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Normality of monomial ideals in two sets of
variables

Monica la Barbiera and Mariafortuna Paratore

Abstract

We study the normality of the monomial ideals in two sets of vari-
ables L = IkJr + IsJt ⊂ K[X1, . . . , Xm; Y1, . . . , Yn], K is a field, k + r =
s+t, where Ik (resp.Jr) is the ideal of R generated by all the monomials
of degree k (resp.r) in the variables X1, . . . , Xm(resp.Y1, . . . , Yn). If L is
not normal, we determine one element of the integral closure of all non
complete powers of L.

Subject Classification: 13F20.

Introduction

In a recent work [4] G.Restuccia and R.Villarreal introduce the class of square-
free ideals of mixed products in a polynomial ring over a field k in two sets
of variables. They are square-free monomial ideals generated in the same
degree that are integrally closed ([5], §7.5). In [4] the authors studied when
each power of a mixed product ideal is complete. In this case the ideal is said
normal. This property is linked to properties of graded algebras arising from I.
The most important of such algebras is the Rees algebra Rees(I) =

⊕
i≥0 Iiti

([1], §1.5, §4.5).An important result says that if I is normal, then Rees(I) is
normal ([5], 3.3.18).

It is possible to introduce the same class of mixed product ideals in a
polynomial ring in two sets of variables in the not square-free case. More
precisely, if R = K[X1, . . . , Xm; Y1, . . . , Yn] is the polynomial ring in two sets
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of variables over a field K , given the non negative integers k,r,s,t such that
k + r = s + t, we can define the monomial ideals of R:

L = IkJr + IsJt,

where Ik (resp.Jr) is the ideal of R generated by all the monomials of degree
k (resp.r) in the variables X1, . . . , Xm(resp.Y1, . . . , Yn).

The aim of this work is to study the normality of these monomial ideals as
in the square-free case. We obtain again a complete classification of the ideals
of this class. If the ideal L is not normal, we determine the powers of L that
result complete and for all powers that are not complete we find a monomial
that lies in the integral closure of the power but it does not lie in the power.
The technics used are similar to those used in [4] and in [3]. The results
obtained about the normality coincide with those obtained in [4] in all cases,
except for the ideals L = Jr + Im and L = Jr + ImJt that are normal if
they are square-free monomial ideals, contrary they are not normal in the not
square-free case.

We would like to thank Professor Gaetana Restuccia for useful suggestions
and discussions about the main results of this paper.

1

Let R = K[X1, . . . , Xm; Y1, . . . , Yn] be a polynomial ring over a field K in two
sets of variables. Given the non negative integers k,r,s,t such that k+r = s+t,
we define the monomial ideals of R:

L = IkJr + IsJt,

where Ik (resp.Jr) is the ideal of R generated by all the monomials of degree
k (resp.r) in the variables X1, . . . , Xm (resp.Y1, . . . , Yn).

It is easy to see that we have the following classes of monomial ideals of R
arising from the definition of L:

1) L = Jr + Ir, with r > 1

2) L = Jr + ImJt, with r = m + t

3) L = Jr + IsJt, with r = s + t and s �= m

4) L = IkJr + IsJt, with k + r = s + t

5) L = IkJr, with k, r > 1
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6) L = IkJr + Ik+1Jr−1, with k, r > 0.

Definition 1.1 The integral closure of L is the set of all elements of R which
are integral over L. We denote this set by L.
If L = L, L is said to be integrally closed or complete. If all the powers of L
, Lp, p ≥ 1, are complete, the ideal L is said to be normal.

Remark 1.1 The monomial ideal Ik (resp. Jr) is normal because Ik =
(I1)k(resp. Jr = (J1)r) (see [5], 3.3.18).

As the integral closure of a monomial ideal is again a monomial ideal, one has
the following description for the integral closure of L:

L = (f | f is monomial in R and f i ∈ Li, for some i ≥ 1),

(see [5],7.3.3).

Now, we study the classes 1), 2), 3), 4). We will prove that they are not
normal ideals. In fact, we have the following:

Proposition 1.1 Let R = K[X1, . . . , Xm; Y1, . . . , Yn] be a polynomial ring
over a field K. Let L be one of the following ideals:

a) L = Jr + Ir, r > 1.

b) L = Jr + ImJt, with r = m + t.

c) L = Jr + IsJt, with r = s + t and s �= m.

Then Li is not integrally closed for all i ≥ 1.

1. If i is odd, there exists f = (X1Y1Y
r−2
2 )i ∈ Li/Li.

2. If i is even, there exists f = (X1Y
r
1 Y r−1

2 )
i
2 ∈ Li/Li.

Proof.
a) L = Jr + Ir, r > 1.

From the equalities
1. f r = Xri

1 Y ri
1 Y

ri(r−2)
2 = (Xr

1 )i(Y r
1 )i(Y r

2 )i(r−2),

2. f r = X
r i

2
1 Y

r2 i
2

1 Y
ir
2 (r−1)

2 = (Xr
1 )

i
2 (Y r

1 )
ir
2 (Y r

2 )
i
2 (r−2),

it follows that f r is in Lri. By a counting degree argument it follows that f
is not in Li.

b)L = Jr + ImJt.
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From the equalities
1. fm = Xmi

1 Y mi
1 Y

mi(r−2)
2 ,

it is possible to write fm as the product of an element of ImJt and m − 1
elements of Jr, that is
fm = (Xm

1 Y t
2 )i

∏m−1
s=1 (Y hs

1 Y ks
2 )i,

with hs + ks = r for all s = 1, . . . , m − 1,
∑m−1

s=1 hs = m and
∑m−1

s=1 ks =
m(r − 2) − t, it follows that fm is in Lmi.

2. fm = X
mi
2

1 Y
mir
2

1 Y
i
2m(r−1)

2 = (Xm
1 Y t

2 )
i
2

∏ i
2 (2m−1)
s=1 (Y hs

1 Y ks
2 )i

with hs + ks = r for all s = 1, . . . , m − 1,
∑ i

2 (2m−1)
s=1 hs = rm i

2 − t and∑ i
2 (2m−1)
s=1 ks = m(r − 1) i

2 , it follows that fm is in Lmi.
c)L = Jr + IsJt

We prove that fs ∈ Lsi in the same way of the previous case choosing m = s.

Remark 1.2 In the squarefree case the ideals Jr + Ir and L = Jr + IsJt are
not normal ideal, while the ideal L = Jr + ImJt is normal (see [4]).

Remark 1.3 A general case of L = Jr + Ir is the ideal L = Jr + Im, with
r �= m. This ideal isn’t normal too. In fact we have that Li is not integrally
closed for all i ≥ 1.

There are the following cases:

a) If r,m are even, then there exists

f =

{
(X

m
2

1 Y
( r
2−1)

1 Y2)i ∈ Li \ Li, if i is odd
(X

m
2

1 Y r
1 Y

r
2

2 )
i
2 ∈ Li \ Li if i is even

To show that f lies in the integral closure of Li, it suffices to observe the
equalities

1. f2 = (X
m
2

1 Y
( r
2−1)

1 Y2)2i = (Xm
1 )i(Y r−2

1 Y 2
2 )i,

it follows that f2 is in L2i. As degX(f) = m
2 i and degY (f) = r

2 i, by a counting
degree argument it follows that deg(f) = (m+r)

2 i and f is not in Li.

2. f2 = (X
m
2

1 Y r
1 Y

r
2

2 )i = (Xm
1 )

i
2 (Y r

1 )i(Y r
2 )

i
2 ,

it follows that f2 is in L2i. As degX(f) = mi
4 and degY (f) = 3ri

4 , by a counting
degree argument it follows that deg(f) = (m+3r)

4 i and f is not in Li.

b) If (m, r) = m �= 1 odd, then there exists

f =

{
(X1X2Y

(m−2) r
m

1 )i ∈ Li \ Li if i is odd
(X1Y

r− r
m

1 Y r
2 )

i
2 ∈ Li \ Li if i is even
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c) If (m, r) = r �= 1 odd, then there exists

f =

{
(X

m
r

1 Y
m
r

1 Y r−2
2 )i ∈ Li \ Li if i is odd

(X
m
r

1 Y r
1 Y r−1

2 )
i
2 ∈ Li \ Li if i is even

We prove the cases b) and c) in the similar way as the case a).

Proposition 1.2 Let R = K[X1, . . . , Xm; Y1, . . . , Yn] be a polynomial ring
over a field K. Let L = IkJr +IsJt be an ideal of R , with k > 1, s = k+2, t ≥
1, k + r = s + t. Then :

1. If i is odd, there exists f = (X1X
k
2 Y r−1

1 )i ∈ Li/Li.

2. If i is even, there exists f = (Xk
1 Xk+1

2 Y 2r−1
1 )

i
2 ∈ Li/Li.

Proof.
1. Let f = (X1X

k
2 Y r−1

1 )i be a monomial of R. To show that f lies in the
integral closure of Li, it suffices to observe the equality

f2 = X2i
1 X2ki

2 Y
2i(r−1)
1 = (Xk

2 Y r
1 )i(X2

1Xk
2 Y r−1

1 )i,

it follows that f2 ∈ L2i.
2. Let f = (Xk

1 Xk+1
2 Y 2r−1

1 )
i
2 be a monomial of R. Since

f2 = X ik
1 X

i(k+1)
2 Y

i(2r−1)
1 = (X1X

k−1
2 Y r

1 )
3i
2 (X2k−3

1 X5−k
2 Y r−2

1 )
i
2 ,

it follows that f2 ∈ L2i.
By counting degree argument it follows that f is not in Li.

Remark 1.4 In the square-free case, the powers of the ideal L = IkJr + IsJt

are not complete (see [4]).

2

Let R = K[X1, . . . , Xm; Y1, . . . , Yn] be the polynomial ring of Section 1. We
consider the remaining two classes of ideals of R examined before.

i) L = IkJr + Ik+1Jr−1,

ii) L = IkJr.

We will be able to prove that they are both normal.
A crucial result for obtaining the normality of i) is the following:
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Lemma 2.1 Let L = IkJr + Ik+1Jr−1 and L′ = Ik−1Jr + IkJr−1 (resp. L′ =
IkJr−1 + Ik+1Jr−2 ) ⊂ R = K[X1, . . . , Xm; Y1, . . . , Yn]. If ℘ ⊂ R is a face
ideal, such that Xi /∈ ℘, for some i (resp. Yj /∈ ℘, for some j), then

(L)℘ = (L′)℘ = Jr−1.

Proof. If we localize L and L′ at ℘, the variable Xi is invertible in (L)℘

and in (L′)℘. Since Xk−1
i ∈ Ik−1 and Xk

i ∈ Ik, we have (Ik−1)℘ = R and
(Ik)℘ = R, and it follows (Ik−1Jr)℘ = (Ik−1)℘(Jr)℘ = (Jr)℘ and (IkJr−1)℘ =
(Ik)℘(Jr−1)℘ = (Jr−1)℘. Hence

(L′)℘ = (Jr)℘ + (Jr−1)℘ = (Jr−1)℘.

In the same way we have

(L)℘ = (Jr)℘ + (Jr−1)℘ = (Jr−1)℘.

Then (L)℘ = (L′)℘.

Remark 2.1 In the square-free case, we have (Ik)℘ = (I ′k−1)℘, where I ′k−1 is
a square-free ideal of R generated by monomials of degree k−1 in the variables
X1, . . . , Xi−1, Xi+1, . . . Xm and ℘ ⊂ R a face ideal, with the variable Xi /∈ ℘.
The same result is obtained for Jr (see [5], 7.5.1). Hence for all mixed product
ideals we have (L)℘ = (L′)℘.
In the not square-free case, the result is true only for the ideals L = IkJr +
Ik+1Jr−1, L = IkJr,L = IkJr+IsJt, and L′ is the ideal generated in the degree
k+r−1 by all the variables. For other ideals the localization produces the ring
R. For example, if L = Ir + Jr and Xi /∈ ℘, we have (L)℘ = (Ir)℘ + (Jr)℘ =
R + (Jr)℘ = R.

Proposition 2.1 Let L = IkJr + Ik+1Jr−1, with k ≥ 0 and r ≥ 1. Then L is
complete.

Proof. By induction on k + r. If k + r = 1, then k = 0, r = 1 and L = J1 + I1

is integrally closed.
Assume k+r > 1. By induction hypothesis the ideal L′ = Ik−1Jr +IkJr−1,

generated in the degree k + r − 1, is complete. We set M = L/L. If M �= (0),
take an associated prime ideal ℘ of M . Since M ↪→ R/L, an associated prime
ideal of M is an associated prime of R/L, this implies that ℘ is a face ideal,
since the monomial ideal L has a primary decomposition into monomial ideals
and every associated prime is a face ideal (see [5], 5.1.3). Suppose that ℘ �= M,
where M is a maximal ideal, then there exists a variable Xi /∈ ℘. From Lemma
2.1, we have:

(L′)℘ = (L)℘
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and
M℘ = (L/L)℘ = (L)℘/(L)℘ = (L′)℘/(L′)℘ = 0,

because L′ is complete. Contradiction, because ℘ is in the support of M .
Hence the maximal ideal M is the only associated prime of M and there
exists a monomial f ∈ (L/L) such that (L : f) = M. The support of f
contains one of the variables Yi: if f = Xa, then f ∈ L ⇒ f i ∈ Li for some
i ≥ 1. Hence we must have r = 1 and f i ∈ (Ik+1)i. As Ik+1 is normal then
f ∈ (Ik+1) ⊂ L. Contradiction, because f /∈ L. Let Y1 ∈ supp(f) such that
degY1(f) ≥ degYi(f) for i = 2, . . . , n. Then we can write

Y1f = gω,

where ω is a monomial of L (of degree k + r) and g is a monomial of R. (We
observe that deg(g) > 0 because f i ∈ Li and Y1 /∈ supp(g) because /∈ L.)

We assume that Yj divides g for j �= 1. Let c = degY1(f), as Y c+1
1 divides

Y1f then Y c+1
1 divides ω. Assume that Y1 ∈ supp(ω) and note that Yj ∈

supp(ω); if Yj /∈ supp(ω) the equality

Y1f = (ωYj/Y1)(Y1g/Yj),

implies that f ∈ L.

Theorem 2.1 Let L = IkJr + Ik+1Jr−1, with k ≥ 0 and r ≥ 1. Then L is
normal.

Proof. By induction on k + r. If k + r = 1, L = I1 + J1 is normal. Now we
assume k + r ≥ 2 and we use induction on p, for all p ≥ 1.
p = 1: L = L by lemma 2.1.
p > 1: we assume Li complete for 1 ≤ i < p. We set M = Lp/Lp. If M �= (0),
take an associated prime ideal ℘ of M . Since M ↪→ R/Lp, an associated
prime ideal of M is an associated of R/Lp, this implies that ℘ is a face ideal
(since the monomial ideal Lp = q1 ∩ · · · ∩ qs is a primary decomposition into
monomial ideals and every associated prime is a face ideal (see [5] 5.1.3)).We
suppose that ℘ �= M, M is a maximal ideal. If a variable Xi /∈ ℘ then (by
lemma 2.1):

(L′p)℘ = (Lp)℘,

where L′ = Ik−1Jr + IkJr−1 generated in the degree k + r − 1 .
We have

M℘ = (Lp/Lp)℘ = (Lp)℘/(Lp)℘ = (L′p)℘/(L′p)℘ ⊆ (L′p−1)℘/(L′p−1)℘ = 0,

because (L′)p−1 is complete by induction hypothesis (on k + r and p). This is
a contradiction, because ℘ is in the support of M . Hence the maximal ideal
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M is the only associated prime of M and there exists a monomial f ∈ (Lp/Lp)
such that (Lp : f) = M. The support of f contains one of the variables Yi:
if f = Xa, then f ∈ Lp ⇒ f i ∈ Lpi for some i ≥ 1. Hence we must have
r = 1 and f i ∈ (Ik+1)ip. As Ik+1 is normal then f ∈ (Ik+1)p ⊂ Lp. This is a
contradiction because f /∈ Lp. Let Y1 ∈ supp(f) such that degY1(f) ≥ degYi(f)
for i = 2, . . . , n. Then we can write

Y1f = gω1 · · ·ωp,

where ω1 . . . ωp are monomials of L ( of degree k + r) and g is a monomial
of R. (We observe that deg(g) > 0 because f i ∈ Lip and Y1 /∈ supp(g) because
f /∈ Lp.)

Case I) We assume that Yj divides g for j �= 1. Let c = degY1(f). As
Y c+1

1 divides Y1f then Y c+1
1 divides ω1 · · ·ωp. Assume that Y1 ∈ supp(ωi) for

i = 1, . . . , c+1 and note that Yj ∈ supp(ωi) for i = 1, . . . , c+1; if Yj /∈ supp(ωi)
the equality

Y1f = ω1 · · · (ωiYj/Y1) · · ·ωc+1 · · ·ωp(Y1g/Yj),

implies that f ∈ Lp.
Case II) Assume that g = Xa and Xj divides g.

a) First suppose that there exists a monomial ωl of the form

ωl = (Xi1 · · ·Xik
)(Y1Yj2 · · ·Yjr ),

with 1 ≤ i1 ≤ . . . ≤ ik ≤ m, 1 ≤ j2 ≤ . . . ≤ jr ≤ n and Y1 ∈ supp(ωl).
If Y1 /∈ supp(ωl) and Xj ∈ supp(ωl), then we can write

Y1f = ω1 · · ·ωl−1(Xi1 · · ·Xik
Xj)(Yj2 · · ·Yjr )ωl+1 · · ·ωp(Y1g/Xj),

it follows f ∈ Lp.

Then there exists a monomial ωq of the form:

ωq =
{

(1) (Xs1 · · ·Xsk+1)(Yt1 · · ·Ytr−1 )
(2) (Xs1 · · ·Xsk

)(Yt1 · · ·Ytr) ,

with 1 ≤ s1 ≤ . . . ≤ sk+1 ≤ m, 1 ≤ t1 ≤ . . . ≤ tr ≤ n and Xj /∈
supp(ωq). In the case (1): Xs1 , . . . , Xsk+1 � Xi1 , . . . , Xik

and let Xs1 /∈
{Xi1 , . . . , Xik

}. From the equality

Y1f = gωlωq

∏
i�=l,q

ωi = (Y1g/Xj)(Xs1ωl/Y1)(Xjωq/Xs1)
∏

i�=l,q

ωi,
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it follows f ∈ Lp.
In the case (2): {Yt1 , . . . , Xtr} � {Yj2 , . . . , Yjr} and let Yt1 /∈ {Yj2 , . . . , Yjr}.
From the equality

Y1f = gωlωq

∏
i�=l,q

ωi = (Y1g/Xj)(Yt1ωl/Y1)(Xjωq/Yt1)
∏

i�=l,q

ωi,

it follows f ∈ Lp.

b) Suppose that all monomials ωl that contain Y1 in their support are

ωl = (Xi1 · · ·Xik+1)(Y1Yj2 · · ·Yjr−1).

There exists

ωq =
{

(1) (Xs1 · · ·Xsk
)(Yt1 · · ·Ytr )

(2) (Xs1 · · ·Xsk+1)(Yt1 · · ·Ytr−1) .

From now on, by using the same technic used in [5](Prop 7.5.8), we
obtain the proof.

Remark 2.2 In the square-free case, the ideal L = IkJr +Ik+1Jr−1 is normal
too (see [4]).

Theorem 2.2 Let L = IkJr, with k, r > 1. Then L is normal .

Proof. First we prove that L is complete. It is enough to prove that
Ik ∩ Jr is integrally closed and IkJr = Ik ∩ Jr.
To prove that Ik ∩ Jr = Ik∩Jr, it is enough to prove that Ik ∩ Jr ⊆ Ik∩Jr ,

since Ik ∩ Jr = Ik ∩ Jr ⊆ Ik ∩ Jr. For all z ∈ Ik ∩ Jr there exists an equation
zl + a1z

l−1 + · · · + al−1z + al = 0, with ai ∈ (Ik ∩ Jr)i for all i = 1, . . . , l. It
follows that ai ∈ (Ik)i and ai ∈ (Jr)i. Hence z ∈ Ik ∩ Jr.

Now, let f ∈ Ik and g ∈ Jr, G.C.D.(f, g) = 1, it follows that fg is a
l.c.m(f, g), hence fg ∈ Ik ∩ Jr.

Then L is complete.
For all i > 0, it results

Li = (Ik)i(Jr)i = (Ik)i ∩ (Jr)i,

hence Li is integrally closed, because (Ik)i and (Jr)i are integrally closed.

Remark 2.3 In the square-free case, the ideal as L = Ik+1, L = IkJr is
normal too (see [4]).

For computing examples we used the computer algebra program [2], that
was able to find the monomials of the integral closure of Li in the simplest
cases.
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