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Abstract

In this paper we consider a straight homogeneous elastic rod with

finite length and constant section, supported at the ends and lying on an

elastic foundation of Winkler type. On the rod act uniformly distributed

loads, as well as two concentrated loads and moments. The reactions at

the supported ends, as well as the deflection of the rod are given. The

influences of the concentrated loads and of the moment on the reactions

are studied and shown in charts.

1 Introduction

In the study of the bending of elastic rod on elastic foundation we come across
difficulties owing to the following factors:

1. the rod is loaded with discontinuous loads;

2. the action of some concentrated loads and moments;
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3. discontinuities of the mechanical properties of the rod and of the elastic
foundation.

The general and unitary method to deal with the problems concerning ex-
ternal discontinuities (e.g. discontinuous loading) and internal discontinuities
(e.g. discontinuous loading) is the distribution theory.

In the framework of the theory a single equation which contains the bound-
ary and jump conditions is obtained.

The distribution theory was used in [2], [3], [7], [8], [9] and [10] for analyzing
beams with discontinuities.

A bending problem with discontinuities in which the distribution theory
isn’t systematically applied, being a combination between classical mathemat-
ical analysis and the distribution theory, is studied in [11].

In [2] and [7] using the distribution theory in a systematic manner the
bending problem with discontinuities of a finite elastic rod on elastic founda-
tion under the action of concentrated loads are studied.

We mention that the advantaged of this method is that it gives the general
expression of the deflection irrespective of the type of loading of the rod, which
allows a global analysis of the influence of each individual load.

In this paper we consider a straight homogeneous elastic rod with finite
length and constant section, supported at the ends and lying on an elastic
foundation of Winkler type (the reaction of the elastic foundation is propor-
tional to the deflection of the rod in that point and is independent from the
deflection of other parts of the foundation).

On the rod, some uniformly distributed loads act as well as two concen-
trated loads and moments.

The reactions at the supported ends, as well as the deflection of the rod
are given. The influence of the flexural stiffness of the rod and the rigidity
coefficient of the elastic foundation on the deflection of the rod is analyzed.
The influences of the concentrated loads and of the moment on the reactions
are studied and shown in charts.

2 The study of the bending of the finite elastic rod

Let be OA a straight homogeneous elastic rod of finite length ℓ and with
constant cross-section, supported in the points O and A, which lies on an
elastic foundation of Winkler type [1].
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Fig. 1. Elastic rod supported on an elastic foundation

We admit that on the rod act uniformly distributed loads of intensity q,
as well as concentrated loads of value P1 and P2 applied in point c1 ∈ (0, ℓ),
c2 ∈ (0, ℓ), c1 < c2, respectively.

We shall denote by v(x), x ∈ [0, ℓ] the deflection of the rod. We denote

by ∂̃x = d̃
dx

, ∂x = d
dx

the derivative in classic sense and the derivative in
distribution sense, respectively.

For a Winkler model, it is assumed that the reaction of the elastic founda-
tion qe (x), x ∈ [0, ℓ] exerted on the rod is proportional to its deflection at that
point and is independent from the deflection of other parts of the foundation
hence

qe (x) = −kv (x) , x ∈ [0, ℓ] (1)

where k is called the rigidity coefficient of the elastic foundation.

We shall denote by D′(R) the distribution (continuous linear functional)
defined on the test functions space D(R), which are indefinite derivable func-
tions with compact support.

We denote by D′

+ ⊂ D′(R) the distributions from D′(R) having the sup-
ports on [0,∞). We mention that the distributions from D′

+ represent a
convolution algebra without divisors of zero.

We observe that ṽ(x) =

{

v(x), x ∈ [0, ℓ]
0, x /∈ [0, ℓ]

represents a function type

distribution from D′

+, because its support is in [0, ℓ] ⊂ [0,∞).

We denote by the symbol [ ]a the jump of a certain value at point x = a.

Due to the way in which the rod is fixed the boundary conditions are

ṽ(0 + 0) = 0, ṽ(0 − 0) = 0, ṽ(ℓ + 0) = 0, ṽ(ℓ − 0) = 0,

∂̃2
xṽ(0 + 0) = 0, ∂̃2

xṽ(0 − 0) = 0, ∂̃2
xṽ(ℓ + 0) = 0, ∂̃2

xṽ(ℓ − 0) = 0.
(2)
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From the boundary conditions (2) we have

[ṽ]0 = ṽ(0 + 0) − ṽ(0 − 0) = 0, [ṽ]ℓ = ṽ(ℓ + 0) − ṽ(ℓ − 0) = 0,
[

∂̃xṽ
]

0
= ṽ′(0 + 0) − ṽ′(0 − 0) = ṽ′(0 + 0),

[

∂̃xṽ
]

ℓ
= ṽ′(ℓ + 0) − ṽ′(ℓ − 0) = −ṽ′(ℓ − 0).

(3)

According to [2] for the deflection ṽ we have the expression

ṽ(x) =


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0, x /∈ [0, ℓ]
q

4EIω3

x

∫
a

u(x − t)dt+

+ 1
4EIω3

4
∑

i=1

PiH(x − ci)u(x − ci)+

+ 1
4EIω3

4
∑

i=1

miH(x − ci)u1(x − ci)+

+ 1
4ω3 [ṽ]0H(x − a)u3(x − a)+

+ 1
4ω3

[

∂̃xṽ
]

ℓ
H(x − a)u2(x − a),

x ∈ [0, ℓ]
(4)

where ω = 4

√

k
4EI

, H is the Heaviside function, P1 = −V0, P4 = −VA, m1 =

m4 = 0.
We mention that we introduce the real-valued functions u, u1, u2, u3 ∈

C∞(R) having the expressions:

u(x) = coshωx sin ωx − sinhωx cos ωx,
u1(x) = u′(x) = 2ω sinhωx sin ωx,
u2(x) = u′′(x) = 2ω2 (cosh ωx sinωx + sinhωx cos ωx) ,
u3(x) = u′′′(x) = 4ω3 (cosh ωx cos ωx) .

(5)

We have

u4(x) = u′

3(x) = −4ω4u(x)

From here results

u(4k)(x) =
(

−4ω4
)k

u(x), u(4k+1)(x) =
(

−4ω4
)k

u1(x),

u(4k+2)(x) =
(

−4ω4
)k

u2(x), u(4k+3)(x) =
(

−4ω4
)k

u3(x).

Because any natural number n ≥ 4 can be written under the form n =
4k + p, p = 0, 1, 2, 3, k ∈ N, we have:

Any n ≥ 4 order derivative of the function u ∈ C∞(R) represents a multiple
of one of the functions u, u1 = u′, u2 = u′′, u3 = u′′′, namely
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u(n)(x) =












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(

−4ω4
)k

u(x), n = 4k
(

−4ω4
)k

u1(x), n = 4k + 1
(

−4ω4
)k

u2(x), n = 4k + 2
(

−4ω4
)k

u3(x), n = 4k + 3

k = 1, 2, 3, ...

Using the formula
x
∫

0

f(x − t)dt =
x
∫

0

f(t)dt the deflection ṽ can be written

under the form

ṽ(x) =
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

q
4EIω3

x

∫
0

u(t)dt − V0u(x)
4EIω3 + ṽ′(0+0)u2(x)

4ω3 , x ∈ [0, c2)

q
4EIω3

x

∫
0

u(t)dt − V0u(x)
4EIω3 + ṽ′(0+0)u2(x)

4ω3 +

+ 1
4EIω3 [P2u (x − c2) + m2u1 (x − c2)]

, x ∈ [c2, c3)

q
4EIω3

x

∫
0

u(t)dt − V0u(x)
4EIω3 + ṽ′(0+0)u2(x)

4ω3 +

+ 1
4EIω3 [P2u (x − c2) + m2u1 (x − c2)] +

+ 1
4EIω3 [P3u (x − c3) + m3u1 (x − c3)]

, x ∈ [c3, ℓ]

0 , x /∈ (0, ℓ)

(6)

We note that in this relation of the deflection ṽ appear only two unknowns,
namely: the reaction V0 in O and the rotation of rod to the right in point
O, ṽ′(0 + 0). These unknowns as well as the unknowns VA, mA, ṽ′(ℓ − 0)
representing the reaction and moment in the A as well as the rotation of rod
to the left in point A, respectively, will be determined from the following
conditions:

q
ℓ
∫

0

u (t) dt − V0u (ℓ) + P2u (ℓ − c2) + P3u (ℓ − c3) +

+m2u1 (ℓ − c2) + m3u1 (ℓ − c3) + EIṽ′ (0 + 0)u2 (ℓ) = 0

(7)

q
ℓ
∫

0

u1 (t) dt − V0u1 (ℓ) + P2u1 (ℓ − c2) + P3u1 (ℓ − c3) + m2u2 (ℓ − c2) +

+m3u2 (ℓ − c3) + EI
[

ṽ′ (0 + 0)u3 (ℓ) − 4ω3ṽ′ (ℓ − 0)
]

= 0
(8)

q
ℓ
∫

0

u2 (t) dt − V0u2 (ℓ) + P2u2 (ℓ − c2) + P3u2 (ℓ − c3) +

+m2u3 (ℓ − c2) + m3u3 (ℓ − c3) − 4EIω3ṽ′ (0 + 0)u (ℓ) = 0

(9)

q
ℓ
∫

0

u3 (t) dt − V0u3 (ℓ) + P2u3 (ℓ − c2) + P3u3 (ℓ − c3) − 4ω3VA−

−4ω4m2u (ℓ − c2) − 4ω4m3u (ℓ − c3) − 4EIω4ṽ′ (0 + 0)u1 (ℓ) = 0

(10)



154 WILHELM W. KECS, ANNE-MARIE NITESCU and MARIAN FOAMETE

The relations (7)-(10) were obtained from the condition that the support
of the deflection should be [0, ℓ], namely suppṽ = [0, ℓ].

From the above system of equations we shall obtain the unknowns V0, VA,
ṽ′(ℓ − 0) and ṽ′(0 + 0).

We have the expression

V0 =
4ω4A1u (ℓ) + A3u2 (ℓ)

4ω4u2 (ℓ) + u2
2 (ℓ)

(11)

ṽ′ (0 + 0) =
A3u (ℓ) + A1u2 (ℓ)

EIu2
2 (ℓ) + 4ω4EIu2 (ℓ)

(12)

VA = 1
4ω3 A4 −

1
4ω3

A3[4ω4u1(ℓ)u(ℓ)+u3(ℓ)u2(ℓ)]
4ω4u2(ℓ)+u2

2
(ℓ)

−

− 1
4ω3

4ω4A1[u3(ℓ)u(ℓ)−u1(ℓ)u2(ℓ)]
4ω4u2(ℓ)+u2

2
(ℓ)

(13)

ṽ′ (ℓ − 0) = 1
4ω3EI

A2 −
1

4ω3EI

A1[4ω4u(ℓ)u1(ℓ)+u2(ℓ)u3(ℓ)]
4ω4u2(ℓ)+u2

2
(ℓ)

−

− 1
4ω3EI

A3[u1(ℓ)u2(ℓ)−u(ℓ)u3(ℓ)]
4ω4u2(ℓ)+u2

2
(ℓ)

(14)

where

A1 = q
ℓ
∫

0

u (t) dt + P2u (ℓ − c2) + P3u (ℓ − c3) +

+m2u1 (ℓ − c2) + m3u1 (ℓ − c3)

(15)

A2 = q
ℓ
∫

0

u1 (t) dt + P2u1 (ℓ − c2) + P3u1 (ℓ − c3) +

+m2u2 (ℓ − c2) + m3u2 (ℓ − c3)

(16)

A3 = q
ℓ
∫

0

u2 (t) dt + P2u2 (ℓ − c2) + P3u2 (ℓ − c3) +

+m2u3 (ℓ − c2) + m3u3 (ℓ − c3)

(17)

A4 = q
ℓ
∫

0

u3 (t) dt + P2u3 (ℓ − c2) + P3u3 (ℓ − c3)−

−4ω4m2u (ℓ − c2) − 4ω4m3u (ℓ − c3)

(18)

3 Numerical Applications

We have considered an elastic rod with the following mechanical character-
istics: flexural stiffness EI = 2, 1 · 106 Nm2, the rigidity coefficient for the
elastic foundation k = 4, 603 · 107 N

m2 , the rod length ℓ = 8m, on the rod acts
a uniformly distributed load q = 1000N.
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In Fig. 2 we have represented the deflection of the rod when we have two
concentrated moments P2 = 100 kN, P3 = 100 kN, witch act on the points
c2 = 1m, c3 = 7m and m2 = m3 = 0Nm. We observe that the deflection is
symmetric with respect to the middle of the rod and in this neighborhood we
have negative deflections.
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´

8.6 10
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´

8- 10
5-

´

Fig. 2

Fig. 3 shows the deflection of the rod when we change the points of ap-
plication of the concentrated loads, c2 = 3m, c3 = 5m. As we expected the
graph of the deflection is symmetric with respect to the middle of the rod and
at the ends of the rods we also have negative deflections.
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8- 10
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´

Fig. 3

In Fig. 4, we have represented the influence of the concentrated loads P2 =
100 kN and P3 = 80 kN on the deflection.
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In fig. 5 we considered P2 = P3 = 0kN, and the concentrated moments
m2 = 500Nm and m3 = 500Nm.
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Fig. 5

In the last figure, we considered P2 = P3 = 0kN, m2 = 500Nm and
m3 = −500Nm.
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We observe that in these cases we don’t have negative deflections.

4 Conclusions

As it was pointed out in [2] the distribution theory represents the adequate
framework to solve the boundary-value problems regarding the bending of
the elastic rods on elastic foundation when we have external discontinuities
(e.g. discontinuous loading) and internal discontinuities (e.g. owning to the
mechanical properties). In this way the difference between continuous loads
and discontinuous loads is vanish.

The obtained result allows a global analysis of the influence of each term:
supports, the concentrated loads and the concentrated moments.

These influences are shown in several graphs.
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