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The computation of abelian subalgebras in the

Lie algebra of upper-triangular matrices

Manuel Ceballos†, Juan Núñez† and Ángel F. Tenorio‡

Abstract

This paper deals with the computation of abelian subalgebras of the
solvable Lie algebra hn, of n × n upper-triangular matrices. Firstly, we
construct an algorithm to find abelian Lie subalgebras in a given Lie
algebra hn. This algorithm allows us to compute an abelian subalgebra
up to a certain dimension. Such a dimension is proved to be equal to
the maximum for abelian subalgebras of hn.

1 Introduction

The topic dealt in this paper is the maximal abelian dimension of a given
finite-dimensional Lie algebra g, that is, the maximum among the dimensions
of the abelian subalgebras of g. Although this has been studied in previous
papers, most of them (for example [4, 8]) consider abelian ideals instead of
abelian subalgebras, which implies that more restrictive hypothesis are needed.
However, we do not assume such restrictions but our work considers all the
subalgebras contained in the given Lie algebra g. In this way, we are using a
concept which is equivalent to the one dealt in other papers like [3, 5].

Let us recall that a classical bound for the dimension of an abelian sub-
algebra in the matrix Lie algebra Mn(K) of n × n square matrices over a
field K was given by Jacobson [6]. Previously, Schur [7] obtained the same
bound for K = C. Jacobson’s result can be restated as follows: Let a be an
abelian subalgebra of the matrix algebra Mn(K) over an arbitrary field K.
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Then dim(a) ≤
[

n2

4

]
+ 1, where [x] denotes the integer part of x. Moreover,

there exists an abelian subalgebra whose dimension is exactly this bound.
In this way, the maximal abelian dimension M(g) of an arbitrary given

subalgebra g of Mn(C) can be upper bounded by:

M(g) ≤
[
n2

4

]
+ 1 =

{
k2 + 1, if n = 2k;
k2 + k + 1, if n = 2k + 1.

At this respect, some of us have already studied in [1, 2] the maximal
abelian dimension of the Lie algebra gn of n × n strictly upper-triangular
matrices. More concretely, in [1] we start this study by proving some properties
on these algebras and conjecturing a value for its maximal abelian dimension
depending on the order n. Such a conjecture was obtained starting from an
algorithmic method to compute abelian subalgebras in a given Lie algebra
up to a certain dimension, which could not be increased with the method.
Finally, in [2], the conjecture was proved to be true and the maximal abelian
dimension was computed for the algebras gn, showing that Jacobson’s bound
was not achieved for these algebras.

To get the proof, the vectors in a given basis of gn were distinguished be-
tween main vectors and non-main ones for a given basis of the subalgebra.
Such a distinction was based on writing each vector in the basis of the sub-
algebra as a linear combination of the elements in the basis of gn; then these
coefficients were written as the rows in a matrix and the vectors corresponding
to the pivot positions of its echelon form were the main vectors.

To continue this research, we are interested in computing the maximal
abelian dimension for the Lie algebra hn of n×n upper-triangular matrices.
Besides, we want to apply and adjust the technics and methods used in [1, 2]
to this algebra. In this way, we are going to give an algorithmic procedure
which computes abelian subalgebras of hn up to a certain dimension.

2 Preliminaries

Some preliminary concepts on Lie algebras are recalled in this section, bearing
in mind that the reader can consult [9] for a general overview on solvable Lie
algebras. In this paper, only finite-dimensional Lie algebras over the complex
number field are considered.

Given a finite-dimensional Lie algebra g, its commutator central series is:

C1(g) = g, C2(g) = [g, g], . . . , Ck(g) = [Ck−1(g), Ck−1(g)], . . .

So, g is called solvable if there exists m ∈ N such that Cm(g) ≡ {0}.
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The maximal abelian dimension of g is the maximum among the dimensions
of its abelian Lie subalgebras. This value will be denoted by M(g).

From now on, we will deal with the complex solvable Lie algebra hn, whose
vectors are all the n × n upper-triangular matrices with the following form:

hn(xr,s) =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

0 x22 · · · x2n

...
...

. . .
...

0 · · · 0 xnn

⎞
⎟⎟⎟⎠

where n ∈ N and xij ∈ C, for all i, j ∈ N, with 1 ≤ i ≤ j ≤ n.
It is easy to prove that a basis of the algebra hn is formed by the vectors

Xij = hn(xr,s), which verify:

xr,s =
{

1, if (r, s) = (i, j),
0, if (r, s) �= (i, j),

where 1 ≤ i ≤ j ≤ n. Hence, the dimension of hn is dhn = n(n+1)
2 and the

nonzero brackets with respect to this basis are the following:

[Xi,j , Xj,k]=Xi,k, ∀ i = 1, . . . , n − 2, ∀ j = i + 1, . . . , n − 1, ∀ k = j + 1, . . . , n;
[Xi,i, Xi,j ]=Xi,j , ∀ i = 1, . . . , n − 1, ∀ j = i + 1, . . . , n;
[Xk,i, Xi,i]=Xk,i, ∀ k = 1, . . . , n − 1, ∀ i = k + 1, . . . , n.

Let us note that the center of hn is generated by the vector
∑n

i=1 Xi,i,
coming from the main diagonal. This vector is the only one which commutes
with every vector in hn. Therefore this vector has to belong to any abelian
subalgebra which is not contained in another.

3 Algorithm to obtain abelian subalgebras

Next, we show an algorithmic procedure which allows us to obtain abelian
subalgebras of the Lie algebra hn. Before giving the general structure of this
algorithm, we study the obtainment of abelian subalgebras for low-dimensional
Lie algebras hn; that is, for n ≤ 5. Starting from the results obtained for these
algebras, we can give a general algorithm for an arbitrary hn.

3.1 Lie algebras hn with n ≤ 5

Case n = 2: h2 is generated by the basis {X1,1, X1,2, X2,2}, whose nonzero
brackets are the following:

[X1,1, X1,2] = X1,2; [X1,2, X2,2] = X1,2.
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A 1-dimensional abelian subalgebra is obtained by taking any of the three
vectors in the basis of hn. To obtain a 2-dimensional abelian subalgebra,
it is sufficient to consider the subalgebra 〈X1,1, X2,2〉, corresponding to the
elements in the main diagonal. In this way, the maximal abelian dimension of
h2 is 2.

Case n = 3: h3 is generated by the basis {X1,1, X1,2, X1,3, X2,2, X2,3, X3,3},
whose nonzero brackets are the following:

[X1,2, X2,3] = X1,3; [X1,1, X1,2] = X1,2; [X1,1, X1,3] = X1,3;
[X2,2, X2,3] = X2,3; [X1,2, X2,2] = X1,2; [X1,3, X3,3] = X1,3;
[X2,3, X3,3] = X2,3.

Now, the following two steps allow us to obtain abelian subalgebras of h3,
giving a first explanation for our general algorithmic method, which will be
generalized later for an arbitrary hn:

Step 1: Take the three vectors coming from the 3rd column and remove
the one coming from the 3rd row. So, we obtain the abelian subalgebra
〈X1,3, X2,3〉.
Step 2: Add the vectors coming from the 2nd column and remove the
ones coming from the 2nd row (to avoid nonzero brackets). Consequently,
the 2-dimensional abelian subalgebra 〈X1,2, X1,3〉 is obtained.

Let us note that Step 2 does not increase the dimension of the abelian
subalgebra obtained in Step 1. This will be the largest dimension which can
be obtained with this procedure.

Step 3: Add the vector X1,1+X2,2+X3,3 belonging to the center of h3.
Hence, the 3-dimensional abelian subalgebra 〈X1,2, X1,3, X1,1 +X2,2 +
X3,3〉 is obtained.

Case n = 4: h4 is generated by the basis {X1,1, X1,2, X1,3, X1,4, X2,2, X2,3,
X2,4, X3,3, X3,4, X4,4}, having the following nonzero brackets:

[X1,2, X2,3] = X1,3; [X1,2, X2,4] = X1,4; [X1,3, X3,4] = X1,4;
[X2,3, X3,4] = X2,4; [X1,1, X1,2] = X1,2; [X1,1, X1,3] = X1,3;
[X1,1, X1,4] = X1,4; [X2,2, X2,3] = X2,3; [X2,2, X2,4] = X2,4;
[X3,3, X3,4] = X3,4; [X1,2, X2,2] = X1,2; [X2,3, X3,3] = X2,3;
[X1,3, X3,3] = X1,3; [X3,4, X4,4] = X3,4; [X2,4, X4,4] = X2,4;
[X1,4, X4,4] = X1,4.

By considering the adding-removing procedure which was commented for
the previous case, we are going to obtain an abelian subalgebra of dimension 4:
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Step 1: Take the four vectors coming from the 4th column and remove
the one coming from the 4th row, obtaining the 3-abelian subalgebra
〈X1,4, X2,4, X3,4〉.
Step 2: Add the vectors coming for the 3rd column and remove the ones
coming from the 3rd row, obtaining the 4-dimensional abelian subalgebra
〈X1,3, X1,4, X2,3, X2,4〉.
Step 3: Add the vectors coming from the 2nd column and remove the
ones coming from the 2nd row. A 4-dimensional abelian Lie subalgebra
is computed again.

Step 4: Add the vector X1,1+X2,2+X3,3+X4,4 belonging to the center
of h4. So, the 5-dimensional abelian subalgebra 〈X1,3, X1,4, X2,3, X2,4, X1,1+
X2,2 + X3,3 + X4,4〉 is obtained.

3.2 The general case

This subsection is devoted to explain an algorithmic method to obtain abelian
subalgebras in an arbitrary Lie algebra hn, with n ≥ 4. This method is
achieved by generalizing the one shown before for n = 3 and n = 4. Depending
on the parity of n, two possible cases have to be considered:

Case 1: n is even and n ≥ 4 (i.e., n = 2 k, with k ∈ N \ {1}).
The general reasoning consists on considering the vectors in the basis of
hn, corresponding to the columns in the matrix expression of hn. Let us
remember that, when the vectors corresponding to the ith column are
chosen, all the vectors corresponding to the ith row have to be removed.
In this way, all the nonzero brackets are avoided.

Step 1: (2k)th column.
Let us consider the 2k vectors corresponding to the (2k)th column.
Now, the unique vector coming from the (2k)th row has to be re-
moved because it does not commute with the rest of the vectors
coming from the (2k)th column. In this way, the abelian subalge-
bra 〈X1,2k, . . . , X2k−1,2k〉 is obtained.

Step 2k − i + 1: ith column, with 2k > i > k + 1.
There are i vectors corresponding to the ith column. These are
added to the generators of the subalgebra obtained in the previous
step. Now, we remove the 2k − (i − 1) vectors corresponding to
ith row. In this way, we obtain an abelian Lie subalgebra whose
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dimension increases i− (2k − (i− 1)) = 2i− 2k − 1 with respect to
the one already obtained in the previous step.
Let us note that the dimension of the subalgebra really increases
because the following condition is verified: 2i − 2k − 1 > 0. Since
the previous inequality is equivalent to i > k + 1/2, k will be the
last step in which the number of vectors generating the obtained
abelian subalgebra is greater than the one obtained in the previous
step.

Step k: (k + 1)th column.
This time, the k + 1 vectors corresponding to the (k + 1)th column
are added, whereas the 2k − (k + 1 − 1) = k ones corresponding to
the (k + 1)th row are removed.

Step k + 1: Adding the vector
∑n

i=1 Xi,i to the basis computed in
Step k. So, we obtain the (k2 + 1)-dimensional abelian subalgebra
generated by this vector and the ones shown next:

X1,k+1 . . . X1,2k

X2,k+1 . . . X2,2k

...
. . .

...
Xk,k+1 . . . Xk,2k

Case 2: n is odd and n ≥ 4 (i.e., n = 2k + 1, with k ∈ N \ {1}).
By arguing analogously to the Case 1, we can settle the following pro-
cedure to obtain an abelian Lie subalgebra with dimension as large as
possible. Let us note that the number of steps which are necessary is
different in this case, just like happening with the dimension of the com-
puted abelian subalgebra.

Step 1: (2k + 1)th column.
The 2k + 1 vectors corresponding to the (2k + 1)th column are
considered to generate a Lie subalgebra. Besides, the unique vector
in the (2k + 1)th row is removed in order to obtain the abelian Lie
subalgebra 〈X1,2k+1, . . . , X2k,2k+1〉.
Step 2k − i + 2: ith column, with 2k + 1 > i > k + 2.
There exist i vectors corresponding to the ith column, which are
added to the generators of the abelian subalgebra obtained in the
previous step. To obtain an abelian subalgebra in this step, the
2k − (i− 1) vectors corresponding to the ith row are removed from
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the generators. In this way, we obtain an abelian subalgebra whose
number of generators increase i−(2k+1−(i−1)) = 2i−2k−2 with
respect to the abelian subalgebra obtained in the previous step.
Let us note that the dimension of the abelian subalgebra which is
obtained in each step increases if the inequality 2i − 2k − 2 > 0 is
verified. This is equivalent to ask wether the inequality i > k + 1
is satisfied. Hence, Step k will be the last step and the procedure
will be stopped after it.

Step k: (k + 2)th column.
Now the k + 2 vectors corresponding to the (k + 2)th column are
added. Once this is done, the 2k + 1 − (k + 2 − 1) = k vectors
corresponding to the (k + 2)th row are removed, which allows us to
obtain a (k2 + k)-dimensional abelian subalgebra.

Step k + 1: Adding the vector
∑n

i=1 Xi,i to the basis computed
in Step k − 1. So, we obtain the (k2 + k + 1)-dimensional abelian
subalgebra generated by the previous vector and the ones shown
next:

X1,k+2 . . . X1,2k+1

X2,k+2 . . . X2,2k+1

...
. . .

...
Xk+1,k+2 . . . Xk+1,2k+1

According to the results obtained in this section, an abelian subalgebra
of hn has been computed for all n ∈ N. Indeed, the dimension of such a
subalgebra is:

Bn =

⎧⎨
⎩

n, if n < 4;
k2 + 1, if n = 2k, n ≥ 4;
k2 + k + 1, if n = 2 k + 1, n ≥ 4.

Therefore, the maximal abelian dimension M(hn) is lower bounded by the
value Bn, which is equal to the upper bound of M(hn) given by Jacobson [6]
and Schur [7]. Hence, it can be asserted that the maximal abelian dimension
M(hn) is equal to Bn, for all n ∈ N.
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