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Abstract

By the correction of an inconsistent linear system we mean avoiding
its contradictory nature by means of relaxing the constraints. In [V a2]
it was shown that for inconsistent linear equation systems Ax = b, the
correction of the whole augmented matrix (A, b) using Euclidean norm
criterion, is a problem equivalent to finding the least eigenvalues (and
corresponding eigenvectors) of the matrix (−b, A)T (−b, A). In [V a1] Va-
tolin proposed an algorithm based on linear programming, which finds
minimal corrections of the constraint matrix and RHS vector. In [PM ]
is analyzed correction problem for an inconsistent linear inequality sys-
tem Ax ≤ b, using two criteria ‖.‖

1
and ‖.‖

∞
. In this paper, we use

interior-point techniques for solving the associated linear program.

1. Introduction

Consider the linear inequality system:

{

〈ai, x〉 ≤ bi, i ∈ M0 ∪ M1

xj ≥ 0, j = 1, ..., n,
(1)

where aT
i , i = 1, ...,m, forms the ith row of the matrix A, bi is the ith compo-

nent of b, M0, M1 are finite index sets and 〈., .〉 stands for the standard inner
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product in Rn.

With system (1) we associate the corrected system:







〈ai, x〉 ≤ bi, i ∈ M0

〈ai + h′

i, x〉 ≤ bi − hi,n+1, i ∈ M1

xj ≥ 0, j = 1, ..., n,
(2)

where h′

i ∈ Rn and hi,n+1 ∈ R. Let hi ∈ Rn+1,

hi = (h′

i, hi,n+1) = (hi1,...,hi,n+1)

be the vector correcting the ith row of system (1), i ∈ M1.
The rows with indices i ∈ M0 are not corrected (are assumed to be fixed). We
can fix also arbitrary columns of the augmented matrix (A, b), with indices
j ∈ J0 ⊂ {1, ..., n + 1} . Thus we set hij = 0, i ∈ M1, j ∈ J0.
Let M1 = {i1, ..., ip} and J1 = {1, ..., n + 1}�J0 the complement of J0, i.e.
the set of indices of columns to be corrected.

The correction problem of system (1) may be expressed as

min {Φ(H)/H ∈ S} (3)

where H(hij)p×(n+1),

S = {H/hij = 0, i ∈ M1, j ∈ J0and system (2) is consistent} .

Φ(H) is the correction criterion estimating the quality of correction.

2. The LP-based algorithm for solving correction problem (3)

The main difficulties in solving the problem (3) are that the left-hand sides
of system (2) are bilinear in hi and x. The idea of Vatolin algorithm is to take
hi of the form:

hi = tic, i ∈ M1, ti ∈ R,

where c ∈ Rn+1, c = (c1,...,cn+1) is defined bellow.
Thus, the problem (2) is also bilinear, but it can be converted into a linear

one by:
a) changing variable x ∈ Rn for variable h0 ∈ Rn+1 so that

x = h−1
0,n+1(h01, ..., h0,n)T ,

where it is assumed that 0 /∈ M1, h0 = (h01, ..., h0,n, h0,n+1), h0,n+1 > 0 and
by
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b) introducing additional constraint

〈c, h0〉 = −1.

Consequently, the algorithm reduces solving the correction problem (3) to
solving a linear programming problem. If Φ(H) takes form:

Φ(H) =max
i,j

|hij | , (4)

then the vector c ∈ Rn+1 is of the form

cj =

{

0, j ∈ J0

−1, j ∈ J1.

We have to solve a linear program:


















































min θ

subject to
〈di, h0〉 ≤ 0, i ∈ M0

〈di, h0〉 ≤ ti, i ∈ M1

0 ≤ ti ≤ θ, i ∈ M1
∑

j∈J1

h0,j = 1

h0,j ≥ 0, j = 1, ..., n + 1,

(5)

where di = (ai,−bi) ∈ Rn+1, i ∈ M0 ∪ M1. Using the criterion (4), the rows
i ∈ M1 and all columns j ∈ J1 are effectively corrected.

If Φ(H) takes form:

Φ(H) =
∑

i,j

|hij | ,

then the number of linear programming problems which will be solved is |J1| .
At each linear programming problem, only a column of augmented matrix
(A, b) is corrected (see [Po], [PM]).

Let K be the set of feasible solutions (θ, t, h0) of problem (5), where vector
t is composed of components ti, i ∈ M1. If K = φ then S=φ. Else, for each
optimal solution (θ, t, h0) of the problem (5), there are obtained the optimal
value σ = θ, the optimal correction matrix H = H(t) with (i, j)component

hij =

{

0, j ∈ J0

−ti, j ∈ J1
, i ∈ M1

and the solution x of the corrected system

x = h−1
0,n+1(h01, ..., h0,n)T .
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3. Interior-point method for solving linear programming problem
(5)

The linear program (5) admits an equivalent program in the standard form,
obtainable by adding slack variables: si, i ∈ M0, vi, zi, i ∈ M1 :











































min θ
subject to

〈di, h0〉 + si = 0, i ∈ M0

〈di, h0〉 − ti + vi = 0, i ∈ M1

−θ + ti + zi = 0, i ∈ M1

〈c, h0〉 = 1
θ, h0, t, s, v, z ≥ 0,

(6)

where the vectors s, v and z are composed of components si, i ∈ M0 and vi,

zi, i ∈ M1. Note that the strict inequality h0,n+1 > 0 in (6) was replaced by
h0,n+1 ≥ 0.

We introduce the notations: f = (1, 0, ..., 0)T , g = (0, ..., 1)T . Also,
y = (θ, h0, t, s, v, z)T denotes vector composed of θ ∈ R and vectors h0, t, s, v
and z. The coefficient matrix in the linear problem (6) is:

G =









0 di 0 Im−p 0 0
0 di −Ip 0 Ip 0
−e 0 Ip 0 0 Ip

0 cT 0 0 0 0









,

where e stands for the all-one vector, e = (1, 1, ..., 1)T. Matrix G has a full row
rank. Using these notations, the problem (6) becomes:

(P )















min fT y
subject to

Gy = g
y ≥ 0.

We define the feasible set P to be the set of vectors y satisfying the con-
straints, i.e.

P = {y/ Gy = g and y ≥ 0} ,

and the associated set P+ to be the subset of P satisfying strict nonnegativity
constraints

P+ = {y/ Gy = g and y > 0} .
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Interior-point methods are iterative methods that compute a sequence of
iterates belonging to P+ and converging to an optimal solution.
This is completely different from the simplex method which explores the ver-
tices of the polyhedron P and an exact optimal solution is obtained after a
finite number of steps (see fig. 0.1).

Figure 1:

Interior-point iterates tend to an optimal solution but never attain it (since
the optimal solutions do not belong to P+ but to P\P+). Yet an approximate
solution (with e.g. 10−8 relative accuracy) is sufficient for our purpose. In
addition, these methods are practically efficient and can be used to solve large-
scale problems. For such of problems, the chances that the system is self-
contradictory (inconsistent) are high.

Since 1984, when Karmarkar introduced this new class of methods in [Ka],
many different interior-point methods have been developed. For solving linear
program (P), we will use the affine-scaling method which has been previously
proposed by Dikin, 17 years before Karmarkar. This is in fact a projective
gradient method. Also, at each iteration, the y variable is simply scaled by y =
Dw,where D is a positive diagonal matrix (this scaling operation is responsible
for the denomination of the method).

Let us consider the current iterate yk>0 and D = Yk, where Yk is diagonal
matrix made up with vector yk. Choosing this special matrix, which maps the
current iterate yk to e (Y −1

k yk = e),we obtain the following problem:
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(PD)















min(Ykf)T w
subject to

GYkw = g
w ≥ 0.

It is easy to show that problem (PD) is equivalent to (P ). We introduce
the notations Gk = GYk and fk = Ykf.

The scaled current iterate wk is located far inside of the polyhedron (see fig.
0.2), at equal distance to each face. The iterate is centered because by this,
a significant shift toward the optimal solution y∗ can be executed (without
touching the faces of the polyhedron).

Figure 2:

The displacing direction for the scaled problem 4wk is defined as the pro-
jection of the scaled problem gradient, with sign changed −fk, onto ker(Gk).
The projection matrix onto ker(Gk) is:

PGk
= I − GT

k

(

GkGT
k

)−1
Gk.

Then,

4wk = −PGk
fk = −Yk[f − GT (GY 2

k GT )−1GY 2
k f ].

Using the notation
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uk = (GY 2
k GT )−1GY 2

k f, (7)

the displacing direction 4wk becomes:

4wk = −Yk

(

f − GT uk

)

.

Back in the original space we obtain

4yk = Yk4wk = −Y 2
k (f − GT uk),

where the vector uk is the solution of the linear system:

(GY 2
k GT )uk = GY 2

k f. (8)

The next iterate yk+1 = yk + 4yk is expected to be closer to the optimal
solution than yk.

Since the iterates must always satisfy the strict nonnegativity conditions,
we will reduce the step with a factor αk < 1 in order to make it stay within
the strictly feasible region P+ :

yk+1 = yk + αk4yk.

The sequence of iterates is converging to the optimal solution (see [An]).
While the simplex method may potentially make a number of moves that grows
exponentially with the problem size, interior-point methods need a number of
iterations that is polynomially bounded by the problem size to obtain a given
accuracy.

The stopping criterion is usually a small predefined duality gap ε :

∥

∥fT yk − gT uk

∥

∥

‖fT yk‖ + 1
< ε,

where uk, defined in (7), are the dual variables.
The resolution of the system (8) takes up most of the computing time in

affine-scaling algorithm (80-90% of the total CPU-time). It should be therefore
very carefully implemented (with a Cholesky factorization, taking advantage
of the fact that matrix GY 2

k GT is positive definite and with application of
sparse matrix techniques).

REFERENCES

[An] N. Andrei, Programarea Matematică. Metode de Punct Interior,
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