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On Mahler’s p-adic S-, T -, and U-numbers

Yann Bugeaud and Gülcan Kekeç

Abstract

We consider some lacunary power series with rational coefficients in
Qp. We show that under certain conditions these series take transcen-
dental values at non-zero rational number arguments, and we determine
the classes of these transcendental values with respect to Mahler’s clas-
sification of p-adic numbers.

1 Introduction

Throughout the present paper, p denotes a fixed prime number, and | · |p de-
notes the p-adic absolute value on the field Q of rational numbers, normalised
such that |p|p = p−1. We denote the unique extension of | · |p to the field Qp
of p-adic numbers by the same notation | · |p.

In 1955, Roth [11] proved that irrational real numbers which can be ap-
proximable by rational numbers at an order greater than 2 are transcendental.

Theorem 1.1 (Roth [11], 1955). Let ξ be a real number and ε be a positive real
number. Suppose that there exists a sequence (pn/qn)

∞
n=1 of rational numbers

such that 2 ≤ q1 < q2 < · · · and

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ < q−2−εn (n = 1, 2, 3, . . .).

Key Words: Mahler’s classification of p-adic numbers, p-adic S-number, p-adic T -
number, p-adic U -number, transcendence measure.
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Then ξ is transcendental.

In 1958, Ridout [10] proved the p-adic analogue of Theorem 1.1. We
denote by |x, y| the maximum of |x| and |y|, where x and y are non-zero
integers with gcd(x, y) = 1.

Theorem 1.2 (Ridout [10], 1958). Let ξ be a p-adic number and ε be a positive
real number. Suppose that there exists a sequence (xn/yn)

∞
n=1 of rational num-

bers with gcd (xn, yn) = 1 (n = 1, 2, 3, . . .) such that 2 ≤ |x1, y1| < |x2, y2| <
· · · and

0 <

∣∣∣∣ξ − xn
yn

∣∣∣∣
p

< |xn, yn|−2−ε (n = 1, 2, 3, . . .).

Then ξ is transcendental.

In 1932, Mahler [5] introduced a classification of real transcendental num-
bers. He divided real transcendental numbers into three disjoint classes and
called the numbers in these classes S-, T -, and U -numbers. Later, in 1935,
Mahler [6] proposed a classification of p-adic transcendental numbers in anal-
ogy with his classification of real transcendental numbers. He divided p-adic
transcendental numbers into three disjoint classes and called the numbers in
these classes p-adic S-, T -, and U -numbers. (See Bugeaud [3] for information
about Mahler’s classification in R and in Qp.)

In 1964, by adding an assumption on the growth of the sequence (qn)
∞
n=1

in Theorem 1.1, Baker [2] established a more precise conclusion than the simple
transcendence of ξ.

Theorem 1.3 (Baker [2], 1964). Let ξ be a real number and ε be a positive real
number. Suppose that there exists a sequence (pn/qn)

∞
n=1 of rational numbers

with gcd (pn, qn) = 1 (n = 1, 2, 3, . . .) such that 2 ≤ q1 < q2 < · · · and

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ < q−2−εn (n = 1, 2, 3, . . .).

If

lim sup
n→∞

log qn+1

log qn
<∞,

then ξ is either an S-number or a T -number.

Recently, in 2018, Bugeaud and Kekeç [4, Theorem 1.4] proved the p-adic
analogue of Theorem 1.3 by following the method of the new proof of Theorem
1.3 introduced in [1, Théorème 3.1].
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Theorem 1.4 (Bugeaud and Kekeç [4], 2018). Let ξ be a p-adic number and ε
be a positive real number. Suppose that there exists a sequence (xn/yn)

∞
n=1 of

rational numbers with gcd (xn, yn) = 1 (n = 1, 2, 3, . . .) such that 2 ≤ |x1, y1| <
|x2, y2| < · · · and

0 <

∣∣∣∣ξ − xn
yn

∣∣∣∣
p

< |xn, yn|−2−ε (n = 1, 2, 3, . . .).

If

lim sup
n→∞

log |xn+1, yn+1|
log |xn, yn|

<∞,

then ξ is either a p-adic S-number or a p-adic T -number. Suppose that there
exists a sequence (xn)∞n=1 of integers such that 2 ≤ |x1| < |x2| < · · · and

0 < |ξ − xn|p < |xn|−1−ε (n = 1, 2, 3, . . .).

If

lim sup
n→∞

log |xn+1|
log |xn|

<∞,

then ξ is either a p-adic S-number or a p-adic T -number.

Remark. The last assertion of Theorem 1.4 is a consequence of [4, Theo-
rem 1.4], which is obtained by using the last assertion of [4, Theorem 2.1] in
the proof of [4, Theorem 1.4].

Oryan [8], [9], and Zeren [13] considered some power series with ratio-
nal coefficients and showed that under certain conditions these series take
transcendental values at non-zero algebraic number arguments, and they de-
termined the classes of these transcendental values with respect to Mahler’s
classification. They proved their results by applying Baker’s Theorem [2]. (We
also refer the reader to Oryan [7] and Zeren [12] for earlier results.)

In the present paper, in Theorem 2.1 and Theorem 2.2, we prove the
p-adic analogues of the results of Oryan [9] and Zeren [13], respectively, for
non-zero rational number arguments by applying the recent result Theorem
1.4. Our main results are stated and proved in the next section.

2 The main results

By definition, a p-adic Liouville number is a p-adic irrational number ξ such
that, for every w > 1, there is a rational number x/y such that |ξ − x/y|p <
|x, y|−w.



ON MAHLER’S p-ADIC S-, T -, AND U-NUMBERS 84

Theorem 2.1. Let

f(x) =

∞∑
k=0

ckx
ek

be a power series in Qp, where ck = bk/ak (k = 0, 1, 2, . . .) is a non-zero
rational number with ak ≥ 1 and gcd (ak, bk) = 1, and {ek}∞k=0 is a strictly
increasing sequence of non-negative rational integers. Suppose that

|ck|p ≤ p−uk (k = 0, 1, 2, . . .), (2.1)

where uk (k = 0, 1, 2, . . .) is a positive rational integer,

σ := lim inf
k→∞

uk+1

uk
> 1, (2.2)

lim
k→∞

uk
ek

=∞, (2.3)

and

λ := lim sup
k→∞

logp (AkCk)

uk
<∞, (2.4)

where Ak (k = 1, 2, 3, . . .) denotes the least common multiple of the rational
integers a0, a1, . . . , ak and Ck = max {1, |c0|, . . . , |ck|} (k = 0, 1, 2, . . .). Then
the radius of convergence of the power series f(x) is infinite. Let α = b/a be
a non-zero rational number with a ≥ 1 and gcd(a, b) = 1. Assume that

σ > 2λ. (2.5)

Then f(α) is a p-adic transcendental number. If

µ := lim sup
k→∞

uk+1

uk
<∞, (2.6)

then f(α) is either a p-adic S-number or a p-adic T -number. If

lim sup
k→∞

uk+1

uk
=∞, (2.7)

then f(α) is a p-adic Liouville number. Moreover, if α and ck, (k ≥ 0), are
non-zero integers, then the assumption (2.5) can be replaced by the weaker
condition

σ > λ.

Proof of Theorem 2.1. We prove Theorem 2.1 by improving the
method of the proof of Satz 2 in Zeren [12] via the application of Theorem 1.4
in five steps as follows.
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1) By (2.1), we have

0 < ek

√
|ck|p ≤ p−uk/ek (k = 0, 1, 2, . . .).

By (2.3), the radius of convergence of the power series f is infinite.

2) We define the rational numbers

xn
yn

=

n∑
k=0

ckα
ek (n = 1, 2, 3, . . .).

Then

|xn, yn| ≤ (en + 1)|a, b|enAnCn ≤ (2|a, b|)enAnCn (n = 1, 2, 3, . . .). (2.8)

We can assume that gcd (xn, yn) = 1 (n = 1, 2, 3, . . .) and shall do so. It
follows from (2.4) that

AnCn < pun(λ+ε1) (2.9)

for sufficiently large n, where ε1 is a positive real number. By (2.3),

(2|a, b|)en < punε2 (2.10)

holds for sufficiently large n, where ε2 is a positive real number. We infer from
(2.8), (2.9), and (2.10) that

|xn, yn| < pun(λ+ε1+ε2) (2.11)

for sufficiently large n.

3) Let |α|p = ph. By (2.3), we have for sufficiently large n

1− hen
un

> 1− ε3,

where ε3 is a positive real number with ε3 < 1. Thus

|cnαen |p ≤ p
−un(1−hen/un) < p−un(1−ε3) (2.12)

for sufficiently large n. Then∣∣∣∣f(α)− xn
yn

∣∣∣∣
p

≤ max
{
|cn+1α

en+1 |p , |cn+2α
en+2 |p , . . .

}
≤ p−un+1(1−ε3)

(2.13)
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for sufficiently large n because, by (2.2), there exists a positive real number
ε4 with σ − ε4 > 1 such that

un+1 > (σ − ε4)un > un (2.14)

for sufficiently large n. Hence∣∣∣∣f(α)− xn
yn

∣∣∣∣
p

< p−un(σ−ε4)(1−ε3) (2.15)

for sufficiently large n. By (2.11) and (2.15), we get for sufficiently large n∣∣∣∣f(α)− xn
yn

∣∣∣∣
p

< |xn, yn|−(σ−ε4)(1−ε3)/(λ+ε1+ε2) . (2.16)

4) We have xn/yn − xn−1/yn−1 = cnα
en 6= 0 (n = 2, 3, 4, . . .). By (2.12),

we obtain for sufficiently large n

0 <

∣∣∣∣xnyn − xn−1
yn−1

∣∣∣∣
p

< p−un(1−ε3).

Since∣∣∣∣xnyn − xn−1
yn−1

∣∣∣∣
p

≥ 1

|xnyn−1 − xn−1yn|
≥ 1

2 |xn, yn| |xn−1, yn−1|
(n = 2, 3, 4, . . .),

it follows that
1

2 |xn, yn| |xn−1, yn−1|
< p−un(1−ε3)

for sufficiently large n. Combining this inequality with (2.11) and (2.14), we
see that

|xn, yn| >
1

2
p((σ−ε4)(1−ε3)−(λ+ε1+ε2))un−1 (2.17)

for sufficiently large n. We infer from (2.11) and (2.17) that

|xn, yn|
|xn−1, yn−1|

>
1

2
p((σ−ε4)(1−ε3)−2(λ+ε1+ε2))un−1

for sufficiently large n. By (2.5), we have 2λ < σ. Thus, by the appropriate
choices of ε1, ε2, ε3, and ε4, the first factor in the exponent of p in the inequality
above is positive. So

|xn, yn| > |xn−1, yn−1|
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holds for sufficiently large n. Then, noting that gcd (xn, yn) = 1 (n = 1, 2, 3, . . .),
the rational numbers xn/yn are all distinct from each other from some n on-
ward.

5) By (2.5), there exists a positive real number ε such that

2 + ε <
σ

λ
− ε. (2.18)

By appropriate choices of ε1, ε2, ε3, and ε4, we have

(σ − ε4)(1− ε3)

λ+ ε1 + ε2
>
σ

λ
− ε. (2.19)

It follows from (2.16), (2.18), and (2.19) that

0 <

∣∣∣∣f(α)− xn
yn

∣∣∣∣
p

< |xn, yn|−(2+ε) (2.20)

for sufficiently large n. Hence, by Theorem 1.2, f(α) is a p-adic transcendental
number.

Let (2.6) hold. By (2.5), (2.6), (2.11), (2.17), and the appropriate choices
of ε1, ε2, ε3, and ε4, we see that

lim sup
n→∞

log |xn+1, yn+1|
log |xn, yn|

≤ µ2

σ/λ− 1
< µ2 <∞. (2.21)

It follows from (2.20), (2.21), and the first assertion of Theorem 1.4 that f(α)
is either a p-adic S-number or a p-adic T -number.

Let (2.7) hold. By (2.11) and (2.13), we have for sufficiently large n

0 <

∣∣∣∣f(α)− xn
yn

∣∣∣∣
p

< |xn, yn|−(un+1/un)((1−ε3)/(λ+ε1+ε2)) . (2.22)

We deduce from (2.7) and (2.22) that f(α) is a p-adic Liouville number.

When α and the ck are rational integers, we apply the last assertion of
Theorem 1.4 instead of the first one. This completes the proof of Theorem
2.1.

Corollary 2.1. If we take ek = k (k = 0, 1, 2, . . .) in Theorem 2.1, then
condition (2.3) is implied by condition (2.2). In this case, we obtain the p-
adic analogue of the theorem of Oryan [8].

We establish the following two examples for our result Theorem 2.1.
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Example 2.1. Let α be a non-zero rational number. If we take ck = p(4
k+1),

uk = 3k+1, ek = 2k (k = 0, 1, 2, . . .), and x = α, then all the conditions of

Theorem 2.1 are verified. Hence
∑∞
k=0 p

(4k+1)α(2k) is either a p-adic S-number
or a p-adic T -number.

Example 2.2. Let α be a non-zero rational number. Let us take ck =

p((k+1)k+1), uk = (k + 1)k+1, ek = (k + 1)2 (k = 0, 1, 2, . . .), and x = α
in Theorem 2.1. Then this yields another example for Theorem 2.1. Namely,∑∞
k=0 p

((k+1)k+1)α((k+1)2) is a p-adic Liouville number.

Theorem 2.2. Let

F (z) =

∞∑
h=0

chz
h

be a power series in Qp, where ch = bh/ah (h = 0, 1, 2, . . .) is a rational number
with ah ≥ 1 (h = 0, 1, 2, . . .), satisfying ch = 0, rn < h < sn (n = 1, 2, 3, . . .),

ch 6= 0, h = rn (n = 1, 2, 3, . . .),
ch 6= 0, h = sn (n = 0, 1, 2, . . .),

(2.23)

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational
integers with

0 = s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ r4 < s4 ≤ . . . .

Suppose that the radius of convergence R of the series F (z) is positive and
finite. Assume that the following conditions hold:

λ := lim sup
h→∞

logAh
h

<∞, (2.24)

where Ah (h = 1, 2, 3, . . .) denotes the least common multiple of the rational
integers a0, a1, . . . , ah,

σ := lim sup
h→∞

log max{1, |bh|}
h

<∞, (2.25)

θ := lim inf
n→∞

sn
rn

> 1, (2.26)

and
φ := lim sup

n→∞

rn
sn−1

<∞. (2.27)
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Let α = b/a be a rational number with a ≥ 1 and gcd(a, b) = 1 such that

0 < |α|p < R (2.28)

and
Pk(α) 6= 0

from some k onward, where Pk(z) =
∑rk+1

h=sk
chz

h (k = 0, 1, 2, . . .). Moreover,
assume that

λ+ σ + log |a, b| < θ

2
log

R

|α|p
. (2.29)

Then F (α) is a p-adic transcendental number. If

µ := lim sup
n→∞

sn
rn

<∞, (2.30)

then F (α) is either a p-adic S-number or a p-adic T -number. If

lim sup
n→∞

sn
rn

=∞, (2.31)

then F (α) is a p-adic Liouville number.

Remark. As in Theorem 2.1, in the case where α and ch, (h ≥ 0),
are non-zero integers, the assumption (2.29) can be replaced by the weaker
assumption

λ+ σ + log |b| < θ log
R

|α|p
.

This follows from the last statement of Theorem 1.4. We omit the details.

Proof of Theorem 2.2. We prove Theorem 2.2 by extending the
method of the proof of Satz in Teil II of Zeren [13] via the application of
Theorem 1.4 to the p-adic case in three steps as follows.

1) By (2.23), we can write F (z) =
∑∞
k=0 Pk(z) for the p-adic numbers

z at which F (z) converges. By (2.26), (2.28), and (2.29), we can choose four
real numbers λ1, σ1, θ1, and r such that the inequalities

λ1 > λ, σ1 > σ, 1 < θ1 < θ, |α|p < r < R, (2.32)

and

λ1 + σ1 + log |a, b| < θ1
2

log
r

|α|p
(2.33)
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hold. It follows from (2.26) and (2.32) that

sn
rn

> θ1 (2.34)

for sufficiently large n.

We define the rational numbers

xn
yn

=

n−1∑
k=0

Pk(α) =

rn∑
h=s0

chα
h (n = 1, 2, 3, . . .).

Then, using (2.25) and (2.32), we get for sufficiently large n

|xn, yn| ≤ (rn + 1)|a, b|rnArn max {|b0|, |b1|, . . . , |brn |} ≤ Brn |a, b|rn , (2.35)

where Brn = Arn(rn + 1) exp(σ1rn). We can assume that gcd (xn, yn) = 1
(n = 1, 2, 3, . . .) and shall do so. By (2.24) and (2.32),

lim sup
n→∞

logBrn
rn

< λ1 + σ1. (2.36)

We infer from (2.33), (2.35), and (2.36) that

|xn, yn| < exp ((λ1 + σ1 + log |a, b|)rn) <

(
r

|α|p

)θ1rn/2
(2.37)

for sufficiently large n.

2) By the hypothesis of the theorem, we have xn/yn − xn−1/yn−1 =
Pn−1(α) 6= 0 for sufficiently large n. Then

0 <

∣∣∣∣xnyn − xn−1
yn−1

∣∣∣∣
p

= |Pn−1(α)|p ≤ max
h=sn−1,...,rn

{
|ch|p|α|hp

}
(2.38)

for sufficiently large n. Since R = 1/ lim suph→∞
h
√
|ch|p and 0 < r < R, there

exists a positive integer h0 such that

|ch|p < r−h

for h ≥ h0. In fact, there is a real number M ≥ 1 such that

|ch|p < Mr−h (h = 1, 2, 3, . . .). (2.39)

Hence, by (2.32), (2.38), and (2.39), we have for sufficiently large n

0 <

∣∣∣∣xnyn − xn−1
yn−1

∣∣∣∣
p

< M

(
|α|p
r

)sn−1

,
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thus,
1

2 |xn, yn| |xn−1, yn−1|
< M

(
|α|p
r

)sn−1

holds for sufficiently large n. Combining this inequality with (2.37), we get
for sufficiently large n

|xn, yn| >
1

2M

(
r

|α|p

)sn−1−θ1rn−1/2

. (2.40)

It follows from (2.32), (2.34), and (2.40) that

|xn, yn| >
1

2M

(
r

|α|p

)sn−1/2

(2.41)

for sufficiently large n. By (2.26) and (2.32), we can choose a real number θ2
with

1 < θ1 < θ2 < θ (2.42)

such that
sn
rn

> θ2 (2.43)

holds for sufficiently large n. Using (2.43) in (2.41), we have for sufficiently
large n

|xn+1, yn+1| >
1

2M

(
r

|α|p

)θ2rn/2
. (2.44)

We infer from (2.32) and (2.42) that

1

2M

(
r

|α|p

)θ2rn/2
>

(
r

|α|p

)θ1rn/2
for sufficiently large n. Thus, by (2.37) and (2.44),

|xn+1, yn+1| > |xn, yn|

holds for sufficiently large n. Then, noting that gcd (xn, yn) = 1 (n = 1, 2, 3, . . .),
the rational numbers xn/yn are all distinct from each other from some n on-
ward.

3) By (2.32) and (2.39), we have∣∣∣∣F (α)− xn
yn

∣∣∣∣
p

≤ max
{
|csn |p|α|snp , |csn+1|p|α|sn+1

p , . . .
}
≤M

(
r

|α|p

)−sn
(2.45)
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for n = 1, 2, 3, . . .. We deduce from (2.37) and (2.45) that∣∣∣∣F (α)− xn
yn

∣∣∣∣
p

< M |xn, yn|−(2/θ1)(sn/rn) (2.46)

for sufficiently large n. Combining (2.46) with (2.42) and (2.43), we obtain for
sufficiently large n

0 <

∣∣∣∣F (α)− xn
yn

∣∣∣∣
p

< |xn, yn|−χ , (2.47)

where χ is a real number with 2 < χ < 2θ2/θ1. Hence, by Theorem 1.2, F (α)
is a p-adic transcendental number.

Let (2.30) hold. It follows from (2.37) and (2.41) that

log |xn+1, yn+1|
log |xn, yn|

< θ1
rn+1

sn−1

1

1 +M1/sn−1

for sufficiently large n, where M1 = 2 log(1/(2M))
log(r/|α|p) . We can write

rn+1

sn−1
=
rn+1

sn

sn
rn

rn
sn−1

.

So, by (2.27) and (2.30),

lim sup
n→∞

log |xn+1, yn+1|
log |xn, yn|

≤ θ1φµφ <∞. (2.48)

We deduce from (2.47), (2.48), and Theorem 1.4 that F (α) is either a p-adic
S-number or a p-adic T -number.

Let (2.31) hold. In this case, we infer from (2.46) that F (α) is a p-adic
Liouville number. This completes the proof of Theorem 2.2.

We establish the following two examples for our result Theorem 2.2.

Example 2.3. Let F (z) =
∑∞
h=0 chz

h be a power series in Qp with{
ch = 0, rn < h < sn (n = 1, 2, 3, . . .),
ch = ph, sn ≤ h ≤ rn+1 (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational
integers, determined by

s0 = 0, sn = 5n+1 and rn = 2 · 5n (n = 1, 2, 3, . . .).

Then, by Theorem 2.2, F (pt) is either a p-adic S-number or a p-adic T -
number, where t is any positive rational integer.
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Example 2.4. In Example 2.3, if we take the sequences {sn}∞n=0 and {rn}∞n=1

as

s0 = 0, sn = (n+ 2)n+1 and rn = 3 · (n+ 1)n (n = 1, 2, 3, . . .),

then this yields another example for Theorem 2.2. Namely, F (pt) is a p-adic
Liouville number, where t is any positive rational integer.
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Fak. Mecm. Ser. A 45 (1980), 1-42.

[8] M. H. Oryan, On power series and Mahler’s U−numbers, İstanbul Üniv.
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