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A NOTE ON Θ-CLOSED SETS AND
INVERSE LIMITS

Ivan Lončar

Abstract

For every Hausdorff space X the space XΘ is introduced. If X is
H-closed, then XΘ is a quasy-compact T1-space.

If f : X → Y is a mapping, then there exists the mapping fΘ : XΘ →
YΘ. We say that a mapping f : X → Y is Θ-closed if fΘ is a closed
mapping. If X and Y are H-closed and if f : X → Y is a HJ-mapping,
then fΘ is Θ-closed.

Let X = {Xa, pab, A} be an inverse system of H-closed spaces Xa

and Θ-closed bonding mappings fab. If Xa are non-empty spaces, then
X = limX is non-empty. If the bonding mappings pab are HJ, then
X = limX is non-empty and H-closed

1 Introduction

Troughout this paper a space X always denotes a topological space. A map-
ping f : X → Y means a continuous map (function).

The convention and elementary results on inverse limits of topological
spaces are those given in [4].

An open subset U ⊂ X is said to be regularly open if U = IntCl U . Simi-
larly, a closed subset F ⊂ X is said to be regularly closed if F = Cl IntF .

Definition 1.1. [11]. A mapping f : X → Y is said to be skeletal (HJ) if for
each open (regularly open) subset U ⊂ X we have Int f−1(ClU) ⊂ Cl f−1(U).

The composition of (continuous) skeletal maps is skeletal [11, p. 22].
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Proposition 1. [11, p. 22].A mapping f : X → Y is HJ if and only if the
counterimage of the boundary of each regularly open set is nowhere dense.

An HJ mapping is called in [13, p. 236] a c-mapping (see also [3]).
Let X be a Hausdorff space. A map p : Y

onto−−→X is said to be irreducible
[11, p. 26] if for each regularly closed subset A of Y

A 6= Y implies Cl p(A) 6= X.

A mapping f : X → Y is said to be semi-open provided Int f(U) 6= ∅ for each
non-empty open U ⊂ X. From Proposition 1 it follows the following result
(see [11, 1.1, p. 27], [13, p. 236]).

Lemma 1.1. Each semi-open, each open and each closed irreducible mapping
is HJ .

2 The spaces XΘ and the mappings fΘ

The notion of H-closed spaces was introduced by Aleksandrov and Urysohn
[1].

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space
in which it is embedded.

The following two characterizations are given in [1].

Proposition 2. [1, Theorem 1]. A Hausdorff space X is H-closed if and only
if every family {Uµ : Uµ is open in X, µ ∈ Ω} with the finite intersection
property has the property ∩{Cl Uµ : µ ∈ Ω} 6= ∅.
Proposition 3. [1, Theorem 2]. A Hausdorff space X is H-closed if for each
open cover {Uµ : µ ∈ M} of X there exists a finite subfamily {Uµ1

, ..., Uµk
}

such that {Cl Uµ1
, ..., Cl Uµk

} is a cover of X.

The Θ-closed sets were introduced by Veličko [14].

Definition 2.1. A point x ∈ X is in the Θ-closure of a set A ⊂ X, x ∈ |A|Θ,
if Cl V ∩A 6= ∅ for any open set V containing x. A subset A ⊂ X is Θ-closed
if A = |A|Θ. A subset B ⊂ X is Θ-open if X�B is Θ-closed.

Lemma 2.1. [10]. A set A ⊂ X is Θ-closed set if and only if A = ∩{Cl Vλ : Vλ

is open in X, A ⊂ Vλ}, where V = {Vλ : λ ∈ Λ} is a maximal family of open
subsets containing A.

Theorem 2.2. [6, Theorem 2]. In any topological space:

(a) the empty set and the whole space are Θ-closed,
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(b) arbitrary intersection and finite unions of Θ-closed sets are Θ-closed,

(c) Cl K ⊂ |K|Θ for each subset K,

(d) a Θ-closed subset is closed.

From (a) and (b) on gets the following result.

Lemma 2.3. If X is a Hausdorff space, then for each Y ⊂ X there exists a
minimal Θ-closed subset Z ⊂ X such that Y ⊂ Z.

Proof. The collection Φ of all Θ-closed subsets W of X which contains Y is
non-empty since X ∈ Φ. By (b) of Theorem 2.2 we infer that Z = ∩{W : W ∈
Φ} is a minimal Θ-closed subset Z ⊂ X containing Y .

From Theorem 2.2 it follows that the family of all Θ-open subsets of (X, t)
is a new topology tΘ on X.

Definition 2.2. Let (X, t) be a topological space. The Θ-space of X is the
space (X, tΘ). In the sequel we shall use denotations X and XΘ.

Lemma 2.4. If X is a Hausdorff space, then XΘ is T1-space.

Proof. Let x be any point of X. For every another point y ∈ X, y 6= x,
there exists a pair of open disjont set U, V such such that x ∈ U and y ∈ V . It
follows that U∩Cl V = ∅. We conclude that {x} is Θ-closed and, consequently,
XΘ is T1-space.

Lemma 2.5. The identity mapping idΘ : X → XΘ is continuous.

Theorem 2.6. If X is H-closed, then every family {Aµ : µ ∈ Ω } of Θ-closed
subsets of X with the finite intersection property has a non-empty intersection
∩{Aµ :, µ ∈ Ω }.
Proof. A Hausdorff space X is H-closed [6] iff for every family {Aµ : Aµ ⊂ X,
µ ∈ Ω } with the finite intersection property there exists a point x ∈ X such
that Cl V ∩ A 6= ∅ for every open set V containing x and every Aµ. The
point x is called Θ-accumalation point. From this characterization it follows
Lemma.

We say that a space X is an Urysohn space ([7], [9]) if for every pair
x, y, x 6= y, of points of X there exist open sets V and W about x and y such
that Cl V ∩ Cl W = ∅.

A Hausdorf space is nearly-compact [8] if every open cover {Uµ : µ ∈ M}
has a finite subcollection {Uµ1

, ..., Uµn
} such that IntCl Uµ1

∪ ...∪ IntCl Uµn
=

X. Every nearly-compact space is H-closed.



164 Ivan Lončar

Lemma 2.7. [8]. A space X is nearly-compact if and only if it is H-closed
and Urysohn.

Lemma 2.8. If X is H-closed and Urysohn, then XΘ is a Hausdorff space.

Theorem 2.9. If X is an H-closed space, then XΘ is a quasi-compact T1-
space.

Proof. Let {Fµ : µ ∈ M} be a family of closed sets in XΘ with the finite
intersection property. By virtue of Definition 2.2 it follows that Fµ = ∩{Fµ,a :
a ∈ A, Fµ,a is Θ-closed in X}. Lemma 2.6 implies that there exists a x ∈ X
with the property x ∈ ∩{Fµ,a : µ ∈ M, a ∈ A}. Clearly x ∈ ∩{Fµ : µ ∈ M}.
Problem 1. Is it true that X is H-closed if XΘ is a quasi-compact T1-space?

From Lemma 2.8 and Theorem 2.9 on gets the following result.

Theorem 2.10. If X is nearly-compact, then XΘ is a quasi-compact Haus-
dorff space.

Definition 2.3. Let f : (X, τ) → (Y, σ) be a mapping. We define a mapping
fΘ : XΘ → YΘ by fΘ(x) = f(x) for every x ∈ X, i.e., the following diagram

X
f−−−−−→ Y

↓ id ↓ id

XΘ
fΘ−−−−−−→ YΘ

(2.1)

commutes.

Lemma 2.11. The mapping fΘ : XΘ → YΘ is continuous.

Proof. Let us prove that f−1
Θ (F ) is closed in XΘ if F is closed in YΘ. It

suffices to prove that f−1(F ) is Θ-closed in X if F is Θ-closed in Y . If
x ∈ X�f−1(F ), then f(x) /∈ F . There exists an open set U such that f(x) ∈ U
and Cl U ∩ F = ∅ since F is Θ-closed in Y . The open set f−1(U) contains
x and Cl f−1(U) ∩ f−1(F ) = ∅ since f−1(ClU) ∩ f−1(F ) = ∅. Hence, if
x ∈ X�f−1(F ), then x ∈ X�

∣∣f−1(F )
∣∣
Θ
, and, consequently, f−1(F ) is Θ-

closed in X.

Definition 2.4. A mapping f : X → Y is said to be Θ-closed if f(F ) is
Θ-closed for each Θ-closed subset F ⊂ X.

Lemma 2.12. Let f : X → Y be a continuous mapping. The following
conditions are equivalent:

(a) f is Θ-closed,
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(b) for every B ⊂ Y and each Θ-open set U ⊇ f−1(B) there exists a Θ-open
set V ⊇ B such that f−1(V ) ⊂ U .

(c) fΘ is a closed mapping.

Proof. The proof is similar to the proof of the corresponding theorem for closed
mappings [4, p. 52].

From 2.10 and 2.12 we obtain the following result.

Theorem 2.13. If X and Y are nearly-compact spaces, then every continuous
mapping f : X → Y is Θ-closed.

Theorems 2.10 and 2.12 imply the following result.

Theorem 2.14. If f : X → Y is a continuous mappinga between H-closed
e.d. spaces X and Y , then f is Θ-closed.

Now we prove the following important theorem.

Theorem 2.15. If X and Y are H-closed, then every HJ-mapping f : X → Y
is Θ-closed.

Proof. Let A be a Θ-closed subset of X. By Definition 2.4 it suffices to prove
that f(A) is Θ-closed in Y .

Claim 1. By Lemma 2.1 we infer that

A = ∩{Cl Vλ : Vλ is open in X, A ⊂ Vλ}, (2.2)

where V = {Vλ : λ ∈ Λ} is a maximal family of open subsets containing A.
Claim 2. There exists a family U = {Uµ : µ ∈ M} of all open subsets

Uµ ⊂ Y such that there exists Vλ ∈ V with the property f(Vλ) ⊂ Uµ. Clearly,
f(A) ⊂ Uµ for each Uµ ∈ U . For each a ∈ A there is a Va such that Va ⊂ Uµ

for fixed µ ∈ M . Let Vλ = ∪{Va : a ∈ A}. It is clear that f(Vλ) ⊂ Uµ.
Claim 3. We prove that

f(A) = ∩{Cl Uµ : Uµ ∈ U} (2.3)

We prove only f(A) ⊃ ∩{Cl Uµ : Uµ ∈ U} since f(A) ⊂ ∩{Cl Uµ : Uµ ∈
U}. Suppose that y ∈ ∩{Cl Uµ : Uµ ∈ U}. For every open W 3 y we
have Cl W ∩ f(Vλ) 6= ∅ since Cl W ∩ f(Vλ) = ∅ implies Y�Cl W ⊃ f(Vλ),
Y�Cl W ∈ U and y ∈ Cl( Y�Cl W ). Now, the set W ∗ = IntCl W is regularly
open and, by virtue of Definition 1.1, we have

Int f−1(ClW ∗) ⊂ Cl f−1(W ∗). (2.4)
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From (2.4) and f−1(ClW ∗) ∩ Vλ 6= ∅ it follows f−1(W ∗) ∩ Vλ 6= ∅ for each
Vλ ∈ V. The family V∗ = {V ∗

λ : V ∗
λ = f−1(W ∗)∩Vλ} has the finite intersection

property. From the H-closedness of X it follows that there exists a point x ∈
∩{Cl V ∗

λ : V ∗
λ ∈ V∗}. It is easily to prove that x ∈ A and f(x) ∈ ∩{Cl W : W

is open set containing y}. This means that y = f(x) since Y is a Hausdorff
space. Hence, f(A) ⊃ ∩{Cl Uµ : Uµ ∈ U}. The proof of (2.3) is completed.

Corollary 2.16. Let f : X → Y be a mapping between H-closed spaces. If f
is open (semi-open, irreducible), then f is Θ-closed.

Proof. By virtue of Lemma 1.1 these mapping are HJ . Apply Theorem 2.15.

Example. There exists a Θ-closed mapping which is not an HJ-mapping.
Let X = [0, 1] with the following topology. The neighbourhoods of every point
x 6= 0 are the same as those in the usual topology, but the the neighbourhoods
of x = 0 are the sets of the form [0, ε) �D, where D = {0, 1

2 , ..., 1
n , ...},

0 < ε < 1. The space X is H-closed and Urysohn, i.e., X is nearly-compact
(see Theorem 2.7). Let us define f : X → X = Y by

f(x) =





x if x < 0.6,
0.6 if 0.6 ≤ x < 0.8,

2x− 1 if 0.8 ≤ x ≤ 1.

The mapping f : X → X is continuous. Moreover, f is Θ-closed since X and
Y are nearly-compact. Let us prove that f is not an HJ-mapping. Let V =
(0, 0.6] be regularly open subset of Y . Now Bd V = {0.6} and f−1(BdV ) =
[0.6, 1]. It is clear that f−1(BdV ) contains an open set since (0.6, 1) ⊂ [0.6, 1].
By Proposition 1 f is not HJ.

Lemma 2.17. Let f : X → Y be a surjective mapping. If F is Θ-closed in
Y , then f−1(F ) is Θ-closed in X.

Proof. Let us prove that X�f−1(F ) is Θ-open. If x is a point of X�f−1(F ),
then f(x) ∈ Y�F. There exists an open set U such that f(x) ∈ U and
Cl U ∩ F = ∅ since F is Θ-closed. Now x ∈ f−1(U) and Cl f−1(U) ∩ F = ∅.
We infer that X�f−1(F ) is Θ-open. Hence, f−1(F ) is Θ-closed.

Let (X, t) be a topological space and A ⊂ X. If for every open t-open cover
{Ui : i ∈ I} of A, there exists a finite subset I0 of I such that A ⊂ ∪{Cl Ui :
i ∈ I0}, then A is said to be an H-set [16].

Theorem 2.18. [16, Theorem 3.3]. Every H-set in (X, t) is compact in
(X, tΘ).
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Theorem 2.19. [16, Corollary 3.4]. If (X, tΘ) is Hausdorff, then H-set in
(X, t) is Θ-closed.

Theorem 2.20. A Θ-closed subset of an H-closed space is an H-set.

Proof. See [2] and [14].

3 Inverse system XΘ

For every inverse system X = {Xa, pab, A} we shall introduce inverse system
XΘ. Namely, for every space Xa there exists the space (Xa)Θ which is defined
in Definition 2.2. Moreover, for every mapping pab : Xb → Xa there exists the
mapping (pab)Θ (see Definition 2.3 and Lemma 2.11). Transitivity condition

(pab)Θ(pbc)Θ = (pac)Θ

it follows from the commutativity of the diagram 2.1. This means that we
have the following result.

Proposition 4. For every inverse system X = {Xa, pab, A} there exists the
inverse system XΘ = {(Xa)Θ, (pab)Θ, A} such that commutes the following
diagram

Xa pab←− Xb pbc←− Xc .... limX

↓ ia ↓ ib ↓ ic ↓ i

(Xa)Θ
(p∗ab)Θ←−−− (Xb)Θ

(pbc)Θ←−−− (Xc)Θ .... limXΘ

where i and each ia is the identity for every a ∈ A.

Proposition 5. Let X = {Xa, pab, A} be an inverse system. There ex-
ists a mapping pΘ : (limX)Θ → limXΘ such that i = pΘiΘ, where iΘ :
limX → ( limX)Θ is the identity.

Proof. By Definition 2.1 for each a ∈ A there is (pa)Θ : (limX)Θ → (Xa)Θ.
This mapping is continuous (Lemma 2.11). The collection {(pa)Θ : a ∈ A}
induces a continuous mapping pΘ : (limX)Θ → limXΘ. Hence we have the
following diagram.

limX id−→ limX
↓ i ↓ iΘ

limXΘ
pΘ←− (limX)Θ

In the sequel we shall use the following results.
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Theorem 3.1. [12, Theorem 3, p. 206]. Let X = {Xa, pab, A} be an inverse
system of quasi-compact non-empty T0 spaces and closed bonding mapping pab.
Then limX is non-empty.

Theorem 3.2. [12, Theorem 5, p. 208].Let X = {Xa, pab, A} be an inverse
system of quasi-compact T0 spaces and closed bonding mapping pab. Then
limX is quasi-compact.

We shall prove the following result.

Lemma 3.3. Let X = {Xa, pab, A} be an inverse system of quasi-compact
non-empty T0 spaces and closed surjective bonding mapping pab. Then the
projections pa : limX → Xa, a ∈ A, are surjective and closed.

Proof. Let us prove that the projections pa are surjective. For each xa ∈ Xa

the sets Yb = p−1
ab (xa) are non-empty closed sets. This means that the system

Y = {Yb, pbc|Yc, a ≤ b ≤ c} satisfies Theorem 3.1 and has a non-empty limit.
For every y ∈ Y we have pa(y) = xa. Hence, pa is surjective. Let us prove that
pa is closed. It suffices to prove that for every xa ∈ Xa and every neighbour-
hood U of p−1

a (xa) in limX there exists an open set Ua containing xa such that
p−1

a (Ua) ⊂ U . For every x ∈ p−1
a (xa) there is a basic open set p−1

a(x)(Ua(x))
such that x ∈ p−1

a(x)(Ua(x)) ⊂ U. From the quasi-compactness of p−1
a (xa)

it folovs that there exists a finite set {x1, ..., xn} of the points of p−1
a (xa)

such that {p−1
a(x1)

(Ua(x1)), ..., p−1
a(xn)(Ua(xn))} is an open cover of p−1

a (xa). Let
b ≥ a(x), a(x1), ..., a(xn) and let Ub = ∪{p−1

a(x1)b
(Ua(x1)), ..., p

−1
a(xn)b(Ua(xn))}.

It folows that p−1
b (Ub) ⊂ U and p−1

ab (xa) ⊂ Ub. From the closedness of pab it
follows that there is an open set Ua containing xa such that p−1

ab (Ua) ⊂ Ub.
Finally, p−1

a (Ua) ⊂ U . The proof is complete.

Theorem 3.4. Let X = {Xa, pab, A} be an inverse system of quasi-compact
non-empty T0 spaces and closed surjective bonding mapping pab. Then the
limit limX is connected if and only if each Xa is connected.

Proof. If limX is connected, then each Xa is connected since, by Theorem
3.3, the projections pa : limX → Xa are surjective mappings. Let us prove
the converse. Suppose that X is not connected. There exists a pair of clopen
sets U, V such that U ∪V = X. Now, pa(U), pa(V ) is a pair of closed sets since
pa is closed. Moreover, Xa = pa(U) ∪ pa(V ). Now, Ya = pa(U) ∩ pa(V ) is
non-empty since Xa is connected. Moreover, Ya is closed and each p−1

a (Ya) is
closed. The collection {p−1

a (Ya) : a ∈ A} has the finite intersection property.
By quasi-compactnes of limX (Theorem 3.3) Y = ∩{p−1

a (Ya) : a ∈ A} is non-
empty. It is clear that Y ⊂ U and Y ⊂ V . This is imposible since U and V
are disjoint closed sets.
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The following is the main result of this paper.

Theorem 3.5. . Let X = {Xa, pab, A} be an inverse system of non-empty H-
closed spaces and Θ-closed bonding mapping pab. Then limX is non-empty.
Moreover, if pab are surjections, then the projections pa : limX →Xa, a ∈ A,
are surjections.

Proof. Consider the following diagram

Xa pab←− Xb pbc←− Xc .... limX

↓ ia ↓ ib ↓ ic ↓ i

(Xa)Θ
(pab)Θ←−−− (Xb)Θ

(pbc)Θ←−−− (Xc)Θ .... limXΘ

from Proposition 4. By Theorem 2.9 each (Xa)Θ is a compact T1 space.
Furthermore, each maping (pab)Θ is closed by c) of Lemma 2.12. This means
that the inverse system XΘ = {(Xa)Θ, (pab)Θ, A} satisfies the conditions of
Theorem 3.1. It follows that limXΘ is non-empty. This implies that limX is
non-empty. Further, if pab, b ≥ a, are onto mappings, then for each xa ∈ Xa

the sets Yb = p−1
ab (xa) are non-empty Θ-closed sets (Lemma 2.17). This means

that the system YΘ = {(Yb)Θ, (pbc)Θ|(Yc)Θ, a ≤ b ≤ c} satisfies Theorem 3.1
and has a non-empty limit. This means Y = {Yb, pbc|Yc, a ≤ b ≤ c} has a non-
empty limit. For every y ∈ Y we have pa(y) = xa. The proof is completed.

If X and Y are nearly-compact spaces, then each mapping f : X → Y is
Θ-closed (Theorem 2.13). We have the following consequence of Theorem 3.5.

Corollary 3.6. Let X = {Xa, pab, A} be an inverse system of non-empty
nearly-compact spaces. Then limX is non-empty. Moreover, if pab are sur-
jections, then the projections pa : limX →Xa, a ∈ A, are surjections.

Lemma 3.7. Let X = {Xa, pab, A} be an inverse system of H-closed spaces
and Θ-closed surjective bonding mapping pab. The projections pa : limX → Xa,
a ∈ A, are Θ-closed if and only if the mapping pΘ : (limX)Θ → limXΘ from
Proposition 5 is a homeomorphism.

Proof. The if part. Let F ⊂ limX be Θ-closed. Then iΘ(F ) is closed in
(limX)Θ. This means that pΘiΘ(F ) is closed in limXΘ. Now qa(pΘiΘ(F ))
is closed in (Xa)Θ since each projection qa : (limX)Θ → (Xa)Θ is closed
(Lemma 3.3). We infer that i−1

a (qa(pΘiΘ(F ))) is Θ-closed in Xa. This means
that pa(F ) is Θ-closed since pa(F ) = i−1

a (qa(pΘiΘ(F ))). Thus, pa is Θ-closed
for every a ∈ A.

The only if part. Suppose that the projections pa : limX → Xa, a ∈ A, are
Θ-closed. Let us prove that pΘ is a homeomorphism. It suffice to prove that pΘ

is closed. Let F ⊂ (limX)Θ be closed. This means that F is Θ-closed in limX.
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For each a ∈ A the set pa(F ) is Θ-closed since the projections pa are Θ-closed.
Now, iapa(F ) is closed in (Xa)Θ. We have the collection {q−1

a iapa(F ) : a ∈ A}
with finite intersection property. It is clear that pΘ(F ) = ∩{q−1

a iapa(F ) : a ∈
A} and that ∩{q−1

a iapa(F ) : a ∈ A} is closed in limXΘ. Hence, pΘ is closed
and, consequently, a homeomorphism.

Theorem 3.8. Let X = {Xa, pab, A} be an inverse system with HJ mappings
pab. If the projections pa : limX → Xa, a ∈ A, are surjections, then they are
HJ mapping and, consequently, Θ-closed .

Proof. By Proposition 1 a mapping f : X → Y is HJ if and only if the
counterimage of the boundary of each regularly open set is nowhere dense.
Suppose that pa is not HJ . Then there exist a regularly open set Ua in
Xa such that the boundary of p−1

a (Ua) contains an open set U . From the
definition of a base in limX it follows that there is a b ≥ a and an open set
Ub in Xb such that p−1

b (Ub) ⊂ U. It is clair that Ub ⊂ Bd p−1
ab (Ua). This is

impossible since pab is HJ . Hence, the projections pa, a ∈ A, are HJ. From
Theorem 2.15 it follows that pa is Θ-closed.

Theorem 3.9. If X = {Xa, pab, A} is an inverse system of H-closed spaces
Xa and HJ mappings pab, then X = limX is H-closed.

Proof. If X = ∅, then Theorem holds. Let X 6= ∅. Then Xa 6= ∅ for every
a ∈ A and the projections pa : X → Xa onto HJ mappings. Let us prove
that X is H-closed. It suffices to prove that each maximal centred family
U = {Uµ : µ ∈ M, Uµ is open subset of X} has the property ∩{Cl Uµ : µ ∈
M} 6= ∅. For each a ∈ A we define a centred family Ua = {Uµa

: Uµa
is open

in Xa and there exists Uµ ∈ U such pa(Uµ) ⊂ Uµa
, µa ∈ Ma}. Now we shall

prove that Ua is maximal. Let Ua be ope in Xa with property Ua ∩ Uµa
6= ∅

for every Uµa
∈ Ua. It is readily seen that Cl Ua ∩ pa(Uµ) 6= ∅ for each Uµ ∈

U. Hence, if we denote IntCl Ua by Va, then we have Cl Va ∩ pa(Uµ) 6= ∅
for each Uµ ∈ U. From the fact that pa is HJ we conclude that Cl(p−1

a (Va))
∩Uµ 6= ∅ since Cl(p−1

a (Va)) ∩Uµ = ∅ implies that X�p−1
a (ClVa) ∈ U; a

contradiction. From p−1
a (Va)∩Uµ 6= ∅ and the maximality of U it folows that

p−1
a (Va) ∈ U and, consequently, Va ∈ Ua. This means that Ua is maximal.

In similar way on can prove that if Uµa
∈ Ua, then p−1

ab (Uµa
) ∈ Ub, where

b > a. Since Xa is H-closed and Ua maximal, there exists xa ∈ Xa such that
xa = ∩{Cl Uµa

: Uµa
∈ Ua}. Moreover, pab(xb) = xa if b ≥ a. It is easely to

prove that x = (xa : a ∈ A) ∈ ∩{Cl Uµ : Uµ ∈ U}. The proof is completed.

Corollary 3.10. If X = {Xa, pab, A} is an inverse system of H-closed spaces
Xa and semi-open (open, closed irreducuble) mappings pab, then X = limX
is H-closed.
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REMARK. If X = {Xa, pab, A} is an inverse system of H-closed spaces
Xa open bonding mappings pab, then see [5] and [15].

We close this section with result concerning the connectedness of the limit
space limX.

Theorem 3.11. Let X = {Xa, pab, A} be an inverse system of H-closed spaces
Xa and surjective Θ-closed mappings pab. If the projections pa : limX → Xa, a ∈
A, are Θ-closed and X = limX is H-closed , then X is connected if and only
if each Xa is connected.

Proof. If limX is connected, then each Xa is connected since, by Theorem
3.5, the projections pa : limX → Xa are surjective mappings. Let us prove
the converse. Suppose that X is not connected. There exists a pair of clopen
sets U, V such that U ∪ V = X. It is clear that U and V are Θ-closed. Now,
pa(U), pa(V ) is a pair of Θ-closed sets since pa is Θ-closed. Moreover, Xa =
pa(U)∪ pa(V ). Now, Ya = pa(U)∩ pa(V ) is non-empty since Xa is connected.
Moreover, Ya is Θ-closed (see (b) of Theorem 2.2). By Lemma 2.17 each
p−1

a (Ya) is Θ-closed. The collection {p−1
a (Ya) : a ∈ A} has the finite intersec-

tion property. By Theorem 2.6 Y = ∩{p−1
a (Ya) : a ∈ A} is non-empty. This

is imposible since U and V are disjoint.

Corollary 3.12. Let X = {Xa, pab, A} be an inverse system of H-closed spaces
Xa and surjective HJ mappings pab. Then X is connected if and only if each
Xa is connected.
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compacts, Verh. Akademie Amsterdam, Deel XIV, Nr. 1 (1929), 1-96.

[2] R. F. Dickman, Jr. and J. R. Porter, Θ-closed subsets of Hausdorff spaces,
Pac. J. Math. 59 (1975), 407-415.

[3] R. F. Dickman, JR., J. R. Porter, and L. R. Rubin, Completely regular
absolutes and projective objects, Pacific J. Math, 94 (1981), 277-295.

[4] R. Engelking, General Topology, PWN,Warszawa, 1977.

[5] L. M. Friedler and D. H. Pettey, Inverse limits and mappings of minimal
topological spaces, Pacific J. Math. 71 (1977), 429-448.

[6] L. L. Herrington and P. E. Long, Characterizations of H-closed spaces,
Proc. Amer. Math. Soc. 48 (1975), 469-475.



172 Ivan Lončar
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