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The warped product of holomorphic Lie
algebroids

Alexandru Ionescu and Gheorghe Munteanu

Abstract

We introduce the warped product of two holomorphic Finsler alge-
broids and we define a complex Finsler function on it. We study the
Chern-Finsler connections of the bundles and of their product and we
investigate their curvatures. We use the geometrical setting of the pro-
longations of the two bundles to obtain some similar and some different
properties from the ones of the warped product of Finsler manifolds.

1 Introduction

Lie algebroids have been intensely studied in the past decades as a theory with
special applications in mechanics, due to their property of unifying tangent
bundles and Lie algebras. The study was started by Weinstein [34], who de-
veloped a generalized theory of Lagrangians on Lie algebroids and obtained
the Euler-Lagrange equations using the structure of the dual of a Lie alge-
broid and Legendre transformations associated with a regular Lagrangian. He
also raised a question on developing a similar formalism to Klein’s in ordi-
nary Lagrangian mechanics, without reference to the dual. The first answer
was due to Martinez [25, 26], who developed earlier ideas of Klein [21] us-
ing prolongations of Lie algebroids, a setting introduced under another name
by Higgins and Mackenzie in [12]. This approach was used to study almost
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every aspect of the classical theory (vakonomic and nonholonomic constraints,
Hamilton-Jacobi theory, controls, higher order systems), see also [27, 24, 1].

Another approach on Weinstein’s problem uses the Tulczyjew triple struc-
ture [11, 10]. The connection between the two geometrical settings was a-
nalyzed in [20]. Recent applications for Lie algebroids were given in optimal
control, interpolation problems, trajectory planning any many more, see for
instance [24, 9] and the numerous references therein.

The warped products in Finsler geometry are a new field of research, initi-
ated in [22], motivated by relativistic models described by Asanov [4]. In Rie-
mannian geometry, warped products were studied, for instance, in [3, 7, 33].
Some applications of warped products in cosmology were given in [13, 14].

Following the line of the study of holomorphic Lie algebroids and their
prolongations, initiated in [16, 17, 18, 19], in the present paper we investigate
the notion of warped product E1 ×f E2 of two algebroids E1 and E2.

The Finsler metric that we define on the product bundle E1 ×f E2 is not
the only or the most general metric which can be considered. In fact, it is
known from [8] that there is no canonical way of defining Finsler metrics on
products of Finsler manifolds. We can extend this remark to products of
Finsler bundles. There are warped product bundles, as the one considered
here, named after warped manifolds, studied for instance in [22]. Then, there
are doubly warped products, as the ones studied also for products of manifolds
in [30, 23], where two warping functions are involved. This is in its turn an
interesting case for a future study. Also, if the function f depends also on the
vector variables, then the product is called twisted. Such product of manifolds
were studied, for instance, in [31]. A more general class of Finsler metrics on
a product of two Finsler manifolds was studied in [35]. We consider that the
(simply) warped product setting that we investigate in the paper can have
applications in theoretical physics. We also found an example for applying the
present study.

In the first section, we recall the necessary notions about holomorphic Lie
algebroids with Finsler structures and their prolongations. Also, we give some
properties of the Chern-Finsler connection of a Finsler algebroid, such as its
torsions and curvatures, as well as the metric property.

In a separate subsection, we give the definitions of two important notions
needed in the paper, namely, the gradient and the Hessian of a function on an
algebroid. We also obtain some different properties of the Hessian in compa-
rison to the one defined on Finsler bundles.

The second section introduces the main notion of the paper, the warped
product of two holomorphic Finsler algebroids, which, as we prove, is in its
turn a Finsler bundle.

In the third section, we study the relation between the Chern-Finsler con-



THE WARPED PRODUCT OF HOLOMORPHIC LIE ALGEBROIDS 119

nections of the algebroids and that of their product. We restrict our conside-
rations on the vertical subbundles. Also, we investigate the vertical curvature
on the warped product, to find that it has some similar properties to that
obtained for horizontal fields on a Finsler manifold [22].

In the last section, we give an example of a warped product of algebroids
with applications in gravitation and electromagnetism theories, using the stan-
dard algebroid T ′M .

2 Complex Finsler structures on the prolongation alge-
broid

We recall from [17] the definition of a Finsler Lie algebroid π : E → M , with

the anchor map ρE : E → T ′M . First, denote by Ẽ the open submanifold of
E consisting in the nonzero sections. In a local chart in z ∈M , we have local
coordinates {zk}k=1,n and a section on E is u = uαeα, where {eα}α=1,m is a
basis of local sections on E.

Definition 1. A complex Finsler structure F on E is a real-valued function
F : E → R satisfying the following conditions:

1) F is C∞-class on Ẽ;

2) F (z, u) ≥ 0 and F (z, u) = 0 iff u = 0;

3) F (z, λu) = |λ|2F (z, u) for all λ ∈ C.

As in the case of complex vector bundles [2], we say that a Finsler structure
F is convex if the Hermitian matrix defined in our case by

hαβ̄ =
∂2F

∂uα∂ūβ
(1)

is positive-definite. In the following, we assume the convexity of F and call
the pair (E,F ) a complex Finsler Lie algebroid.

The most well-known linear connection in Finsler geometry is the Chern-
Finsler connection. Here, we briefly recall from [17] the Chern-Finsler connec-
tion of the Lie algebroid E.

On a complex vector bundle, the notion of ”normal” complex linear con-
nection does not make sense, due to the fact that the rules of change of the
coefficients of a distinguished linear connection do not coincide in pairs, such
as in the case of the holomorphic tangent bundle T ′M . This is well-known
from [28]. Therefore, we have induced a Chern-Finsler linear connection on
the prolongation TE starting from a vertical connection on E.
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Let us first recall the construction of the holomorphic prolongation T′E.
For more details, see [16, 17, 18]. Let E be a holomorphic Lie algebroid over
a complex manifold M . Its holomorphic prolongation is defined using the
tangent mapping π′∗ : T ′E → T ′M between the holomorphic tangent bundles
of E and M , respectively, and the holomorphic anchor map ρE : E → T ′M .
Define the subset T′E of E × T ′E by T′E = {(e, v) ∈ E × T ′E | ρE(e) =
π′∗(v)} and the mapping π′T : T′E → E, given by π′T(e, v) = πE(v), where
π′E : T ′E → E is the tangent projection. Then, (T′E, π′T, E) is a holomorphic
vector bundle over E, of rank 2m.

The holomorphic Lie algebroid E has a structure of holomorphic vector
bundle. Let EC be the complexified bundle of E and TCE = T ′E ⊕ T ′′E,
its complexified tangent bundle. A similar idea to that of Martinez [25, 26]
leads to the definition of the complexified prolongation TCE of E as follows.
We extend C-linearly the tangent mapping π′∗ : T ′E → T ′M and the anchor
ρE : E → T ′M to obtain π∗,C : TCE → TCM and ρE,C : EC → TCM ,
respectively. If πE,C : TCE → EC is the tangent projection extended to the
complexified spaces, then we can define the subset TCE of EC × TCE by

TCE = {(e, v) ∈ EC × TCE | ρE,C(e) = π∗,C(v)}

and the mapping πT,C : TCE → EC by πT,C(e, v) = πE,C(v). Thus, we obtain
a complex vector bundle (TCE, πT,C, EC) over EC. Also, the projection onto
the second factor,

ρT,C : TCE → TCE, ρT,C(e, v) = v,

is the anchor of a complex Lie algebroid over EC, called the complexified
prolongation of E. Indeed, T′E = E′ × T ′E is a holomorphic product bundle
and, since ρE,C = ρ′ + ρ′′ and π∗,C = π′∗ + π′′∗ are holomorphic mappings
with ρE,C(e) = π∗,C(v), then ρ′(ē) = π′∗(v̄) = 0. Hence, the complexified
prolongation coincides with the complexification of the prolongation T′E (as a
complex manifold), that is TCE = T′E⊕T′′E, where T′′E = T′E = E′′×T ′′E,
with the required restrictions ρ′E(e) = π′∗(v) and its conjugate. We will further
drop the index C and simply denote the prolongation bundle by TE.

In [17], following the ideas from [2], we have introduced the Chern-Finsler
nonlinear connection of the prolongation TE. We use the abbreviations ∂k =
∂
∂zk

, ∂̇α = ∂
∂uα and their conjugates, and we denote by ρkα = ρkα(z), the local

holomorphic function coefficients of the anchor map ρE . If F : E → R+ is
a Finsler function on E, namely it is homogeneous, and the complex Finsler
metric tensor hαβ̄ = ∂̇α∂̇β̄F is strictly pseudoconvex, then we consider the
Chern-Finsler nonlinear connection on E

Nβ
k = hσ̄β∂k∂̇σ̄F
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and we obtain that
Nβ
α = ρkαN

β
k (2)

are the coefficients of the Chern-Finsler nonlinear connection of the prolonga-
tion T′E.

Also in [17], we have considered the local basis of holomorphic sections in
Γ(T′E), denoted by {Zα := (eα, ρ

k
α∂k),Vα := (0, ∂̇α)} and their conjugates,

{Zᾱ,Vᾱ} in Γ(T′′E). The dual basis will be denoted by {dZα, dVα, dZᾱ, dVᾱ}.
With respect to the nonlinear connection (2), consider the adapted frames

on the holomorphic prolongation T′E

Xα = Zα −Nβ
αVα (3)

and its conjugate. The dual adapted frames of {Xα,Vα} are {dZα, δVα :=
dVα +Nα

β dZ
β}.

In [19], we have proved that the anchor map of the prolongation algebroid
sends the adapted frame Xα in an adapted frame on the complex algebroid E,
that is, ρT(Xα) = δα =: ρkαδk, where δk = ∂k − Nα

k ∂̇α. With respect to the
nonlinear connection (2), the holomorphic prolongation T′E decomposes into
vertical and horizontal bundles, T′E = HT′E ⊕ V T′E.

Also, a Chern-Finsler linear connection of type (1, 0) on T′E, [17], is given
by the coefficients:

L γ
αβ = hσ̄γδβ(hασ̄), C γ

αβ = hσ̄γ ∂̇β(hασ̄). (4)

Its connection form is
ωγα = L γ

αβZ
β + C γ

αβδV
β .

We note that the vertical connection coefficients satisfy C γ
αβ = C γ

βα and the

horizontal ones, L γ
αβ = ∂̇αN

γ
β . Using these identities, we obtain the compo-

nents of the torsion of the Chern-Finsler connection on TE:

T(Xα,Xβ) =
(
L γ
βα − L

γ
αβ − C

γ
αβ

)
Xγ − R

γ
αβVγ ,

T(Xα,Xβ̄) = −(δβ̄N
γ
α)Vγ + (δαN

γ̄

β̄
)Vγ̄ ,

T(Xα,Vβ) = −C γ
αβXγ ,

T(Xα,Vβ̄) = −(∂̇β̄N
γ
α)Vγ ,

T(Vα,Vβ) = 0,

T(Vα,Vβ̄) = 0.

On the prolongation TE, the Hermitian metric structure is defined by

G = hαβ̄dZ
α ⊗ dZ̄β + hαβ̄δV

α ⊗ δV̄β . (5)
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The Chern-Finsler connection (4) is metric with respect to the hermitian struc-
ture G, i.e., it satisfies the identity:

UG(V,W ) = G(DUV,W ) + G(V,DUW )

(see [17]). Also, as we will prove in the following, the Chern-Finsler connection
verifies the Koszul formula on the vertical subbundle of the prolongation.

Lemma 1. Let (E,F ) be a holomorphic Finsler Lie algebroid with the Chern-
Finsler connection D. For U, V,W ∈ V TE, the following identity holds:

2G(DUV,W ) = UG(V,W ) + V G(W,U)−WG(U, V )

− G(U, [V,W ]) + G(V, [W,U ]) + G(W, [U, V ]). (6)

Proof. It consists of a simple computation, using the fact that the torsion of
two vertical fields vanishes.

2.1 The gradient and the Hessian of a function

In [18], we have introduced the gradient of a function on the holomorphic
prolongation T′E. Now, we are interested in the gradient defined on the
bundle TE, i.e., the operator ∇ given by

G(Z,∇f) = Zf, ∀Z ∈ TE.

In coordinates, this reads

∇f = hβ̄α(δβ̄f)Xα + hβ̄α(δαf)Xβ̄ + hβ̄α(∂̇β̄f)Vα + hβ̄α(∂̇αf)Vβ̄ . (7)

In the following, we will consider the vertical part of the gradient, that is,

∇vv̄f = hβ̄α(∂̇β̄f)Vα + hβ̄α(∂̇αf)Vβ̄ . (8)

We now define the Hessian of a function in a classical manner and obtain
some identities which differ slightly from the properties of the Hessian defined
on a Finsler manifold.

Definition 2. The Hessian of a function f with respect to the Chern-Finsler
connection D on TE is the second covariant differential Hf = D(Df).

Proposition 1. The Hessian Hf satisfies the identities:

Hf(V,W ) = VWf − (DVW )f + (DV vW
v + DV v̄W

v̄)f (9)

= G(DV (∇vv̄f),W ) + (DV vW
v + DV v̄W

v̄)f,

where V = V αVα+V ᾱVᾱ, W = W βVβ+W β̄Vβ̄, (DV vW
v)f = (DV αVαW

βVβ)f

= V α(∂̇αW
β)(∂̇βf) and (DV v̄W

v̄)f is its conjugate.
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Proof. First,

Hf(V,W ) = DVDW f = V α(∂̇αW
β)(∂̇βf) + V αW β(∂̇α∂̇βf) + V αW β̄(∂̇α∂̇β̄f)

+ V ᾱW β(∂̇ᾱ∂̇βf) + V ᾱ(∂̇ᾱW
β̄)(∂̇β̄f) + V ᾱW β̄(∂̇ᾱ∂̇β̄f).

Next,

VWf = V α(∂̇αW
β)(∂̇βf) + V αW β(∂̇α∂̇βf) + V α(∂̇αW

β̄)(∂̇β̄f)

+ V αW β̄(∂̇α∂̇β̄f) + V ᾱ(∂̇ᾱW
β)(∂̇βf) + V ᾱW β(∂̇ᾱ∂̇βf)

+ V ᾱ(∂̇ᾱW
β̄)(∂̇β̄f) + V ᾱW β̄(∂̇ᾱ∂̇β̄f)

and

(DVW )f = V α(∂̇αW
β)(∂̇βf) + V ᾱ(∂̇ᾱW

β)(∂̇βf) + V α(∂̇αW
β̄)(∂̇β̄f)

+ V ᾱ(∂̇ᾱW
β̄)(∂̇β̄f) + V αW βC γ

βα(∂̇γf) + V ᾱW β̄C γ̄

ᾱβ̄
(∂̇γ̄f),

hence the first identity is proved after a short computation. For the second
one, (4) leads to Cεγα = −hγσ̄(∂̇αh

σ̄ε), which we use to obtain

DV (∇vv̄f) = [V αhσ̄γ(∂̇α∂̇σ̄f) + V ᾱ(∂̇ᾱh
σ̄γ)(∂̇σ̄f) + V ᾱhσ̄γ(∂̇ᾱ∂̇σ̄f)]Vγ

+ [V α(∂̇αh
σ̄γ)(∂̇γf) + V αhσ̄γ(∂̇α∂̇γf) + V ᾱhσ̄γ(∂̇ᾱ∂̇γf)]Vσ̄.

Therefore,
G(DV (∇vv̄f),W ) = VWf − (DVW )f

and the second identity is also proved.

3 The warped product of algebroids

We now consider two holomorphic Finsler algebroids, (E1, F1) and (E2, F2),
where E1 is a holomorphic vector bundle over the complex manifold M1 and
E2 is a holomorphic vector bundle over the complex manifold M2. We also
consider their prolongations, TE1 and TE2, respectively, the Chern-Finsler
connections, D1 and D2, and the bundle projections π1 : E1 → M1 and
π2 : E2 →M2, respectively. Let f : M1 → R+ be a smooth function.

Inspired by [22], we use Aikou’s definition [2] of a Finsler metric on a bundle
to introduce the function F : E1×E2 → R on the product bundle E1×E2 by

F (u1, u2) = F1(u1) + f2(π1(u1))F2(u2). (10)

This is a Finsler metric function on the product bundle E1×E2. Indeed, since
F1 and F2 are smooth, it follows that F is smooth on Ẽ1 × Ẽ2. As in the
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case of real Finsler manifolds [22], we restrict our study on Ẽ1 × Ẽ2, as F is
not necessarily smooth on (u1, 0) and (0, u2) ∈ E1 × E2. The homogeneity
property in the vector variables of F is proved by the similar properties of F1

and F2, and the Hessian of F with respect to the vector variables is:(
∂̇α∂̇β̄F1 0

0 f2∂̇α∂̇β̄F2

)
.

Since the Hessians of F1 and F2 are positive, it follows that the Hessian of F
is also positive.

We have thus defined the warped product of the algebroids E1 and E2 as
the product bundle E1 ×f E2, with the warping function f and the Finsler
metric F = F (u1, u2). Therefore, (E1 ×f E2, F ) is a complex Finsler bundle.
In the following, we will make the construction on the prolongation for the
warped product E1 ×f E2, namely its prolongation (as the product of the
prolongations of the algebroids E1 and E2), adapted frames and the Chern-
Finsler connection.

Remark. In [23, 30] a doubly warped product is studied, with a more
general definition,

F (u1, u2) = g2(π2(u2))F1(u1) + f2(π1(u1))F2(u2).

The function g is defined on M2, while f is defined on M1. Still, the purpose
of the present paper is to analyze the case of the warped product, therefore
we leave the doubly warped product of algebroids to a later study.

3.1 The prolongation bundle of the warped product bundle

Consider two holomorphic Finsler algebroids, (E1, F1) and (E2, F2), and their
warped product, E1 ×f E2, defined as above. Also, let TE1 and TE2 be the
prolongations of E1 and E2, respectively, as defined in [17].

The vertical subbundles of the two prolongation bundles are defined using
the projections τi : TEi → Ei, τi(ei, vi) = ei ∈ Ei, that is,

V TEi = ker τi = {(ei, vi) ∈ TEi | τi(ei, vi) = 0},

for i = 1, 2.
Since the prolongation bundle has similar properties to the tangent bundle

of a manifold, as we have discussed in some previous papers [16, 17, 18], we
will further work in this setting instead of the tangent bundles of E1 and E2.
We easily find that T(E1×E2) = TE1× TE2. To be more precise, if we index
by 1 and 2 the elements of the above construction of the prolongation of each
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of the algebroids E1 and E2, respectively, we can consider ρT× : TE1×TE2 →
TE1 × TE2, ρT× := ρT1 × ρT2 , i.e.,

ρT×(e1, v1, e2, v2) = (ρT1
(e1, v1), ρT2

(e2, v2))

= (v1, v2) ∈ T (E1 × E2) ≡ TE1 × TE2,

where (e1, v1, e2, v2) ∈ TE1×TE2. This is the anchor map of the prolongation
algebroid T(E1 × E2) ≡ TE1 × TE2 of the warped product E1 ×f E2.

If p1 : TE1 × TE2 → TE1 is the projection onto the first factor and p2 :
TE1 × TE2 → TE2 is the projection onto the second factor in the product
of prolongations, then we can define the lifts of vector fields on TE1 or on
TE2 to TE1 × TE2 as follows. The lift of U1 ∈ Γ(TE1) on TE1 × TE2 is

Û1 ∈ Γ(TE1 × TE2) which satisfies the conditions p1(Û1) = U1, p2(Û1) = 0.

Similarly, the lift of U2 ∈ Γ(TE2) on TE1 × TE2 is Û2 ∈ Γ(TE1 × TE2) which

satisfies the conditions p1(Û2) = 0, p2(Û2) = U2.
Furthermore, ker(τ1 × τ2) = ker τ1 ⊕ ker τ2, hence V TE1 × V TE2 is the

vertical bundle of TE1 × TE2. With respect to the Chern-Finsler nonlinear
connections of TE1 and TE2, we obtain the following decomposition:

T(E1 × E2) = TE1 ⊕ TE2 = HTE1 ⊕ V TE1 ⊕HTE2 ⊕ V TE2.

Let us denote by
1

Nβ
α =

1

Nβ
α (z1, u1) and

2

Nβ
α =

2

Nβ
α (z2, u2), the coefficients of

the Chern-Finsler nonlinear connections on TE1 and TE2, respectively. Also,

let {
1

Xα,
1

Vα,
1

Xᾱ,
1

Vᾱ} and {
2

Xα,
2

Vα,
2

Xᾱ,
2

Vᾱ} be the local adapted frames with
respect to the above connections on TE1 and TE2, respectively. It is obvious
that the Lie brackets [·, ·]T× on TE1 × TE2 satisfy the identities:

[U1, V2]T× = 0,

[U1, V1]T× = [U1, V1]TE1
, (11)

[U2, V2]T× = [U2, V2]TE2
,

for all U1, V1 ∈ Γ(TE1) and U2, V2 ∈ Γ(TE2).

3.2 The Chern-Finsler connection of the warped product

As in the case of Finsler manifolds [22], the Koszul formula plays an important
role in the study of the relation between the connections on each prolongation
bundle and the connection on their product. Since, in our case, the formula
(6) holds only for vertical fields on a prolongation bundle, we will further
work only on the vertical part of the above decomposition, which we denote
by V T = V TE1 ⊕ V TE2. If G1 and G2 are two Hermitian metrics given as in
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(5) on TE1 and TE2, respectively, then we use their restrictions Gv1 and Gv2 on
the vertical bundles to define a Hermitian metric G on V T by

Gv(·, ·) = Gv1(·, ·) + f2(π1(v1))Gv2(·, ·).

Similar reasons as in the case of real warped Finsler manifolds [22] lead to
the following result.

Theorem 1. Let U1, V1 ∈ V TE1 and U2, V2 ∈ V TE2. Then:

1. DU1V1 on V TE1 ⊕ V TE2 is the lift of DU1V1 on V TE1;

2. DU1
U2 = DU2

U1 = (U2f/f)U1;

3. DU2
V2 = D2

U2
V2 − G(U2,V2)

f ∇vv̄f ;

4. T(U1, U2) = T(U2, U1) = 0;

Proof. The line of the proof from [22] can be easily followed here for vector
fields on the vertical subbundles of the two prolongation algebroids, TE1 and
TE2, respectively.

We are now interested in the local description of the previous result. First,
we have

D 1

Vα

1

Vβ = D1
1

Vα

1

Vβ , D 1

Vα

1

Vβ̄ = D1
1

Vα

1

Vβ̄ = 0,

D 1

Vα

2

Vβ = D 2

Vβ

1

Vα =

1

∂̇αf

f

2

Vβ , D 1

Vα

2

Vβ̄ = D 2

Vβ̄

1

Vα =

1

∂̇αf

f

2

Vβ̄ ,

D 2

Vα

2

Vβ = D2
2

Vα

2

Vβ −
1

f
G(

2

Vα,
2

Vβ)∇vv̄f = D2
2

Vα

2

Vβ ,

D 2

Vα

2

Vβ̄ = D2
2

Vα

2

Vβ̄ −
1

f
G(

2

Vα,
2

Vβ̄)∇vv̄f = −f
2

hαβ̄∇vv̄f,

together with their conjugates. For the last two identities, we used G(
2

Vα,
2

Vβ) =

0, since G is Hermitian, and G(
2

Vα,
2

Vβ̄) = f2
2

hαβ̄ .
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Therefore, if we denote

D 1

Vα

1

Vβ =
11,1

C γ
βα

1

Vγ +
11,1̄

C σ̄
βα

1

Vσ̄ +
11,2

C γ
βα

2

Vγ +
11,2̄

C σ̄
βα

2

Vσ̄,

D 1

Vα

1

Vβ̄ =
1̄1,1

C γ

β̄α

1

Vγ +
1̄1,1̄

C σ̄
β̄α

1

Vσ̄ +
1̄1,2

C γ

β̄α

2

Vγ +
1̄1,2̄

C σ̄
β̄α

2

Vσ̄,

D 1

Vα

2

Vβ =
21,1

C γ
βα

1

Vγ +
21,1̄

C σ̄
βα

1

Vσ̄ +
21,2

C γ
βα

2

Vγ +
21,2̄

C σ̄
βα

2

Vσ̄,

D 1

Vα

2

Vβ̄ =
2̄1,1

C γ

β̄α

1

Vγ +
2̄1,1̄

C σ̄
β̄α

1

Vσ̄ +
2̄1,2

C γ

β̄α

2

Vγ +
2̄1,2̄

C σ̄
β̄α

2

Vσ̄,

D 2

Vα

2

Vβ =
22,1

C γ
βα

1

Vγ +
22,1̄

C σ̄
βα

1

Vσ̄ +
22,2

C γ
βα

2

Vγ +
22,2̄

C σ̄
βα

2

Vσ̄,

D 2

Vα

2

Vβ̄ =
2̄2,1

C γ

β̄α

1

Vγ +
2̄2,1̄

C σ̄
β̄α

1

Vσ̄ +
2̄2,2

C γ

β̄α

2

Vγ +
2̄2,2̄

C σ̄
β̄α

2

Vσ̄,

we obtain

11,1

C γ1

β1α1
=

1

C γ1

β1α1
=

1

hσ̄1γ1(
1

∂̇α1

1

hβ1σ̄1
)

21,2

C γ2

β2α1
= δγ2

β2

1

∂̇α1
f

f
,

2̄1,2̄

C σ̄2

β̄2α1
= δγ̄1

β̄1

1

∂̇ᾱ1
f

f
,

22,2

C γ2

β2α2
=

2

C γ2

β2σ2
=

2

hσ̄2γ2(
2

∂̇α2

2

hβ2σ̄2),

2̄2,1

C γ1

β̄2α2
= −f(

1

∂̇σ̄f)
1

hσ̄γ
2

hαβ̄ ,

2̄2,1̄

C σ̄1

β̄2α2
= −f(

1

∂̇γf)
1

hσ̄γ
2

hαβ̄ .

All the other coefficients are zero.
The curvature of the product TE1×TE2 is defined as usual by R(U, V )W =

DUDVW −DVDUW −D[U,V ]W .
The connection between the curvature of the warped product and the cur-

vatures of each prolongation bundle in the product is given in the following

Theorem 2. If TE1 × TE2 is the product of the prolongations of two holo-
morphic vector bundles, with the curvatures R on the product bundle and
R1 and R2 on TE1 and TE2, respectively, then for U1, V1,W1 ∈ V TE1 and
U2, V2,W2 ∈ V TE2, the following identities hold:

1. R(U1, V1)W1 is the lift of R1(U1, V1)W1;
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2. R(V2, U1)V1 = − 1
f [Hf (U1, V1)− (DUv1

V v1 −DU v̄1
V v̄1 )f ]V2;

3. R(V2,W2)U1 = 0;

4. R(V2,W2)U2 = R2(V2,W2)U2+G(∇vv̄f,∇vv̄f)
f2 (G(V2, U2)W2−G(W2, U2)V2)

Proof. The first statement is obvious.
For the second identity, we compute R(V2, U1)V1 = DV2

DU1
V1−DU1

DV2
V1−

D[V2,U1]V1. First, [V2, U1] = 0. Then, since DU1
V1 ∈ V TE1, from Theorem 1

we obtain DV2DU1V1 = 1
f (DU1

V1)fV2. Further, we have:

DU1DV2V1 = DU1

[(
V1f

f

)
V2

]
= U1

(
V1f

f

)
V2 +

V1f

f
DU1V2

=
1

f
(U1V1f)V2 + (V1f)U1

(
1

f

)
V2 +

1

f2
(V1f)(U1f)V2

=
1

f
(U1V1f)V2 −

1

f2
(V1f)(U1f)V2 +

1

f2
(V1f)(U1f)V2

=
1

f
(U1V1f)V2,

where we have used again Theorem 1. Hence, due to (9),

R(V2, U1)V1 =
1

f
[(DU1

V1)f − U1V1f ]V2

= [Hf (U1, V1)− (DUv1
V v1 −DU v̄1

V v̄1 )f ]V2.

For the third identity, we have R(V2,W2)U1 = DV2DW2U1 − DW2DV2U1,
since [V2,W2] = 0. From

DV2
DW2

U1 = DV2

[(
U1f

f

)
W2

]
= V2

(
U1f

f

)
W2 +

U1f

f
DV2

W2

and

DW2
DV2

U1 = DW2

[(
U1f

f

)
V2

]
= W2

(
U1f

f

)
V2 +

U1f

f
DW2

V2,

since V2

(
U1f
f

)
= W2

(
U1f
f

)
= 0, we get

R(V2,W2)U1 =
1

f
(U1f)T(V2,W2) = 0

as the vertical torsion vanishes.
The last identity is obtained after a straightforward computation using the

properties from Theorem 1, following similar ideas from [22].
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4 A warped Finsler model for gravitation and electro-
magnetism

We give a basic example of warped product with applications in theoretical
physics. As known from unification theories of gravity and electromagnetism,
we need higher dimensional spaces (of dimension 5 in Kaluza-Klein theories or
8 in Yang-Mills theories, etc.) with adequate metric tensors. For such theories,
product spaces are the most useful geometrical settings.

Let M be the complexified space-time considered in [29], dimCM = 2,
and take

(
z1, z2

)
complex coordinates on M . We consider E1 = T ′M , the

holomorphic tangent bundle, which has a 4-dimensional complex manifold
structure, with

(
z1, z2, η1, η2

)
complex coordinates on T ′M . The bundle T ′M

has a natural structure of holomorphic Lie algebroid, with the anchor map
ρ1 the identity. A complex Finsler function F1 : T ′M → R+ is the weakly
gravitational metric considered in [29]:

F1 :=

(
1 +

2Φ

c2

)
|η1|2−i

(
1− 2Φ

c2

)
η1η̄2 +i

(
1− 2Φ

c2

)
η2η̄1−

(
1− 2Φ

c2

)
|η2|2

(12)
where Φ is a smooth 0-homogeneous function in η on T ′M , with the physical

meaning of a complex gravitational potential, satisfying Φ > c2

2 , c ∈ R∗.
The metric tensor is

1

hjk̄(z, η) =

(
1 + 2Φ

c2 −i
(
1− 2Φ

c2

)
i
(
1− 2Φ

c2

)
−
(
1− 2Φ

c2

) ) , j, k = 1, 2 and i :=
√
−1,

(13)
while its inverse,

1

hk̄j(z, η) =

( 1
2 − i

2

i
2 − 1+ 2Φ

c2

2(1− 2Φ
c2

)

)
, j, k = 1, 2.

As stated in [29], this metric is Finsler under the assumptions:

i) Φ > c2

2 , i.e. det(
1

hij̄) > 0;

ii) Φ is 0-homogeneous with respect to η;

iii) iΦ·2 = Φ·1, where Φ·h = ∂Φ
∂ηh

, h = 1, 2.

The components of the Chern-Finsler nonlinear connection are

1

N1
k = 0,

1

N2
k =

−2i

c2
(
1− 2Φ

c2

) (η1 − iη2
)

Φk.
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For the second holomorphic Lie algebroid, we take again the complexified
space-time M , and on E2 = T ′M we can take another Finsler metric, proposed
in [32]:

F2 := F 2
0 + σ(z)|β|2, (14)

where:

i) F0 is a given Finsler metric (for instance the weakly gravitational metric
F1) on M ;

ii) σ : M → R is a function which satisfies σ(z) ≥ − F 2
0

|β|2 (z, η) for all (z, η) ∈
T ′M ;

iii) β = Bk(z)ηk is the Beil holomorphic form; usually, Bk(z) are the compo-
nents of an electromagnetic field.

The metric tensor is given in this case by

2

hij̄ = gij̄ + σ(z)Bi(z)Bj̄(z), (15)

where gij̄ is the metric of (M,F0) and Bj̄ = Bj . The inverse of (15) is

2

hj̄i = gj̄i − σ

1 + σB2
,

where B = gij̄B
iB j̄ . The coefficients of the Chern-Finsler nonlinear connection

are
2

N j
k = N j

k +Ajk, where Ajk =
2

hm̄j∂k(σBlBm̄)ηl.
The prolongation of a Lie algebroid is a pull-back bundle of T ′E on E by

the ancor map, that is, ρ−1
∗ T ′E. It follows that, if E is in particular T ′M

and ρ = id, then the holomorphic prolongation T′T ′M of the holomorphic
algebroid T ′M is canonically isomorphic to T ′T ′M , with complex coordinates

(zk, ηk, xk, θk), k = 1, 2, where ηk, xk both change by the matrix ∂z′k

∂zj . This
remark can be found in [24] for the real case. More precisely, since ρ = id, the
definition of the holomorphic prolongation bundle is in this case

T′(T ′M) = {(x, v) ∈ T ′M × T ′(T ′M) | id(x) = π′∗(v)}.

Hence, for the complex coordinates (zk, ηk) on T ′M , we take x = xk ∂
∂zk
∈

T ′M and v = vk ∂
∂zk

+ θk ∂
∂ηk
∈ T ′u(T ′M) a vector tangent to T ′M at u =

ηk ∂
∂zk
∈ T ′M . We have π′∗(v) = vk ∂

∂zk
, thus vk = xk and the vector v ∈

T′(T ′M) is of the form v = xk ∂
∂zk

+ θk ∂
∂ηk

.
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The local basis of holomorphic sections in Γ(T′uT
′M) is

{
Zk(u) =

(
∂
∂zk

∣∣
z

,

∂
∂zk

∣∣
u

)
, Vk(u) =

(
0, ∂

∂ηk

∣∣∣
u

)}
. We take Xk = Zk − N j

kVj , therefore, the

adapted frame on T′T ′M is {Xk,Vk}, where {Xk} is a basis of the horizontal
bundle HT′T ′M and {Vk} is a basis of the vertical bundle V T′T ′M . We
have the isomorphic identifications Zk ≡ ∂

∂zk
, Vk ≡ ∂

∂ηk
and Xk ≡ δ

δzk
=

∂
∂zk
−N j

k(z, η) ∂
∂ηj and by complexification we obtain that TT ′M ≡ TC(T ′M).

We can apply these considerations in our example for E1 = E2 = T ′M .
Further, we consider a holomorphic function f : M → R and on the warped

product TT ′M×f TT ′M ≡ TC(T ′M)×f TC(T ′M) we define the Finsler metric

F (z, η) = F1(z, η) + f2(z)F2(z, η), (16)

which offers a possible model for unification theories of gravitation and elec-
tromagnetism, depending on two functions on M , f and σ. It might be of
interest for a future study the case when F0 = F1 and, moreover, f(z) = σ(z).

Let us also note that other interesting applications might be found in the
setting E1 = T ′M endowed with a Lagrangian and E2 = T ′∗M endowed with
a Hamiltonian [29].
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Univ. Ovidius, Constanţa, Vol. 26(1), 141–158 (2018).

[19] A. Ionescu, G. Munteanu, Connections on the total space of a holomorphic
Lie algebroid, Mediterr. J. Math. 14, No. 4, Paper No. 163, 23 p. (2017).

[20] M. Jozwikowski, Prolongations vs. Tulczyjew triples in Geometric Me-
chanics, arXiv:1712.09858 [math-ph].



THE WARPED PRODUCT OF HOLOMORPHIC LIE ALGEBROIDS 133

[21] J. Klein, Espaces variationelles et mécaniques, Ann. Inst. Fourier 12
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