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CO PRIME PATH DECOMPOSITION
NUMBER OF A GRAPH

K. NAGARAJAN and A. NAGARAJAN

Abstract

A decomposition of a graph G is a collection ψ of edge-disjoint sub-
graphs H1,H2, . . . , Hn of G such that every edge of G belongs to exactly
one Hi. If each Hi is a path in G, then ψ is called a path partition or path
cover or path decomposition of G. A co prime path decomposition of a
(p, q)-graph G is a path cover ψ of G such that the length of all the paths
in ψ are co prime with q. The minimum cardinality of a co prime path
decomposition of G is called the co prime path decomposition number
of G and is denoted by πφ(G). In this paper, a study of the parameter
πφ is initiated and the value of πφ for some standard graphs is deter-
mined. Further, bounds for πφ are obtained and the graphs attaining
the bounds are characterized.

1 Introduction

By a graph, it means that a finite, undirected, non-trivial, connected graph
without loops and multiple edges. The order and size of a graph are denoted
by p and q respectively. For terms not defined here Harary [5] is referred to.

Let P = (v1, v2, . . . , vn) be a path in a graph G = (V (G), E(G)), with
vertex set V (G) and edge set E(G). The vertices v2, v3, . . . , vn−1 are called
internal vertices of P and v1 and vn are called external vertices of P . The
length of a path is denoted by l(P ). A cycle with exactly one chord is called
a θ-graph. A spider tree is a tree in which it has a unique vertex of degree 3.
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An odd tree is a tree in which all the vertices have odd degree. For vertices
x and y in a connected graph G, the detour distance D(x, y) is the length
of a longest x-y path in G. The detour diameter D of G is defined to be
D = max{D(x, y) : x, y ∈ V (G)}.

The following number theoretic concepts and results [4, 7] will be useful in
proving the theorems in this paper.

Let a and b be positive integers. If a divides b, it means that there is a pos-
itive integer k such that b = ka and it is denoted by a | b. If a does not divide
b, then it is denoted by a - b. The greatest common divisor(gcd) of a and b is de-
noted
by (a, b). If (a, b) = 1, then it is said that a and b are co prime or relatively
prime.

Result 1.1. If d | a and d | b, then d | a± b.

Result 1.2. 1 is co prime with any positive integer.

Result 1.3. 2 is co prime with any odd positive integer.

Result 1.4. Any two consecutive positive integers are co prime.

Result 1.5. Any two consecutive odd positive integers are co prime.

Result 1.6. Any prime number p is co prime with any positive integer a,
if p - a.

Result 1.7. If (a, b) = 1, then (b− a, b) = 1.

A decomposition of a graph G is a collection of edge-disjoint subgraphs
H1, H2,
. . . , Hr of G such that every edge of G belongs to exactly one Hi. If each
Hi
∼= H, then we say that G has a H-decomposition and it is denoted by H | G.

In this paper, this definition is extended to non-isomorphic decomposition. If
each Hi is a path, then it is called a path partition or path cover or path
decomposition of G. The minimum cardinality of a path partition of G is
called the path partition number of G and is denoted by π(G) and any path
partition ψ of G for which |ψ| = π(G) is called a minimum path partition
or π-cover of G. The parameter π was studied by Harary and Schwenk [6],
Peroche [12], Stanton et.al., [13] and Arumugam and Suresh Suseela [2].

Various types of path decompositions and corresponding parameters have
been studied by several authors by imposing conditions on the paths in the de-
composition. Some such path decomposition parameters are acyclic graphoidal
covering number [2], simple path covering number [1], 2-graphoidal path cov-
ering number [9] and m-graphoidal path covering number [10]. Another such
decomposition is equiparity path decomposition (EQPPD) which was defined
by K. Nagarajan, A. Nagarajan and I. Sahul Hamid [11].
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Definition 1.8. [11] An equiparity path decomposition(EQPPD) of a graph
G is a path cover ψ of G such that the lengths of all the paths in ψ have the
same parity.

Since for any graph G, the edge set E(G) is an equiparity path decomposi-
tion, the collection PP of all equiparity path decompositions of G is non-empty.
Let πP (G) = min{|Ψ| : Ψ ∈ PP }. Then πP (G) is called the equiparity path
decomposition number of G and any equiparity path decomposition ψ of G for
which |ψ| = πP (G) is called a minimum equiparity path decomposition of G or
πP -cover of G. The parameter πP was studied in [11].

If the lengths of all the paths in ψ are even(odd) then we say that ψ is an
even (odd) parity path decomposition, shortly EPPD (OPPD).

Theorem 1.9. [11] For any n ≥ 1, πP (K2n) = n.

Theorem 1.10. [3] For any connected (p, q)-graph G, if q is even, then G
has a P3-decomposition.

Theorem 1.11. [8] If a graph G is neither a 3-cycle nor an odd tree, then G
admits a {P3, P4}-decomposition that consists several copies of P3 and exactly
one
copy of P4.

Now, a new path called co prime path will be defined as follows.

Definition 1.12. Let G be a (p, q)-graph and let P be a path
in G. If (l(P ), q) = 1, then P is called a co prime path in G.

Note that the edges of a graph are co prime paths. The co prime path of
length l > 1 is called proper co prime path, otherwise it is called improper co
prime path.

Example 1.13. Consider the following graph G.
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Here q = 8. The path (v7, v5, v3, v4, v6, v8) is a co prime path, but the path
(v7, v5, v3, v4, v6) is not a co prime path. Also the path (v1, v3) is an improper
co prime path.

Next, a co prime path decomposition of a graph G is defined.

Definition 1.14. A co prime path decomposition(CPPD) of a (p, q)-graph
G is a path cover Ψ of G such that the lengths of all the paths in Ψ are co prime
with q.

Since the edge set E(G) is a co prime path decomposition for any graph
G, the collection Pφ of all co prime path decompositions Ψ of G is non-empty.
Let πφ(G) = min{|Ψ| : Ψ ∈ Pφ}. Then πφ(G) is called the co prime path
decomposition number of G. Any co prime path decomposition Ψ of G for
which |Ψ| = πφ(G) is called a minimum co prime path decomposition of G or
πφ-cover of G. Here the symbol φ is used as a subscript for π, because in
Number Theory, φ(n) denotes the number of positive integers which are less
than n and co prime with n.

Example 1.15. Consider the following spider tree.
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Here q = 8 and {(v1, v2, v3, v4), (v4, v5), (v6, v7, v3, v8), (v8, v9)} forms a
πφ-cover so that πφ(G) = 4. Note that {(v1, v2, v3, v4, v5), (v6, v7, v3, v8, v9)}
forms a π-cover so that π(G) = 2.

Remark 1.16. Let Ψ = {P1, P2, . . . , Pn} be a CPPD of a (p, q)-graph G
such that l(P1) ≤ l(P2) ≤ . . . ≤ l(Pn). Since every edge of G is exactly in one

path Pi,
n∑
i=1

l(Pi) = q. Hence every CPPD of G gives rise to a partition of a

positive integer q into the positive integers (not necessarily distinct) which are
co prime with q.

In this paper, a study of the parameter πφ is initiated and the value of πφ
for some standard graphs is determined. Further, bounds for πφ are obtained
and the graphs attaining the bounds are characterized.

2 Main Results

Hereafter, it is considered that G as a graph, which is not a path. First,
a general result which is useful in determining the value of πφ is presented.

Theorem 2.1. For any CPPD Ψ of a graph G, let tΨ =
∑
P∈Ψ

t(P ), where

t(P ) denotes the number of internal vertices of P and let t = max tΨ, where
the maximum is taken over all co prime path decompositions Ψ of G. Then
πφ(G) = q − t.

Proof. Let Ψ be any CPPD of G.

Then q =
∑
P∈Ψ

|E(P )|

=
∑
P∈Ψ

(t(P ) + 1)



228 K. NAGARAJAN and A. NAGARAJAN

=
∑
P∈Ψ

t(P ) + |Ψ|

= tΨ + |Ψ| .

Hence |Ψ| = q − tΨ so that πφ = q − t.

Next, some bounds for πφwill be found. First, a simple bound for πφ in
terms of the size of G is found.

Theorem 2.2. For any graph G of odd size, πφ(G) ≤ q+1
2 .

Proof. If there exists an edge e in G which is not a bridge, let H = G − e.
If not, G is a tree and in this case, let H = G− v, where v is a pendant vertex
and let e be the edge incident at v.

Now, in either of the cases, H is connected with even number of edges and
hence by Theorem 1.10, H has a P3-decomposition, say Ψ. Hence Ψ ∪ {e} is
a co prime path cover of G so that πφ(G) ≤ |Ψ| = q−1

2 + 1 = q+1
2 .

Remark 2.3. The bound given in Theorem 2.2 is sharp. For the star graph
K1,q, where q is odd, πφ = q+1

2 .

The following problem naturally arises.

Problem 2.4. Characterize the graphs of an odd size for which πφ = q+1
2 .

Next, upper bound for the parameter πφ will be found.

Theorem 2.5. If a (p, q)-graph G is neither a 3-cycle nor an odd tree, with
q odd and q � 0(mod3), then πφ(G) ≤ q−1

2 .

Proof. From Theorem 1.11, it is clear that G admits a {P3, P4}-decomposition
that consists of q−3

2 copies of P3 and exactly one copy of P4. Since q is odd
and q � 0(mod3), then by the definition of CPPD, it follows that
πφ(G) ≤ q−3

2 + 1 = q−1
2 .

Remark 2.6. The bound in Theorem 2.5 is sharp. For example, consider the
following spider tree.
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Here q = 5 � 0(mod3) and {(v1, v2, v3, v4), (v5, v2, v6)} forms a πφ-cover
so that πφ(G) = 2 = q−1

2 .

Then, a following problem can be made.

Problem 2.7. Characterize the graphs of an odd size with q � 0(mod3)
for which πφ = q−1

2 .

Next, the value of πφ for the paths is found.

Theorem 2.8. For a path Pp (p ≥ 3), πφ(Pp) = 2.

Proof. Let Pp = (v1, v2, . . . , vp). Then clearly Ψ = {(v1, v2, . . . , vp−1), (vp−1, vp)}
is a CPPD of Pp so that πφ(Pp) ≤ 2. Since (l(Pp), q) = q > 1, the path itself
is not a CPPD and clearly πφ(Pp) ≥ 2. Thus, πφ(Pp) = 2.

Now, the graphs attaining the extreme bounds are characterized.

Theorem 2.9. For a graph G, 1 ≤ πφ(G) ≤ q. Then πφ(G) = 1 if and only
if G ∼= K2 and πφ(G) = q > 1 if and only if q is even and G has no proper co
prime paths.

Proof. The inequalities are trivial. Now, suppose πφ(G) = 1. Assume that
G � K2. If G is a path of length ≥ 2, then by Theorem 2.8, a contradiction
is obtained. If G is not a path, then any path decomposition of G contains at
least two paths so that πφ(G) ≥ 2, which is a contradiction. Thus, G ∼= K2.
Converse is obvious.

Now, suppose that πφ(G) = q > 1. Then it follows from Theorem 2.2 that
q is even. Then G has no proper co prime path of length 2. Suppose G has a
proper co prime path P such that l(P ) ≥ 3. Then the path P together with the
remaining edges form a CPPD Ψ of G so that πφ(G) ≤ |Ψ| = q− l(P )+1 < q,
which is a contradiction. Thus, G has no proper co prime paths. Converse is
obvious.
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Remark 2.10. From Theorem 2.9 and Theorem 2.8, it is observed that any
CPPD of a graph G � K2 contains at least two paths and hence πφ(G) ≥ 2.

Theorem 2.11. For any (p, q)-graph G with q ≥ 3, πφ(G) = q − 1 if and
only if G is isomorphic to either P4 or K3 or K1,3.

Proof. Suppose πφ(G) = q − 1. If G is a path of length ≥ 3, then from
Theorem 2.8 and by hypothesis, it follows that q = 3 and hence G ∼= P4. Now,
let G be a graph which is not a path. If G has a co prime path P with l(P ) ≥ 3,
then the path P together with the remaining edges form a CPPD Ψ of G
so that πφ(G) ≤ |Ψ| = 1 + (q − l(P )) < q − 1, which is a contradiction. Thus,
every co prime path in G is of length 1 or 2. Hence any two edges in G are adja-
cent, so that G is either a triangle K3 or a star K1,q. If G has co prime paths of
length 1 only, then πφ(G) = q, which is a contradiction. So G has at least one
co prime path of length 2. Then q is odd and πφ(G) ≥ q+1

2 . From Theorem 2.2

, it is clear that πφ(G) = q+1
2 . By hypothesis, q = 3 and hence G is isomorphic

to either K3 or K1,3. Converse is obvious.

Next, the value of πφ for the cycles is found.

Theorem 2.12. For a cycle Cp, πφ(Cp) = 2.

Proof. Let Cp = (v1, v2, . . . , vp, v1). Then clearly Ψ = {(v1, v2, . . . , vp), (vp, v1)}
is a CPPD of Cp so that πφ(Cp) ≤ 2. Since any path decomposition of Cp
contains at least two paths, πφ(Cp) ≥ 2. Thus, πφ(Cp) = 2.

The following observation gives the lower bound for πφ in terms of π.

Observation 2.13. Since every co prime path decomposition of a graph G
is a path cover, π(G) ≤ πφ(G).

Remark 2.14. The inequality in Observation 2.13 is strict for a path of
length ≥ 2 in which π = 1 6= 2 = πφ

The equality holds in Observation 2.13 if q is prime, which will be proved
in the following theorem.

Theorem 2.15. For any (p, q)-graph G which is not a path, π(G) = πφ(G)
if q is prime.

Proof. Since q is prime, the lengths of all the paths in any path cover of G
are co prime with q. Thus, any path cover is a CPPD and hence πφ(G) ≤ π(G).
From Observation 2.13, it is clear that π(G) = πφ(G).

Remark 2.16. The converse of the Theorem 2.15 is not true. For the cycle
of composite size, it is seen that π = 2 = πφ.
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Next, the value of πφ for any graph of 6 edges is found.

Theorem 2.17. Let G be a graph with 6 edges. Then

πφ (G) =

{
2, if D (G) > 5
6, otherwise

where D is the detour diameter of G.

Proof. Suppose D(G) ≥ 5. If G is isomorphic to a path of length 6, then from
Theorem 2.8, it follows that πφ(G) = 2. Let P be a path of length 5 in G.
Then, clearly the path P and the remaining one edge form a CPPD of G so
that πφ(G) ≤ 2. By Remark 2.10, it follows that πφ(G) = 2. If D(G) ≤ 4,
then l(P ) ≤ 4 for all paths P in G. Since q = 6, it is seen that any path of
length greater than 1 is not a co prime path in G. From Theorem 2.9, it is clear
that πφ(G) = 6.

The next theorem shows that the relationship between πP (G) and πφ(G),
if q is even.

Theorem 2.18. For any (p, q)-graph G, πP (G) ≤ πφ(G) if q is even.

Proof. Since q is even, the positive integers which are co prime to q are odd.
If Ψ is any CPPD of G, then the lengths of all the paths in Ψ are odd. Hence Ψ
is an OPPD of G. Thus, every CPPD is an OPPD so that πP (G) ≤ πφ(G).

Remark 2.19. The inequality in Theorem 2.18 is strict. Consider the
complete graph K4 in which q = 6. From Theorem 1.9 and Theorem 2.17, it
is clear that πP (K4) = 2 < 6 = πφ(K4). Further, the bound in Theorem 2.18
is sharp. For the even cycle, πP = 2 = πφ.

Remark 2.20. The converse of the Theorem 2.18 is not true. Consider
the following spider tree G.
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Here {(v1, v2, v3, v4), (v5, v2, v6, v7), (v8, v9, v2, v10)} forms a πP -cover and
{(v8, v9, v2, v3, v4), (v2, v6, v7), (v1, v2, v5), (v2, v10)} forms a πφ-cover so that
πP (G) = 3 < 4 = πφ(G), but q = 9 which is odd.

Now the following problem naturally arises.

Problem 2.21. Characterize the graphs of even size for which πP (G) =
πφ(G).

Next, the value of πφ for the stars will be found.

Theorem 2.22. For a star K1,n, πφ (K1,n) =

{
n+1

2 , if n is even
n, if n is odd

.

Proof. Let V (K1,n) = V1 ∪ V2, where V1 = {x1} and V2 = {y1, y2, . . . , yn}.
Case(i): n is odd.

Let Ψ =
⋃i= n−1

2
i=1 {(y2i−1, x1, y2i)}

⋃
{(x1, yn)}. Then Ψ contains paths of

lengths 1 or 2, which are co prime paths and hence πφ(K1,n) ≤ |Ψ| = n+1
2 .

Further, since every vertex of K1,n is of odd degree, they are the end vertices of
paths in any path cover of K1,n. Thus, πφ(K1,n) ≥ n+1

2 and hence πφ(K1,n) =
n+1

2 .
Case(ii): n is even.

It is observed that every path in K1,n is of length 1 or 2. Since n is
even, all the paths of length greater than 1 are not co prime paths. Hence
πφ(K1,n) = n.

The following theorem is useful in proving Theorem 2.25.

Theorem 2.23. For a θ-graph G, π(G) = 2.
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Proof. Let (v1, v2, . . . , vk, . . . vp, v1) be a cycle in G and let v1vk be a chord of
the cycle. Let P = (v1, v2, . . . , vk, . . . , vp) and Q = (vp, v1, vk). Then {P,Q}
forms a path cover of G so that π(G) ≤ 2. Clearly, G is not a path, any
path cover of G contains at least two members so that π(G) ≥ 2. Thus,
π(G) = 2.

The next lemma will be useful to find the value πφ for θ-graph.

Lemma 2.24. For an even integer q ≥ 4, ( q2 − 1, q) = 1 if q
2 is even

and ( q2 − 2, q) = 1 if q
2 is odd.

Proof. Case(i): q
2 is even.

Suppose ( q2−1, q) = d. Then d | q and d | q2−1. This implies that d | q−( q2−
1). That is, d | q2 +1. Then d | ( q2 +1)−( q2−1). Thus, d | 2. This implies d = 1
or 2. Since q is even and q

2 − 1 is odd, d = 1.
Case(ii): q

2 is odd.

Suppose ( q2 − 2, q) = d. Then d | q and d | q2 − 2. This implies that
d | q − ( q2 − 2). That is d | q2 + 2. Then d | ( q2 + 2) − ( q2 − 2). Thus, d | 4.
Since q is even and q

2 − 2 is odd, d = 1 or 3. Suppose d = 3. Then 3 | q and
3 | q2 − 2. Since q is even, 3 | q ⇒ 3 | q2 ⇒ 3 - q2 − 2, which is a contradiction.
Hence d = 1.

Theorem 2.25. For a θ−graph with G, πφ (G) =

{
6, if q = 6
2, otherwise

.

Proof. Note that q = p + 1. If p = 4, then q = 5 which is a prime. From
Theorem 2.15 and Theorem 2.23, it is clear that πφ(G) = 2. If p = 5, then q =
6 and D(G) = 4. From Theorem 2.17, it is clear that πφ(G) = 6. Suppose p ≥
6. Let C = (v1, v2, . . . , vk, . . . vp, v1) be a cycle in G and let v1vk be the chord of
it (Fig 2.3). If q is prime, then from Theorem 2.15 and Theorem 2.23, it follows
that πφ(G) = 2. If q is composite, then there are the following two cases.
Case (i): q is odd.
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Let P = (v1, v2, . . . , vk, . . . vp) and Q = (vp, v1, vk) (Fig 2.3). Then
l(P ) = q − 2 and l(Q) = 2. From the Result 1.5 and the Result 1.3, it is clear
that
(l(P ), q) = (l(Q), q) = 1. Then {P,Q} forms a CPPD of G so that πφ(G) ≤ 2.
By Remark 2.10, it follows that πφ(G) = 2.
Case (ii): q is even.
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Note that l(C) = q−1. Let P = (v1, v2, . . . , vk) andQ = (vk, vk+1. . . . , vp, v1)
be the (v1, vk)-sections of C. (Fig 2.4). Since l(C) is odd, either l(P ) > l(Q)
or l(Q) > l(P ). Without loss of generality, it is assumed that l(P ) > l(Q).
Also since l(C) = q − 1, l(P ) > q

2 . Then there is a vertex vr in P such
that the length of the (v1, vr)-section of P is q

2 − 2. Now, consider the path
R = (vk, v1, v2, . . . , vr) which is of length q

2 − 1. From the Lemma 2.24, it
follows that (l(R), q) = 1. Now, let S = (vr, vr+1, . . . , vk, . . . , vp, v1). Note
that l(S) = q − l(R). By the Result 1.7, it is seen that (l(S), q) = 1. Thus,
{R,S} forms a CPPD of G so that πφ(G) ≤ 2. By Remark 2.10, it follows
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that πφ(G) = 2.

The case (ii) of the Theorem 2.25 is illustrated in the following example.

Example 2.26. Consider the θ-graph G of size q = 16. Let
C = (v1, v2, . . . , v10, . . . v15, v1) be a cycle in G and let v1v10 be the chord
of it (Fig 2.5).

Note that l(C) = 15 = q − 1. Let P = (v1, v2, . . . , v10) and
Q = (v10, v11, v12, v13, v14, v15, v1) be the (v1, v10)-sections of C (Fig 2.5). It is
seen that l(P ) > l(Q) and l(P ) = 9 > q

2 . Then there is a vertex vr in P such
that the length of the (v1, vr)-section of P is q

2 − 2 = 6 and so r = 7. Now,
consider the path R = (v10, v1, v2, v3, v4, v5, v6, v7) which is of length 7 = q

2−1.
Then (7, 16) = (l(R), q) = 1. Let S = (v7, v8, v9, v10, v11, v12, v13, v14, v15, v1)
and note that l(S) = 16 − 7 = 9 = q − l(R). Then (9, 16) = (l(S), q) = 1.
Thus, {R,S} forms a CPPD of G so that πφ(G) = 2.
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Fig 2.5
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