfying for each t ∈ (0,∞)

0 ≤ f(t) ≤ δt and 0 ≤ g(t) ≤ δt .

Then for each c > 0,

0 ≤ pc :=
pf (cPω)

Pω
≤ cδp ∈ P∞ (

R
n
+

)

.

Similarly we obtain qc ∈ P∞ (
R

n
+

)

. Thus the hypothesis (H3) is satisfied.
The main result of this work is the following

Theorem 2. Assume (H1) − (H3). Then there exist two constants λ0 and
µ0 such that for each λ ∈ [0, λ0) and each µ ∈ [0, µ0) the problem (P) admits
a positive continuous solution (u, v) on R

n
+ × (0,∞) satisfying

{

0 < (1− λ
λ0
)a1Pϕ1 ≤ u ≤ Pϕ1,

0 < (1− µ
µ0
)a2Pϕ2 ≤ v ≤ Pϕ2,

where a1, a2 ∈ (0, 1] .

As consequence of the main Theorem we have the following

Corollary 1. Assume (H1)− (H3), then there exist two constants λ0 and µ0

such that for each λ ∈ [0, λ0) and each µ ∈ [0, µ0) the problem























∆u− ∂u
∂t = λp(x, t)f (v) , in R

n
+ × (0,∞) ,

∆v − ∂v
∂t = µq(x, t)g (u) , in R

n
+ × (0,∞) ,

u(x, 0) = ϕ1 (x) in R
n
+,

v(x, 0) = ϕ2 (x) in R
n
+,

u(x, t) = 0; v(x, t) = 0, on ∂Rn
+ × (0,∞) ,

admits a positive continuous solution (u, v) on R
n
+ × (0,∞) satisfying







(

1− λ
λ0

)

Pϕ1 ≤ u ≤ Pϕ1,
(

1− µ
µ0

)

Pϕ2 ≤ v ≤ Pϕ2.

The organization of this paper is as follows. In the next section we recall
and we prove a number of basic results about the class P∞ (

R
n
+

)

and some
continuity results. In section 3, we prove the existence result of the problem
(P). The last section of this work, is dedicated to some examples.
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2 Preliminary results

In this section, we briefly describe some notations and results and we refer the
readers to [6] for more details.
Given c, h > 0 and q = q (x, t) a measurable function in R

n
+ × (0,∞), we put

Nc,h (q) :=

sup
(x,t)∈Rn

+
×R

∫ t+h

t−h

∫

B(x,
√
h)∩Rn

+

min
(

1,
y2
n

|t−s|

)

Gc (x, |t− s| , y, 0) |q (y, s)| dyds

and
Nc,∞ (q) := lim

h→+∞
Nc,h (q) =

sup
(x,t)∈Rn

+
×R

∫ +∞

−∞

∫

Rn
+

min
(

1,
y2
n

|t−s|

)

Gc (x, |t− s| , y, 0) |q (y, s)| dyds,

where Gc is the function given by (1.2) .
Next, we recall the definition of the functional class P∞ (

R
n
+

)

.

Definition 2 (See [6]). A Borel measurable function q in R
n
+ × R belongs to

the parabolic Kato class P∞ (
R

n
+

)

if

lim
h−→0

Nc,h (q) = 0

and
Nc,∞ (q) < +∞,

for all c > 0 and h > 0.

Example 4. As an example of functions belonging to P∞ (
R

n
+

)

, the time

independent Kato class K∞ (
R

n
+

)

used in the study of elliptic equations ( See
[2, 3]).

Other examples of functions in P∞ (
R

n
+

)

are given by the following

Proposition 1 (See [6]). The following assertions hold
(i) L∞ (

R
n
+

)

⊗ L1 (R) ⊂ P∞ (
R

n
+

)

.

(ii) K∞ (
R

n
+

)

⊗ L∞ (R) ⊂ P∞ (
R

n
+

)

.

(iii) For 1 < p < +∞ and q ≥ 1 such that 1
p + 1

q = 1. Then for s > np
2 and

δ < 2
p − n

s < ν, we have

Ls
(

R
n
+

)

θ (.)
δ
(1 + |.|)

ν−δ
⊗ Lq (R) ⊂ P∞ (

R
n
+

)

,
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where θ (x) = xn, x ∈ R
n
+.

Proposition 2 (See [6]). Let q ∈ P∞ (
R

n
+

)

, then the function (y, s) →

y2nq (y, s) is in L1
loc

(

Rn
+ × R

)

. In particular, we have

P∞ (
R

n
+

)

⊂ L1
loc

(

R
n
+ × R

)

.

Proposition 3 (See [6]). For each nonnegative function q in P∞ (
R

n
+

)

, there
exists a constant αq > 0 such that for each nonnegative superharmonic func-
tion ω in R

n
+ we have

V (qPω) (x, t) =
∫ t

0

∫

Rn
+

Γ (x, t, y, s) q (y, s)Ptω (y) dyds ≤ αqPtω (x) , for

(x, t) ∈ R
n
+ × (0,∞).

The following result will be useful to proving global existence and continuity
of solutions.

Proposition 4 (See [6]). Let w be a nonnegative superharmonic function in
R

n
+ satisfying (H0) and q be a nonnegative function in P∞ (

R
n
+

)

then the
family of functions

{

(x, t) −→

∫ t

0

∫

Rn
+

Γ (x, t, y, s) f (y, s) dyds, |f | ≤ qPω

}

is equicontinuous in R
n
+ × (0,∞). Moreover, for each (x, t) ∈ R

n
+ × (0,∞), we

have lim
s−→0

V f (x, s) = lim
y→∂Rn

+

V f (y, t) = 0, uniformly on f .

Now we claim the following result about continuity needed to achieve the proof
of the main Theorem.

Proposition 5. Let ω be a nonnegative superharmonic function satisfying the
condition (H0) and ϕ be a measurable function such that 0 ≤ ϕ ≤ ω on R

n
+,

then the function (x, t) −→ Ptϕ (x) is continuous on R
n
+ × (0,∞).

Proof. Let θ be a nonnegative Borel measurable function in R
n
+ such that

ω = θ + ϕ. Then the function (x, t) −→ Ptθ (x) is lower semi-continuous on
R

n
+ × (0,∞). On the other hand, from (H0), the function (x, t) −→ Ptω (x)

is continuous on R
n
+ × (0,∞). Therefore the function (x, t) −→ Ptϕ (x) is

upper semi-continuous on R
n
+ × (0,∞). Using the fact that (x, t) −→ Ptϕ (x)

is lower semi-continuous on R
n
+ × (0,∞), we deduce that (x, t) −→ Ptθ (x) is

continuous on R
n
+ × (0,∞).
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Proposition 6. Let ω be a nonnegative superharmonic function satisfying
condition (H0) and let ϕ be a measurable function such that there exists a
constant c > 0 satisfying on R

n
+

1

c
ω ≤ ϕ ≤ cω. (2.1)

Then for each nonnegative function q ∈ P∞ (
R

n
+

)

, there exists a constant
αq > 0 such that we have on R

n
+ × (0,∞)

exp(−c2αq)Pϕ ≤ Pϕ− Vq (qPϕ) ≤ Pϕ. (2.2)

Proof. It is obviously seen that Pϕ − Vq (qPϕ) ≤ Pϕ. Now, we define the
sequence (fk)k∈N∗ on R

n
+ × (0,∞) by fk (x, t) = k exp (−kt)Pϕ (x, t). Then

by (1.5) we remark that for each k ∈ N
∗

Vq (qV fk) ≤ V fk. (2.3)

Moreover, a simple calculus yields

V fk (x, t) = (1− exp(−kt))Pϕ (x, t) , k ∈ N
∗.

Consequently, we have

sup
k∈N∗

V fk (x, t) = Pϕ (x, t) . (2.4)

Next, for each k ∈ N
∗, we consider the function

γk (λ) := V fk − λVλq (qV fk) , λ ≥ 0.

Then from (1.5) we obtain

γk (λ) = (V − Vλq (λqV )) fk = Vλqfk.

Thus by (2.3) and (1.4), we deduce that γk is completely monotone on [0,+∞)
to (0,∞). Therefore by [12, Theorem 12a], there exists a nonnegative measure
µ on [0,+∞) such that

γk (λ) =

∫ ∞

0

exp(−λx)dµ (x) .

So using this fact and the Hölder inequality, we deduce that Log (γk) is a
convex function. Then we have

γk (0) ≤ γk (1) exp(−
γ′k (0)

γk (0)
),
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that is

V fk (x, t) ≤ (V fk − Vq (qV fk)) (x, t) exp(
V (qV fk) (x, t)

V fk (x, t)
).

By letting k to infinity and using (2.4) we obtain on R
n
+ × (0,∞)

Pϕ ≤ (Pϕ− Vq (qPϕ)) exp(
V (qPϕ)

Pϕ
).

From Proposition 3 and (2.1) we deduce that

exp(−c2αq)Pϕ ≤ (Pϕ− Vq (qPϕ)) .

3 Proof of the main result

Recall that for i = 1, 2, the function ϕi satisfies the hypothesis (H2) and put
θi := Ptϕi .

Proof of Theorem 2. Recall that a, b ∈ P∞ (
R

n
+

)

. Put a1 = exp(−c21αa)
and a2 = exp(−c22αb) where αa and αb are the constants given by Proposition
3 associated respectively to the functions a and b. Let p1 := pc2 and q1 := qc1
be the functions defined in the hypothesis (H3) associated respectively to the
constants c2 and c1 given in (H2).
Put

λ0 := inf
(x,t)∈Rn

+
×(0,∞)

(θ1 − Va(aθ1)) (x, t)

V (pf (θ2)) (x, t)
(3.1)

and

µ0 := inf
(x,t)∈Rn

+
×(0,∞)

(θ2 − Vb (bθ2)) (x, t)

V (qg (θ1)) (x, t)
. (3.2)

Let us prove that λ0 and µ0 are tow positive constants.
By hypothesis (H2) we have

ϕ2 ≤ c2ω.

So, the monotonicity of the function f yields

pf (θ2) ≤ pf (c2Pω) .

Therefore, by Proposition 3, there exists a positive constant αp1
> 0 such that,

for each (x, t) ∈ R
n
+ × (0,∞), we have

V (pf (θ2)) (x, t) ≤ V (p1Pω) (x, t) ≤ αp1
Pω (x, t) .
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On the other hand, by using the hypothesis (H1), it follows that

θ1 (x, t)

V (pf (θ2)) (x, t)
≥

Pω (x, t)

c1αp1
Pω (x, t)

≥
1

c1αp1

,

which implies (by (2.2) in Proposition 6)

(θ1 − Va(aθ1)) (x, t)

V (pf (θ2)) (x, t)
≥

θ1 (x, t) a1
V (pf (θ2)) (x, t)

≥
a1

c1αp1

> 0.

Thus λ0 > 0. Similarly we prove that µ0 > 0.
Now, let λ ∈ [0, λ0) and µ ∈ [0, µ0). We shall prove the existence of positive
continuous solution of the problem (P). To this aim we define the following
sequences (uk)k∈N

and (vk)k∈N
as follows







v0 = θ2 − Vb (bθ2)
uk = θ1 − Va (aθ1 + λpf (vk))
vk+1 = θ2 − Vb (bθ2 + µqg (uk)) .

We intend to prove by induction that for each k ∈ N

{

0 < (1− λ
λ0
)a1θ1 ≤ uk ≤ uk+1 ≤ θ1,

0 < (1− µ
µ0
)a2θ2 ≤ vk+1 ≤ vk ≤ θ2.

First, using (3.1), we have on R
n
+ × (0,∞)

λ0V (pf (θ2)) ≤ θ1 − Va(aθ1). (3.3)

Then, by the monotonicity of the function f and using the fact that Va ≤ V

and (3.3) we obtain

θ1 ≥ u0 = θ1 − Va(aθ1)− λVa (pf (θ2 − Vb (bθ2)))

≥ θ1 − Va(aθ1)− λV (pf (θ2)) .

Thus, from Proposition 6, we obtain

θ1 ≥

(

1−
λ

λ0

)

(θ1 − Va(aθ1))

≥ a1

(

1−
λ

λ0

)

θ1 > 0.

Hence
v1 − v0 = −µV (qg (u0)) ≤ 0.
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So the monotonicity of the function f yields

u1 − u0 = λVa (p [f (v0)− f (v1)]) ≥ 0.

On the other hand, from (3.2), we have

µ0V (qg (θ1)) ≤ θ2 − Vb (bθ2) . (3.4)

So, since g is a nondecreasing function and using (3.4), it follows that

v1 ≥ θ2 − Vb(bθ2)− µVb (qg (θ1))

≥ θ2 − Vb(bθ2)− µV (qg (θ1))

≥

(

1−
µ

µ0

)

(θ2 − Vb(bθ2)) .

Then, by Proposition 6, it follows that

v1 ≥

(

1−
µ

µ0

)

(θ2 − Vb(bθ2))

≥ a2

(

1−
µ

µ0

)

θ2.

Therefore, we have
u0 ≤ u1 ≤ θ1

and

0 < a2

(

1−
µ

µ0

)

θ2 ≤ v1 ≤ v0.

Now, suppose that

uk ≤ uk+1 ≤ θ1 and 0 < a2

(

1− µ
µ0

)

θ2 ≤ vk+1 ≤ vk.

Then we have

vk+2 − vk+1 = −µV (q [g (uk+1)− g (uk)]) ≤ 0

and
uk+2 − uk+1 = λV (p [f (vk+1)− f (vk+2)]) ≥ 0.

It is obvious that uk+2 ≤ θ1. Now, since uk+1 ≤ θ1, it follows from (3.4) and
Proposition 6 that

vk+2 ≥ θ2 − Vb(bθ2)− µV (qg (θ1))

≥

(

1−
µ

µ0

)

(θ2 − Vb(bθ2))

≥ a2

(

1−
µ

µ0

)

θ2 > 0.
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Hence
uk+1 ≤ uk+2 ≤ θ1 − Va (aθ1)

and

0 <

(

1−
µ

µ0

)

(θ2 − Vb(bθ2)) ≤ vk+2 ≤ vk+1.

Thus, the sequences (uk)k∈N
and (vk)k∈N

converge respectively to two func-
tions u and v satisfying







0 < a1

(

1− λ
λ0

)

θ1 ≤ u ≤ θ1,

0 < a2

(

1− µ
µ0

)

θ2 ≤ v ≤ θ2.
(3.5)

Furthermore, for each k ∈ N, we have f (vk) ≤ f (θ2) and g (uk) ≤ g (θ1).
Therefore, using hypothesis (H3) we obtain for each k ∈ N, pf (vk) ≤ p1Pω

and qg (uk) ≤ q1Pω.

So, by Proposition 3 and Lebesgue’s theorem, we deduce that V (pf (vk)) and
V (qg (uk)) converge respectively to V (pf (v)) and V (qg (u)) as k tends to
infinity. Then (u, v) satisfies on R

n
+ × (0,∞)

u = θ1 − Va (aθ1 + λpf (v))

and
v = θ2 − Vb (bθ2 + µqg (u)) .

or equivalently
u = (I − Va(a.))θ1 − λVa(pf(v)) (3.6)

and
v = (I − Vb(b.))θ2 − µVb(qg(u)). (3.7)

So applying the operators (I + V (a.)) and (I + V (b.)) respectively on both
sides of the equations (3.6) and (3.7), we deduce by (1.5) and (1.6) that

u = θ1 − V (au+ λpf(v)) (3.8)

and
v = θ2 − V (bu+ µqf(u)). (3.9)

Moreover, by (H2) it follows that

au ≤ aθ1 ≤ c1aPω (3.10)

and
bv ≤ bθ2 ≤ c2bPω. (3.11)
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Then from hypothesis (H0) and Proposition 2, we obtain

au, bv ∈ L1
loc

(

R
n
+ × (0,∞)

)

.

Moreover, we have
pf (v) ≤ p1Pω (3.12)

and
qg (u) ≤ q1Pω. (3.13)

So, from the hypothesis (H0) and Proposition 2, we deduce that

pf (v) , qg (u) ∈ L1
loc

(

R
n
+ × (0,∞)

)

.

By (3.10)− (3.13) and Proposition 4, we obtain

V (au), V (bv), V (pf (v)) , V (qg (u)) ∈ C
(

R
n
+ × (0,∞)

)

⊂ L1
loc

(

R
n
+ × (0,∞)

)

.

In addition, using again hypothesis (H2) and Proposition 4, we obtain

Pϕ1, Pϕ2 ∈ C
(

R
n
+ × (0,∞)

)

.

Thus u, v ∈ C
(

R
n
+ × (0,∞)

)

.
Now applying the heat operator (∆− ∂t) in (3.8) and (3.9), we obtain clearly
that (u, v) is a positive continuous solution ( in the distributional sense) of

{

∆u− a(x, t)u− ∂u
∂t = λp(x, t)f (v) , in R

n
+ × (0,∞) ,

∆v − b(x, t)v − ∂v
∂t = µq(x, t)g (u) , in R

n
+ × (0,∞) .

Next, using Proposition 4 and (H2), we obtain

lim
t−→0

u (x, t) = lim
t→0

Ptϕ1 (x) = ϕ1 (x)

and
lim
t−→0

v (x, t) = lim
t→0

Ptϕ2 (x) = ϕ2 (x) .

Finally, from the hypotheses (H0) and (H2), we conclude that

limx→ξ∈∂Rn
+
θ1 (x, t) = 0

and
limx→ξ∈∂Rn

+
θ2 (x, t) = 0.

Hence (u, v) is a positive continuous solution in R
n
+ × (0,∞) of the problem

(P). This completes the proof.
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4 Examples

In this section, we will give some examples as applications of Theorem 2.

Example 5. Let σ be a nonnegative measure on ∂Rn
+. It was shown in [6],

that if there exists 0 < α ≤
n

2
such that

sup
x∈Rn

+

∫

∂Rn
+

xn

|x− z|
n−2ασ(dz) < +∞,

then the harmonic function defined on R
n
+ by

Kσ(x) := Γ(
n

2
)π−n

2

∫

∂Rn
+

xn

|x− z|
nσ(dz),

satisfies the condition (H0).
Moreover, it was proved in [6] that there exists c > 0 such that

Pt(Kσ)(x) ≤ c
xn

tα

∫

∂Rn
+

1

|x− z|
n−2ασ(dz). (4.1)

Now, let a, b be two functions in P∞(Rn
+) and ω(x) = Kσ(x), x ∈ R

n
+. Let

β, γ ≥ 1 and consider two nonnegative functions h and g such that: t →
h(t)

tα(β−1)
, t →

g(t)

tα(γ−1)
∈ L1(R). Suppose in addition that the functions ϕ1 and

ϕ2 satisfy condition (H2). Then there exist λ0 > 0 and µ0 > 0 such that for
each λ ∈ [0, λ0) and each µ ∈ [0, µ0) the following problem















∆u− au− ∂u
∂t = λh(t)vβ , in R

n
+ × (0,∞) ,

∆v − bv − ∂v
∂t = µg (t)uγ , in R

n
+ × (0,∞) ,

u(x, 0) = ϕ1(x); v(x, 0) = ϕ2(x), in R
n
+,

u = v = 0, in ∂Rn
+ × (0,∞) ,

admits a positive continuous solution (u, v) on R
n
+ × (0,∞). In fact, using

(4.1) we obtain

p1 (x, t) : = c
β
2p (x, t) (P (Kσ))

β−1
(x)

≤ c
β
2 c

β−1 h(t)

tα(β−1)

(

∫

∂Rn
+

xn

|x− z|
n−2ασ(dz)

)β−1

,

for (x, t) ∈ R
n
+ × (0,∞). So, since

x→

∫

∂Rn
+

xn

|x− z|
n−2ασ(dz) ∈ L∞(Rn

+),
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we conclude by Proposition 1 (i) that p1 ∈ P∞ (
R

n
+

)

, similarly we prove that

q1 ∈ P∞ (
R

n
+

)

. So the hypothesis (H3) is satisfied.

Example 6. Assume that the functions a and b belong to P∞(Rn
+). Let

1 ≤ p < ∞ and q ≥ 1 such that 1
p + 1

q = 1. Let r ≥ np
2 and s < 2

p − n
r < m.

For β > 1, τ ∈ (0, 1], we define the function h on R
n
+ × (0,∞) by

h(x, t) :=
|f(x)|

x
s+(β−1)τ
n (1 + |x|)m−s

|g(t)| ,

where f ∈ Lr(Rn
+), g ∈ Lq(R).

Let k be a function on R
n
+ × (0,∞) such that k ≤ θ(1−γ)τq0 for γ > 1 and

q0 ∈ P∞ (
R

n
+

)

. Moreover, fix ω (x) = xτn and suppose that the functions
ϕ1, ϕ2 : Rn

+ → R+ satisfy (H2). Then there exist λ0 > 0 and µ0 > 0 such
that, for each λ ∈ [0, λ0) and each µ ∈ [0, µ0), the following problem



























∆u− au−
∂u

∂t
= λh(x, t)vβ , in R

n
+ × (0,∞) ,

∆v − bv −
∂v

∂t
= µk(x, t)uγ , in R

n
+ × (0,∞) ,

u(x, 0) = ϕ1(x); v(x, 0) = ϕ2(x), in R
n
+,

u = v = 0, in ∂Rn
+ × (0,∞) ,

admits a positive continuous solution (u, v) on R
n
+ × (0,∞).

In fact, it is clear that q1 := kc
γ
1 (Pω)

γ−1
≤ c

γ
1q0 ∈ P∞ (

R
n
+

)

. Furthermore,

by Proposition 1(iii), we deduce that p1 ≤ c
β
2hθ

(β−1)τ ∈ P∞ (
R

n
+

)

. So the
hypothesis (H3) is satisfied.
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[5] A.Ghanmi, H. Mâagli, S.Turki, N. Zeddini, Existence of positive bounded
solutions for some nonlinear elliptic systems, J. Math. Anal. Appl.,
352(2009), 440-448.
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