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A NOTE ON ©-CLOSED SETS AND
INVERSE LIMITS

Ivan Lonéar

Abstract

For every Hausdorff space X the space Xeg is introduced. If X is
H-closed, then Xe is a quasy-compact Ti-space.

If f: X — Y is a mapping, then there exists the mapping fo : Xo —
Yo. We say that a mapping f : X — Y is O-closed if feo is a closed
mapping. If X and Y are H-closed and if f: X — Y is a HJ-mapping,
then fo is ©-closed.

Let X = {Xa,pab, A} be an inverse system of H-closed spaces X,
and O-closed bonding mappings fas. If X, are non-empty spaces, then
X = limX is non-empty. If the bonding mappings p.» are HJ, then
X =1lim X is non-empty and H-closed

1 Introduction

Troughout this paper a space X always denotes a topological space. A map-
ping f: X — Y means a continuous map (function).

The convention and elementary results on inverse limits of topological
spaces are those given in [4].

An open subset U C X is said to be regularly open if U = Int C1U. Simi-
larly, a closed subset F' C X is said to be regularly closed if F = ClInt F'.

Definition 1.1. [11]. A mapping f: X —'Y is said to be skeletal (HJ) if for
each open (regularly open) subset U C X we have Int f~1(C1U) C Cl f~1(U).

The composition of (continuous) skeletal maps is skeletal [11, p. 22].
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Proposition 1. [11, p. 22].A mapping f : X — Y is HJ if and only if the
counterimage of the boundary of each regularly open set is nowhere dense.

An H.J mapping is called in [13, p. 236] a c-mapping (see also [3]).
Let X be a Hausdorff space. A map p : Y22 X s said to be irreducible
[11, p. 26] if for each regularly closed subset A of Y’

A#Y implies Clp(A) # X.

A mapping f : X — Y is said to be semi-open provided Int f(U) # @ for each
non-empty open U C X. From Proposition 1 it follows the following result
(see [11, 1.1, p. 27], [13, p. 236]).

Lemma 1.1. Fach semi-open, each open and each closed irreducible mapping

is HJ.

2 The spaces Xo and the mappings fo

The notion of H-closed spaces was introduced by Aleksandrov and Urysohn

[1].

A Hausdorff space X is H-closed [1] if it is closed in any Hausdorff space
in which it is embedded.

The following two characterizations are given in [1].

Proposition 2. [1, Theorem 1]. A Hausdorff space X is H-closed if and only
if every family {U, : U, is open in X, p € Q} with the finite intersection
property has the property N{CLU, : u € Q} # 0.

Proposition 3. [1, Theorem 2]. A Hausdorff space X is H-closed if for each
open cover {Uy, : n € M} of X there exists a finite subfamily {U,,,...,U,, }
such that {C1U,,...,C1U,, } is a cover of X.

The O-closed sets were introduced by Velicko [14].

Definition 2.1. A point x € X is in the ©-closure of a set A C X, x € |Alg,
if CLVNA # 0 for any open set V containing x. A subset A C X is ©-closed
if A=|Alg. A subset B C X is ©-open if X\ B is O-closed.

Lemma 2.1. [10]. A set A C X is ©-closed set if and only if A = N{C1V) : Vy
is open in X, A C V\}, where V = {V) : A € A} is a mazimal family of open
subsets containing A.

Theorem 2.2. [6, Theorem 2]. In any topological space:

(a) the empty set and the whole space are ©-closed,
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(b) arbitrary intersection and finite unions of ©-closed sets are ©-closed,
(c) CIK C |K|g for each subset K,
(d) a O-closed subset is closed.

From (a) and (b) on gets the following result.

Lemma 2.3. If X is a Hausdorff space, then for each Y C X there exists a
minimal ©-closed subset Z C X such thatY C Z.

Proof. The collection ® of all ©-closed subsets W of X which contains Y is
non-empty since X € ®. By (b) of Theorem 2.2 we infer that Z = n{W : W €
¥} is a minimal O-closed subset Z C X containing Y. I

From Theorem 2.2 it follows that the family of all ®-open subsets of (X, t)
is a new topology te on X.

Definition 2.2. Let (X,t) be a topological space. The ©-space of X is the
space (X, to). In the sequel we shall use denotations X and Xg.

Lemma 2.4. If X is a Hausdorff space, then Xo is T1-space.

Proof. Let x be any point of X. For every another point y € X, y # =,
there exists a pair of open disjont set U, V such such that x € U and y € V. It
follows that UNCLV = (. We conclude that {z} is ©-closed and, consequently,
Xo is Ti-space. 1

Lemma 2.5. The identity mapping ide : X — Xe is continuous.

Theorem 2.6. If X is H-closed, then every family {A, : p € Q } of ©-closed
subsets of X with the finite intersection property has a non-empty intersection
N{A4,: peQ}.

Proof. A Hausdorff space X is H-closed [6] iff for every family {4, : A, C X,
w € Q } with the finite intersection property there exists a point € X such
that C1V N A # ( for every open set V containing « and every A,. The
point z is called ©-accumalation point. From this characterization it follows
Lemma. I

We say that a space X is an Urysohn space ([7], [9]) if for every pair
x,y,x # y, of points of X there exist open sets V' and W about x and y such
that C1V N CIW = 0.

A Hausdorf space is nearly-compact [8] if every open cover {U, : p € M}
has a finite subcollection {U,, , ...,U, } such that Int C1U, U...UInt C1U, =
X. Every nearly-compact space is H-closed.



164 IVAN LONCAR

Lemma 2.7. [8]. A space X is nearly-compact if and only if it is H-closed
and Urysohn.

Lemma 2.8. If X is H-closed and Urysohn, then Xg is a Hausdorff space.

Theorem 2.9. If X is an H-closed space, then Xgo is a quasi-compact T;-
space.

Proof. Let {F, : © € M} be a family of closed sets in Xg with the finite
intersection property. By virtue of Definition 2.2 it follows that F,, = N{F}, , :
a€ A F,,is O-closed in X}. Lemma 2.6 implies that there exists a v € X
with the property € N{F),, : p € M,a € A}. Clearly x € N{F,:pe M}. 1

Problem 1. Is it true that X is H-closed if Xg is a quasi-compact T} -space?
From Lemma 2.8 and Theorem 2.9 on gets the following result.

Theorem 2.10. If X is nearly-compact, then Xo is a quasi-compact Haus-
dorff space.

Definition 2.3. Let f: (X,7) — (Y,0) be a mapping. We define a mapping
fo: Xoe — Yo by fo(x) = f(x) for every x € X, i.e., the following diagram

x I Y
Lid Lid (2.1)
Xo fe Yo

commutes.
Lemma 2.11. The mapping fo : Xo — Yo is continuous.

Proof. Let us prove that fél(F) is closed in Xg if F is closed in Yg. It
suffices to prove that f~!(F) is O-closed in X if F is ©-closed in Y. If
x € X\ f7L(F), then f(z) ¢ F. There exists an open set U such that f(z) € U
and ClU N F = () since F is O-closed in Y. The open set f~1(U) contains
x and Clf~YU) N f~YF) = 0 since f~H(CLU) N f~Y(F) = 0. Hence, if
r € X\fYF), then x € X\|f’1(F)|®, and, consequently, f~!(F) is ©-
closed in X. 1

Definition 2.4. A mapping f : X — Y is said to be O-closed if f(F) is
O-closed for each ©-closed subset F C X.

Lemma 2.12. Let f : X — Y be a continuous mapping. The following
conditions are equivalent:

(a) f is ©-closed,
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(b) for every B CY and each ©-open set U D f~1(B) there exists a ©-open
set V. D B such that f~1(V) C U.

(c) fo is a closed mapping.

Proof. The proof is similar to the proof of the corresponding theorem for closed
mappings [4, p. 52]. 1

From 2.10 and 2.12 we obtain the following result.

Theorem 2.13. If X and Y are nearly-compact spaces, then every continuous
mapping [ : X — Y is O-closed.

Theorems 2.10 and 2.12 imply the following result.

Theorem 2.14. If f : X — Y is a continuous mappinga between H-closed
e.d. spaces X and Y, then f is ©-closed.

Now we prove the following important theorem.

Theorem 2.15. If X and Y are H-closed, then every HJ-mapping f : X — Y
is ©-closed.

Proof. Let A be a ©-closed subset of X. By Definition 2.4 it suffices to prove
that f(A) is ©-closed in Y.
Claim 1. By Lemma 2.1 we infer that

A=n{ClVy:Vyisopenin X, A C V,}, (2.2)

where V = {V) : A € A} is a maximal family of open subsets containing A.
Claim 2. There exists a family U = {U, : p € M} of all open subsets

U, CY such that there exists Vy € V with the property f(Vy) C U,. Clearly,

f(A) Cc U, for each U, € U. For each a € A there is a V, such that V, C U,

for fixed pp € M. Let Vy = U{V, : a € A}. It is clear that f(Vy) C U,.
Claim 3. We prove that

f(A) =n{ClU, : U, € U} (2.3)

We prove only f(A) D n{ClU, : U, € U} since f(A) Cc N{ClU, : U, €
U}. Suppose that y € N{ClU, : U, € U}. For every open W > y we
have CIW N f(Vy) # 0 since CLW N f(Vy) = 0 implies Y\ CI1W D f(Vi),
YN CIW € Uand y € CI( Y\ CI1W). Now, the set W* = Int C1W is regularly
open and, by virtue of Definition 1.1, we have

Int f~H(CIW™*) C CLf~HW™). (2.4)
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From (2.4) and f~1(CIW*) NV, # 0 it follows f~1(W*)NVy # 0 for each
Vy € V. The family V* = {V} : Vi = f~1(W*)NV,} has the finite intersection
property. From the H-closedness of X it follows that there exists a point x €
N{CLVy : V¥ € V*}. It is easily to prove that x € A and f(z) € N{CI1W : W
is open set containing y}. This means that y = f(x) since Y is a Hausdorff
space. Hence, f(A) D N{ClU, : U, € U}. The proof of (2.3) is completed. I

Corollary 2.16. Let f: X — Y be a mapping between H-closed spaces. If f
is open (semi-open, irreducible), then f is ©-closed.

Proof. By virtue of Lemma 1.1 these mapping are H.J. Apply Theorem 2.15. |

Example. There exists a ©-closed mapping which is not an HJ-mapping.
Let X = [0, 1] with the following topology. The neighbourhoods of every point
x # 0 are the same as those in the usual topology, but the the neighbourhoods
of z = 0 are the sets of the form [0,e) \D, where D = {0,1,...,1 .}
0 < e < 1. The space X is H-closed and Urysohn, i.e., X is nearly-compact
(see Theorem 2.7). Let us define f: X - X =Y by

T if z < 0.6,
flz) = 0.6 if 06<z<0.38,
20 —1 if 08<z <1,

The mapping f : X — X is continuous. Moreover, f is ©-closed since X and
Y are nearly-compact. Let us prove that f is not an HJ-mapping. Let V =
(0,0.6] be regularly open subset of Y. Now BdV = {0.6} and f~}(BdV) =
[0.6,1]. Tt is clear that f~1(Bd V') contains an open set since (0.6,1) C [0.6, 1].
By Proposition 1 f is not HJ.

Lemma 2.17. Let f : X — Y be a surjective mapping. If F' is ©-closed in
Y, then f~1(F) is ©-closed in X.

Proof. Let us prove that X\ f~!(F) is ©-open. If x is a point of X\ f~1(F),
then f(xr) € Y\ F. There exists an open set U such that f(z) € U an
ClU N F = () since F is ©-closed. Now z € f~1(U) and Clf~Y({U)NF = 0.
We infer that X\ f~1(F) is ©-open. Hence, f~1(F) is ©-closed. I

Let (X,t) be a topological space and A C X. If for every open t-open cover
{U; :i € I} of A, there exists a finite subset Iy of I such that A C U{Cl1U; :
i € Ip}, then A is said to be an H-set [16].

Theorem 2.18. [16, Theorem 3.3]. Ewvery H-set in (X,t) is compact in
(Xa t@)‘
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Theorem 2.19. [16, Corollary 3.4]. If (X,te) is Hausdorff, then H-set in
(X,t) is ©-closed.

Theorem 2.20. A O-closed subset of an H-closed space is an H-set.
Proof. See [2] and [14]. I

3 Inverse system Xg

For every inverse system X = {X,, pap, A} we shall introduce inverse system
Xe. Namely, for every space X, there exists the space (X,)o which is defined
in Definition 2.2. Moreover, for every mapping pgp : Xp — X, there exists the
mapping (pap)o (see Definition 2.3 and Lemma 2.11). Transitivity condition

(pab)@(pbc)@ = (pac)@

it follows from the commutativity of the diagram 2.1. This means that we
have the following result.

Proposition 4. For every inverse system X = {X,, pap, A} there exists the
inverse system Xo = {(Xa)o, (Pav)o, A} such that commutes the following
diagram

Xq Pab Xy Pbe X, .. limX
Li - Li - li li
la b c

(Xa)e (bar)o (Xp)o (ece (X)e ... limXg

where i and each i, is the identity for every a € A.

Proposition 5. Let X = {X,,paw, A} be an inverse system. There ex-
ists a mapping pe : (ImX)e — limXeg such that i = peie, where ig :
limX — (lim X)g is the identity.

Proof. By Definition 2.1 for each a € A there is (pg)eo : (lmX)e — (X,)o-
This mapping is continuous (Lemma 2.11). The collection {(p,)e : a € A}
induces a continuous mapping pe : (limX)e — lim Xe. Hence we have the
following diagram.
limx “ lim X
Li lie
limXe 2 (limX)e

In the sequel we shall use the following results.



168 IVAN LONCAR

Theorem 3.1. [12, Theorem 3, p. 206]. Let X = {X,, pas, A} be an inverse
system of quasi-compact non-empty Ty spaces and closed bonding mapping pap-
Then lim X is non-empty.

Theorem 3.2. [12, Theorem 5, p. 208].Let X = {X,, pay, A} be an inverse
system of quasi-compact Ty spaces and closed bonding mapping pay. Then
lim X is quasi-compact.

We shall prove the following result.

Lemma 3.3. Let X = {Xq4,pap, A} be an inverse system of quasi-compact
non-empty Ty spaces and closed surjective bonding mapping pap. Then the
projections p, : im X — X,,a € A, are surjective and closed.

Proof. Let us prove that the projections p, are surjective. For each z, € X,
the sets Y, = p;bl(ma) are non-empty closed sets. This means that the system
Y = {Y4, poe|Ye,a < b < ¢} satisfies Theorem 3.1 and has a non-empty limit.
For every y € Y we have p,(y) = z,. Hence, p, is surjective. Let us prove that
Pq is closed. It suffices to prove that for every z, € X, and every neighbour-
hood U of p; 1(z,) in lim X there exists an open set U, containing z, such that
p,t(U,) C U. For every = € p,;'(z,) there is a basic open set p;(lz)(Ua(r))
such that = € p;(lm)(Ua(:c)) C U. From the quasi-compactness of p;!(z,)

it folovs that there exists a finite set {z1,...,x,} of the points of p;*(z,)
such that {p;(lml)(Ua(xl)), ceey p;(lx )(Ua(xn))} is an open cover of p; !(z,). Let

b > a(x),a(x1),...,a(x,) and let U, = U{p;(zl)b(Ua(wl))ﬂ'“ap;(in)b(Ua(wn))}'
It folows that pb_l(Ub) Cc U and p;bl(xa) C Uyp. From the closedness of py it
follows that there is an open set U, containing x, such that p;bl(Ua) C Uy.
Finally, p, 1(U,) C U. The proof is complete. I

Theorem 3.4. Let X = {X,,pap, A} be an inverse system of quasi-compact
non-empty Ty spaces and closed surjective bonding mapping pap. Then the
limit lim X is connected if and only if each X, is connected.

Proof. If lim X is connected, then each X, is connected since, by Theorem
3.3, the projections p, : lim X — X, are surjective mappings. Let us prove
the converse. Suppose that X is not connected. There exists a pair of clopen
sets U,V such that UUV = X. Now, p,(U), p,(V) is a pair of closed sets since
Pa is closed. Moreover, X, = p,(U) U p,(V). Now, Y, = p(U) Np(V) is
non-empty since X, is connected. Moreover, Y, is closed and each p,1(Y,) is
closed. The collection {p;1(Y,) : a € A} has the finite intersection property.
By quasi-compactnes of lim X (Theorem 3.3) Y = N{p,*(Y,) : a € A} is non-
empty. It is clear that Y C U and Y C V. This is imposible since U and V'
are disjoint closed sets. |
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The following is the main result of this paper.

Theorem 3.5. . Let X = {X,, pap, A} be an inverse system of non-empty H-
closed spaces and ©-closed bonding mapping pay. Then im X is non-empty.
Moreover, if pqay are surjections, then the projections p, : IlmX —X,,a € A,
are surjections.

Proof. Consider the following diagram

Xa Pab Xy Dbe X, e, limX
— —

lia lib lic lZ

KXo " (Xpe 2 (X)e . lmXe

from Proposition 4. By Theorem 2.9 each (X,)o is a compact T; space.
Furthermore, each maping (pas)e is closed by c) of Lemma 2.12. This means
that the inverse system Xeo = {(Xa)o, (Pabv)o, A} satisfies the conditions of
Theorem 3.1. It follows that lim Xg is non-empty. This implies that lim X is
non-empty. Further, if p,,,b > a, are onto mappings, then for each x, € X,
the sets Y, = p,' (7,) are non-empty O-closed sets (Lemma 2.17). This means
that the system Yo = {(Ys)o, (psc)o|(Ye)o,a < b < ¢} satisfies Theorem 3.1
and has a non-empty limit. This means Y = {Y}, ppc|Ye, @ < b < ¢} has a non-
empty limit. For every y € Y we have p,(y) = x4. The proof is completed. I

If X and Y are nearly-compact spaces, then each mapping f: X — Y is
©-closed (Theorem 2.13). We have the following consequence of Theorem 3.5.

Corollary 3.6. Let X = {Xg,pap, A} be an inverse system of non-empty
nearly-compact spaces. Then im X is non-empty. Moreover, if pay are sur-
jections, then the projections p, : im X —X,,a € A, are surjections.

Lemma 3.7. Let X = {X,,pap, A} be an inverse system of H-closed spaces
and O-closed surjective bonding mapping pap. The projections p, : lim X — X,
a € A, are ©-closed if and only if the mapping pe : (limX)g — limXg from
Proposition 5 is a homeomorphism.

Proof. The if part. Let F' C limX be O-closed. Then ig(F) is closed in
(lim X)e. This means that peie(F') is closed in lim Xg. Now ¢,(peie(F))
is closed in (X,)e since each projection ¢, : (lmX)g — (X,)e is closed
(Lemma 3.3). We infer that i, !(q,(peie(F))) is O-closed in X,. This means
that p,(F) is ©-closed since p,(F) = i, 1(q.(peie(F))). Thus, p, is O-closed
for every a € A.

The only if part. Suppose that the projections p, : llm X — X,,a € A, are
O-closed. Let us prove that pg is a homeomorphism. It suffice to prove that pg
is closed. Let F' C (lim X)g be closed. This means that F' is ©-closed in lim X.
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For each a € A the set p,(F) is ©-closed since the projections p, are ©-closed.
Now, iapa(F) is closed in (X,)e. We have the collection {q, Yi,p.(F) :a € A}
with finite intersection property. It is clear that pe(F) = N{q, Yi.pa(F) : a €
A} and that N{qg; li,p.(F) : a € A} is closed in lim Xg. Hence, pg is closed
and, consequently, a homeomorphism. NI

Theorem 3.8. Let X = {X,, pap, A} be an inverse system with HJ mappings
Pab- If the projections p, : im X — X ,a € A, are surjections, then they are
HJ mapping and, consequently, ©-closed .

Proof. By Proposition 1 a mapping f : X — Y is HJ if and only if the
counterimage of the boundary of each regularly open set is nowhere dense.
Suppose that p, is not HJ. Then there exist a regularly open set U, in
X, such that the boundary of p,!(U,) contains an open set U. From the
definition of a base in lim X it follows that there is a b > a and an open set
Uy in X, such that pb_l(Ub) C U. It is clair that U, C Bd p;bl(Ua). This is
impossible since pqp, is HJ. Hence, the projections p,,a € A, are HJ. From
Theorem 2.15 it follows that p, is ©-closed. 1

Theorem 3.9. If X = {X,,pap, A} is an inverse system of H-closed spaces
X, and HJ mappings pap, then X =1lim X is H-closed.

Proof. If X = ), then Theorem holds. Let X # (). Then X, # 0 for every
a € A and the projections p, : X — X, onto HJ mappings. Let us prove
that X is H-closed. It suffices to prove that each maximal centred family
U={U,:pe MU, is open subset of X} has the property N{ClU, : u €
M} # 0. For each a € A we define a centred family U, = {U,, : Uy, is open
in X, and there exists U, € U such p(U,) C Uy, ,p, € Ma}. Now we shall
prove that U, is maximal. Let U, be ope in X, with property U, N U, # 0
for every U, € U,. It is readily seen that C1U, N pa(U,) # 0 for each U, €
U. Hence, if we denote Int Cl1U, by V,, then we have C1V, N p,(U,) # 0
for each U, € U. From the fact that p, is HJ we conclude that Cl(p;'(V,))
NU, # O since Cl(p,*(V,)) NU, = 0 implies that X\p,'(C1V,) € U; a
contradiction. From p;'(V,) N U, # 0 and the maximality of U it folows that
p,1(V,) € U and, consequently, V, € U,. This means that U, is maximal.
In similar way on can prove that if U, € U,, then p;bl(U“a) € Up, where
b > a. Since X, is H-closed and U, maximal, there exists x, € X, such that
xqy = ClU,, : Uy, € Ua}. Moreover, pay(zp) = 24 if b > a. It is easely to
prove that z = (2, : a € A) € N{C1U, : U, € U}. The proof is completed. B

Corollary 3.10. If X = {X,,pap, A} is an inverse system of H-closed spaces
X, and semi-open (open, closed irreducuble) mappings pap, then X = lim X
is H-closed.
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REMARK. If X = {X,,pap, A} is an inverse system of H-closed spaces
X, open bonding mappings pgp, then see [5] and [15].

We close this section with result concerning the connectedness of the limit
space lim X.

Theorem 3.11. Let X = {X,, pap, A} be an inverse system of H-closed spaces
X4 and surjective ©-closed mappings pap- If the projections p, : im X — X, a €
A, are O-closed and X = lim X is H-closed , then X is connected if and only
if each X, 1s connected.

Proof. If lim X is connected, then each X, is connected since, by Theorem
3.5, the projections p, : lim X — X, are surjective mappings. Let us prove
the converse. Suppose that X is not connected. There exists a pair of clopen
sets U,V such that U UV = X. It is clear that U and V are O-closed. Now,
Pa(U),pa(V) is a pair of O-closed sets since p, is ©-closed. Moreover, X, =
2o (U)Upa (V). Now, Y, = po(U) Npa(V) is non-empty since X, is connected.
Moreover, Y, is ©-closed (see (b) of Theorem 2.2). By Lemma 2.17 each
p; 1(Y,) is O-closed. The collection {p;1(Y,) : a € A} has the finite intersec-
tion property. By Theorem 2.6 Y = N{p,'(Y,) : a € A} is non-empty. This
is imposible since U and V' are disjoint. i

Corollary 3.12. Let X = { X, pap, A} be an inverse system of H-closed spaces
X, and surjective HJ mappings pay- Then X is connected if and only if each
X, is connected.
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