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LERAY–SCHAUDER ALTERNATIVES FOR
MAPS SATISFYING COUNTABLE
COMPACTNESS CONDITIONS

Donal O’Regan

Abstract

In this paper we present Leray–Schauder alternatives for a general
class of Mönch type maps.

1. Introduction.

Leray–Schauder type alternatives for compact, condensing, Mönch type
maps have been discussed extensively in the literature; we refer the reader to
[1, 2, 3, 7] and the references therein. In this paper we present coincidence
theory of Leray–Schauder type for very general Mönch type maps using the
idea of an essential map initially introduced by Granas [2]. The results in
this paper generalizes the theory in the literature (see [1, 4] and the references
therein).

In the remainder of this section we present Mönch type coincidence results
from the literature [5]. By a space we mean a Hausdorff topological space.
Let X and Y be spaces. For a multivalued map G : X → 2Y (here 2Y

denotes the family of nonempty subsets of Y ) we consider the upper inverse
Gu defined by Gu(A) = {x ∈ X : G(x) ⊆ A} and the lower inverse Gl defined
by Gl(A) = {x ∈ X : G(x)∩A 6= ∅} (here A ⊆ Y ); of course Gu(A) ⊆ Gl(A).
In this paper we will let G−1 denote Gu.
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In this paper we consider classes A, B and C of maps. Let X and E be
spaces.

Definition 1.1. We say G ∈ M(X,E) (respectively, G ∈ MB(X,E), G ∈
MC(X,E)) if G : X → 2E and G ∈ A(X,E) (respectively, G ∈ B(X,E),
G ∈ C(X,E)).

We now state two Mönch type coincidence theorems established in [5]
(other results can also be found there and also in [6]).

Theorem 1.2. Let X be a metrizable topological vector space and Y a space.
Assume Φ : Y → 2X , F : Y → 2X , x0 ∈ Φ(Y ) and suppose the following
conditions hold:

(1.1) Φ−1 (co ({x0} ∪ F (Y ))) ⊆ Y ; here Φ−1 = Φu

(1.2)


A ⊆ Y, A = Φ−1 (co ({x0} ∪ F (A))) , for any
countable set Q ⊆ A we have a countable set
M ⊆ X with M ⊆ Φ(Q) ⊆M

(1.3)

 A ⊆ Y, A = Φ−1 (co ({x0} ∪ F (A))) with C ⊆ A
countable and Φ(C) ⊆ co ({x0} ∪ F (C)),
implies co (F (C)) is compact

and

(1.4)


for any nonempty set A ⊆ Y, A = Φ−1 (co ({x0} ∪ F (A)))
with co (F (A)) compact we have that
F Φ−1 ∈MC(co (F (A)), co (F (A))) and there exists
x ∈ Φ−1 (co (F (A))) with F (x) ∩ Φ(x) 6= ∅.

Then there exists x ∈ Y with F (x) ∩ Φ(x) 6= ∅.

Remark 1.3. (a). In Theorem 1.2, X metrizable can be replaced by any
space with the following properties: (i). X is such that the closure of a subset
Ω of X is compact if and only if Ω is sequentially compact, and (ii). for any
convex set D ⊆ X if x ∈ D then there exists a sequence x1, x2, .... in D with
xn converging to x.
(b). In some applications we are interested in maps Θ : Y → 2X and Ψ : Y →
2X where F (maybe Θ itself) is a selection of Θ and Φ (maybe Ψ itself) is
a selection of Ψ; note F is a selection of Θ if F (x) ⊆ Θ(x) for x ∈ Y . Now
assuming the conditions in Theorem 1.2 we know there exists a x ∈ Y with
F (x) ∩ Φ(x) 6= ∅, so as a result Θ(x) ∩Ψ(x) 6= ∅.
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(c). Note in (1.4) we could of course replace F Φ−1 ∈MC(co (F (A)), co (F (A)))
with F Φ−1 ∈MC(co (F (A)), F (A)).
(d). If Φ : Y → X is single valued then trivially (1.2) holds by taking M =
Φ(Q). Of course for (1.2) we just need that Φ maps countable sets in Y to
separable sets in X.

Theorem 1.4. Let X be a metrizable topological vector space, Y a space,
Φ : Y → 2X , F : Y → 2X , x0 ∈ Φ(Y ) and suppose (1.1) and (1.2) hold. In
addition assume the following conditions are satisfied:

(1.5)


A ⊆ Y, A = Φ−1 (co ({x0} ∪ F (A))) , for any
countable set N ⊆ A there exists a countable set

P ⊆ A with co ({x0} ∪ F (N)) ⊆ Φ(P )

and

(1.6)


A ⊆ Y, A = Φ−1 (co ({x0} ∪ F (A))) with C ⊆ A
countable and Φ(C) = co ({x0} ∪ F (C)),
implies co (F (C)) is compact.

Finally suppose (1.4) holds. Then there exists x ∈ Y with F (x) ∩ Φ(x) 6= ∅.

Example 1.5. Suppose Φ : Y → X is single valued and surjective and F :
Y → 2X maps countable sets in Y to separable sets in X (for example upper
semicontinuous maps in metric spaces with separable values map separable
sets to separable sets; see [8 pp. 345]). Then (1.5) holds. To see this note
since N ⊆ A that Φ−1 (co ({x0} ∪ F (N))) ⊆ Φ−1 (co ({x0} ∪ F (A))) = A so
{w ∈ Y : Φ(w) ∈ co ({x0} ∪ F (N))} ⊆ A. Now since Φ is surjective then

co ({x0} ∪ F (N)) = co ({x0} ∪ F (N)) ∩ Φ(Y ) ⊆ Φ(A);

to see this note if x ∈ co ({x0} ∪ F (N)) ∩ Φ(Y ) then there exists y ∈ Y with
x ∈ co ({x0} ∪ F (N)) and x = Φ(y), and note Φ(y) (= x) ∈ co ({x0} ∪ F (N))
so from the above y ∈ A i.e. x = Φ(y), y ∈ A i.e. x ∈ Φ(A). Thus co ({x0} ∪
F (N)) ⊆ Φ(A). Now N is countable so F (N) is separable and so we have [6]
that co ({x0} ∪F (N)) is separable. Thus there exists a countable set Q0 ⊆ X
with Q0 ⊆ co ({x0}∪F (N)) ⊆ Q0 and since co ({x0}∪F (N)) ⊆ Φ(A) we have
Q0 ⊆ Φ(A). Thus there exists a countable set P ⊆ A with Q0 ⊆ Φ(P ) and as
a result co ({x0} ∪ F (N)) = Q0 ⊆ Φ(P ). Thus (1.5) holds.

2. Main results.

Let X be a Hausdorff topological vector space, Y a space and U an open
subset of Y .

Definition 2.1. We say F ∈ M(U,X) (as in Section 1) if F : U → 2X and
F ∈ A(U,X); here U denotes the closure of U in Y .



ABSTRACT LERAY–SCHAUDER TYPE ALTERNATIVES AND
EXTENSIONS 198

In this section we will fix a Φ : U → 2X (from the class MB(U,X)).

Definition 2.2. (i). We say F ∈ MM (U,X) if F ∈ M(U,X) and if D ⊆ U
and D ⊆ Φ−1 (co ({0} ∪ F (D))) with C ⊆ D countable and Φ(C) ⊆ co ({0} ∪
F (C)) then co (F (C)) is compact.

(ii). We say G ∈ MMM (Ω, X) (here Ω ⊆ Y and Φ : Y → 2X) if G ∈
M(Ω, X) and if D ⊆ Ω, D = Φ−1 (co ({0} ∪G(D))) with C ⊆ D countable
and Φ(C) ⊆ co ({0} ∪ G(C)) (or Φ(C) = co ({0} ∪ G(C))) then co (G(C)) is
compact.

Definition 2.3. We say F ∈ MM
∂U (U,X) if F ∈ MM (U,X) and F (x) ∩

Φ(x) = ∅ for x ∈ ∂U ; here ∂U denotes the boundary of U in Y .

Definition 2.4. Let F ∈ MM
∂U (U,X). We say F : U → 2X is Φ–essential in

MM
∂U (U,X) if for any map J ∈ MM

∂U (U,X) with J |∂U = F |∂U there exists
an x ∈ U with J (x) ∩ Φ (x) 6= ∅.

Remark 2.5. (i). Note if F ∈ MM
∂U (U,X) is Φ–essential in MM

∂U (U,X) then
there exists an x ∈ U with F (x) ∩ Φ (x) 6= ∅ (take J = F in Definition 2.4).

(ii). In Definition 2.2 (and throughout the paper) we could replace {0}
with {x0} where x0 ∈ X is fixed.

We begin with a nonlinear alternative of Leray–Schauder type (a more
general result will be presented in Theorem 2.14).

Theorem 2.6. Let X be a Hausdorff topological vector space, Y a normal
topological space, U an open subset of Y , Φ : U → 2X and F ∈ MM (U,X).
Assume the following conditions hold:

(2.1)

{
the zero map (denoted by 0) is in MM

∂U (U,X) and
0 is Φ− essential in MM

∂U (U,X)

(2.2) Φ(x) ∩ t F (x) = ∅ for every x ∈ ∂U and t ∈ (0, 1)

and

(2.3)

{
µF ∈M(U,X) for any continuous map
µ : U → [0, 1] with µ(∂U) = 0.

Let Ω = {x ∈ U : Φ(x) ∩ t F (x) 6= ∅ for some t ∈ [0, 1]} and we suppose

(2.4) Ω is closed.

Then there exists an x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof: Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂U (otherwise we are finished).
Let Ω be as in the statement of Theorem 2.6 and note (2.1) (see Remark 2.5)
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guarantees that Ω 6= ∅. Next note Ω∩ ∂U = ∅ (see (2.2), Φ(x)∩ F (x) = ∅ for
x ∈ ∂U is assumed at the beginning of the proof, and 0 ∈ MM

∂U (U,X)). Now
since Y is a normal topological space then (see (2.4)) there exists a continuous
map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define a map R by
R(x) = µ(x)F (x). Note (2.3) guarantees that R ∈M(U,X). We now claim

(2.5) R ∈MM
∂U (U,X).

First we show R ∈ MM (U,X). Let D ⊆ U and D ⊆ Φ−1 (co ({0} ∪R(D)))
with C ⊆ D countable and Φ(C) ⊆ co ({0} ∪ R(C)). Note R(C) ⊆ co ({0} ∪
F (C)), R(D) ⊆ co ({0} ∪ F (D)) so

co ({0}∪R(D)) ⊆ co ({0}∪co ({0}∪F (D))) = co (co ({0}∪F (D))) = co ({0}∪F (D))

and co ({0} ∪R(C)) ⊆ co ({0} ∪ F (C)). Thus

D ⊆ Φ−1 (co ({0} ∪R(D))) ⊆ Φ−1 (co ({0} ∪ F (D)))

and
Φ(C) ⊆ co ({0} ∪R(C)) ⊆ co ({0} ∪ F (C)).

Then since F ∈ MM (U,X) we have that co (F (C)) is compact. Now since
co (R(C)) ⊆ co (co ({0} ∪ F (C))) = co ({0} ∪ F (C)) we have that co (R(C))
is compact. Thus R ∈ MM (U,X). Next notice R(x) ∩ Φ(x) = ∅ for x ∈ ∂U
since if x ∈ ∂U then R(x) = {0} (note µ(∂U) = 0) and Φ(x) ∩ {0} = ∅ (recall
0 ∈MM

∂U (U,X)). Thus (2.5) is true.
NoteR|∂U = 0|∂U , R ∈MM

∂U (U,X) and since 0 is Φ–essential inMM
∂U (U,X)

then there exists a x ∈ U with R(x) ∩ Φ(x) 6= ∅. Thus x ∈ Ω so µ(x) = 1 and
as a result F (x) ∩ Φ(x) 6= ∅. 2

Remark 2.7. (i). In (2.1) note if 0 ∈ M(U,X) then 0 ∈ MM (U,X) since
if D ⊆ U , D ⊆ Φ−1 (co ({0} ∪ 0(D))) with C ⊆ D countable and Φ(C) ⊆
co ({0} ∪ 0(C)) then since 0(x) = {0} for x ∈ C we have that co (0(C)) is
(trivially) compact.

(ii). Note in Theorem 2.6 if we replace Y a normal topological space with
Y a completely regular topological space then the result in Theorem 2.6 is
true provided we replace (2.4) with Ω is compact.

(iii). In Theorem 2.6 let Φ = i (the identity map) so Ω = {x ∈ U :
x ∈ t F (x) for some t ∈ [0, 1]}. Let Y be any space with the property that
the closure of a subset E of Y is compact if and only if E is sequentially
compact. If Ω is closed then Ω is compact. To see this it is enough to show
Ω is sequentially compact. Let {xn}∞n=1 be a sequence in Ω and let C =
{xn}∞n=1. Now there exists a sequence {tn}∞n=1 in [0, 1] with xn ∈ tn F (xn).
Now C is countable and C ⊆ co ({0}∪F (C)) so Φ(C) = C ⊆ co ({0}∪F (C)).
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Then since F ∈ MM (U,X) (take D = Ω and note Ω ⊆ co ({0} ∪ F (Ω)) so
Ω ⊆ Φ−1 (co ({0} ∪ F (Ω)))) we have that co (F (C)) is compact. As a result
since C ⊆ co ({0} ∪ F (C)) we have that C is compact so C = {xn}∞n=1 has a
convergent subsequence. Thus Ω is sequentially compact.

(iv). Note (2.2) is called the Leray–Schauder condition.

We now present some results which guarantee (2.1). For our next result
we need Φ : Y → 2X .

Theorem 2.8. Let X be a Hausdorff topological vector space, Y a space, U
an open subset of Y , Φ : Y → 2X , and assume the following conditions hold:

(2.6) 0 ∈M(U,X) with {0} ∩ Φ(x) = ∅ for x ∈ ∂U (i.e. 0 /∈ Φ(∂U))

(2.7) there is no z ∈ Y \U with Φ(z) ∩ {0} 6= ∅

(2.8)


for any map J ∈MM

∂U (U,X) with J |∂U = 0|∂U and

R(x) =

{
J(x), x ∈ U
{0}, x ∈ Y \U,

we have that R ∈M(Y,X)

and

(2.9)

{
for any map H ∈MMM (Y,X) there exists
x ∈ Y with Φ(x) ∩H(x) 6= ∅.

Then the zero map is Φ–essential in MM
∂U (U,X).

Remark 2.9. (i). Note in fact R in (2.8) is in MMM (Y,X) (see the proof below)
so one could replace (2.9) with: there exists x ∈ Y with Φ(x) ∩R(x) 6= ∅.

(ii). Note Theorem 1.2 (or Theorem 1.4) give conditions to guarantee
(2.9). One could also use other theorems in [5, 6] to guarantee (2.9) (we might
have to change slightly the definition of MM and MMM if we use these other
theorems).

Remark 2.10. Note (2.6) and as in Remark 2.7 note 0 ∈MM (U,X).

Proof: Let J ∈ MM
∂U (U,X) with J |∂U = 0|∂U . We must show there ex-

ists a x ∈ U with Φ(x) ∩ J(x) 6= ∅. Let R be as in (2.8) and note R ∈
M(Y,X). We claim R ∈ MMM (Y,X). To see this let D ⊆ Y and D =
Φ−1 (co ({0} ∪R(D))) with C ⊆ D countable and Φ(C) ⊆ co ({0}∪R(C)) (or
Φ(C) = co ({0} ∪ R(C))). First note co ({0} ∪ R(D)) ⊆ co ({0} ∪ J(D ∩ U))
so D = Φ−1 (co ({0} ∪R(D))) ⊆ Φ−1

(
co ({0} ∪ J(D ∩ U))

)
and Φ(C) ⊆

co ({0} ∪ J(C ∩ U)). As a result
(2.10)
D ∩ U ⊆ Φ−1

(
co ({0} ∪ J(D ∩ U))

)
and Φ(C ∩ U) ⊆ co ({0} ∪ J(C ∩ U));
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note C ∩ U is countable. Now since J ∈MM (U,X) we have (see (2.10)) that
co (J(C ∩U)) is compact. Now since co (R(C)) ⊆ co ({0}∪J(C ∩U)) we have
that co (R(C)) is compact. Thus R ∈MMM (Y,X).

Now (2.9) guarantees that there exists a x ∈ Y with Φ(x) ∩ R(x) 6= ∅.
There are two cases to consider, namely x ∈ U and x ∈ Y \U . If x ∈ U then
Φ(x)∩J(x) 6= ∅, and we are finished. If x ∈ Y \U then since R(x) = {0} (note
also J |∂U = 0|∂U ) we have Φ(x)∩ {0} 6= ∅, and this contradicts (2.7) (see also
(2.6)). 2

We now give another example of a Φ–essential map when X = Y (we
present the result for a general map F and a particular case is when F is the
zero map assuming 0 ∈M(U, Y ) and 0 /∈ Φ(∂U)).

Theorem 2.11. Let X = Y be a Hausdorff topological vector space, U an
open subset of Y , Φ : U → 2Y , F ∈ MM

∂U (U, Y ) and assume the following
conditions hold:

(2.11)

{
there exists a retraction r : Y → U with
r(B) ⊆ co ({0} ∪B) for any subset B of Y

(2.12)

{
for any map J ∈MM

∂U (U, Y ) with J |∂U = F |∂U
the map r J ∈M(U,U)

(2.13)

{
for any map H ∈MMM (U,U) there exists
x ∈ U with Φ(x) ∩H(x) 6= ∅

and

(2.14)

 for any map J ∈MM
∂U (U, Y ) with J |∂U = F |∂U

there is no z ∈ Y \U and y ∈ U with
z ∈ J(y) and r(z) ∈ Φ(y).

Then F is Φ–essential in MM
∂U (U, Y ).

Proof: Let J ∈ MM
∂U (U, Y ) with J |∂U = F |∂U . Let H = r J . Note H ∈

M(U,U). We claim H ∈ MMM (U,U). To see this let D ⊆ U and D =
Φ−1 (co ({0} ∪H(D))) with C ⊆ D countable and Φ(C) ⊆ co ({0} ∪ r J(C))
(or Φ(C) = co ({0} ∪ r J(C))). Now from (2.11) we have

co ({0} ∪ r J(C)) ⊆ co ({0} ∪ co ({0} ∪ J(C))) = co ({0} ∪ J(C))

and
co ({0} ∪ r J(D)) ⊆ co ({0} ∪ J(D))
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so since D = Φ−1 (co ({0} ∪ r J(D))) we have

D ⊆ Φ−1 (co ({0} ∪ J(D))) and Φ(C) ⊆ co ({0} ∪ J(C)).

Now since J ∈ MM (U, Y ) we have that co (J(C)) is compact. Now since
co (r J(C)) ⊆ co (co ({0} ∪ J(C))) = co ({0} ∪ J(C)) we have that co (r J(C))
is compact. Thus H = r J ∈MMM (U,U).

Now (2.13) guarantees that there exists a x ∈ U with Φ(x) ∩ r J(x) 6= ∅.
Then r(y) ∈ Φ(x) for some y ∈ J(x). There are two cases to consider, namely
y ∈ U and y ∈ Y \U . If y ∈ U then y = r(y) ∈ Φ(x) and y ∈ J(x) i.e.
Φ(x) ∩ J(x) 6= ∅, and we are finished (note x ∈ U since J ∈ MM

∂U (U, Y ) so
in particular J(w) ∩ Φ(w) = ∅ for w ∈ ∂U). If y ∈ Y \U then y ∈ J(x),
r(y) ∈ Φ(x), x ∈ U and this contradicts (2.14). 2

Remark 2.12. Let Y be a locally convex Hausdorff topological vector space,
U a convex subset of Y , 0 ∈ U , Φ = i (the identity),

(2.15) x /∈ λFx for x ∈ ∂U and λ ∈ (0, 1]

and let
r(x) =

x

max{1, µ(x)}
for x ∈ Y ;

here µ is the Minkowski functional on U (i.e. µ(x) = inf{α > 0 : x ∈ αU}).
Note (2.11) is true. Now we show (2.14) holds. To see this suppose J ∈

MM
∂U (U, Y ) with J |∂U = F |∂U and assume there exists z ∈ Y \U and y ∈ U

with z ∈ J(y) and r(z) ∈ Φ(y) (i.e. r(z) = y). Now

y = r(z) =
z

µ(z)
with µ(z) ≥ 1 since z ∈ Y \U.

Then y ∈ λJ(y) with 0 < λ = 1
µ(z) ≤ 1. Note y = r(z) ∈ ∂U since z ∈ Y \U ,

and so
y ∈ λJ(y) = λF (y) since J |∂U = F |∂U .

This contradicts (2.15), so (2.14) is true.

In fact the argument in Theorem 2.11 establishes the following coincidence
result.

Theorem 2.13. Let X = Y be a Hausdorff topological vector space, U an
open subset of Y , Φ : U → 2Y , F ∈MM (U, Y ) and assume (2.11) and (2.13)
hold. In addition suppose the following conditions hold:

(2.16) r F ∈M(U,U)
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and

(2.17)

{
there is no z ∈ Y \U and y ∈ U with
z ∈ F (y) and r(z) ∈ Φ(y).

Then there exists a x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof: To see this let H = r F and as in Theorem 2.11 (with J=F) we see
that H ∈MMM (U,U). Now (2.13) guarantees that there exists a x ∈ U with
Φ(x) ∩ r F (x) 6= ∅. Then r(y) ∈ Φ(x) for some y ∈ F (x). There are two cases
to consider, namely y ∈ U and y ∈ Y \U . If y ∈ U then y = r(y) ∈ Φ(x) and
y ∈ F (x) and we are finished. If y ∈ Y \U then y ∈ F (x), r(y) ∈ Φ(x), x ∈ U
and this contradicts (2.17). 2

Our final two results are generalizations of Theorem 2.6.

Theorem 2.14. Let X be a Hausdorff topological vector space, Y a normal
topological space, U an open subset of Y , Φ : U → 2X , F ∈ MM (U,X) and
G ∈ MM

∂U (U,X) is Φ–essential in MM
∂U (U,X). Also assume there exists a

map H : U × [0, 1] → 2X with H( . , η( . )) ∈ MM (U,X) for any continuous
function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ Ht(x) = ∅ for any x ∈
∂U and t ∈ (0, 1) (here Ht(x) = H(x, t)), H1 = F , H0 = G and Ω ={
x ∈ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
is closed. Then there exists

a x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof: Suppose Φ(x)∩F (x) = ∅ for x ∈ ∂U (otherwise we are finished). Let Ω
be as in the statement of Theorem 2.14 and note Ω 6= ∅ (note G is Φ–essential
in MM

∂U (U,X), H0 = G and see Remark 2.5). Then there exists a continuous
map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define the map R by
R(x) = H(x, µ(x)). Now R ∈ MM

∂U (U,X) with R|∂U = G|∂U (note if x ∈ ∂U
then R(x) = H(x, 0) = G(x) and R(x) ∩ Φ(x) = Φ(x) ∩ G(x) = ∅). Since G
is Φ–essential in MM

∂U (U,X) there exists x ∈ U with R(x) ∩ Φ(x) 6= ∅ (i.e.
Hµ(x)(x) ∩ Φ(x) 6= ∅). Thus x ∈ Ω so µ(x) = 1. As a result H1(x) ∩ Φ(x) 6= ∅
i.e. F (x) ∩ Φ(x) 6= ∅. 2

Remark 2.15. Note in Theorem 2.14 if we replace Y a normal topological space
with Y a completely regular topological space then the result in Theorem 2.14
is true provided we replace Ω is closed with Ω is compact.

It is also possible to generalize slightly the result in Theorem 2.14 if one
modifies slightly the assumptions.

Theorem 2.16. Let X be a Hausdorff topological vector space, Y a normal
topological space, U an open subset of Y , Φ : U → 2X , F ∈ MM

∂U (U,X) and
G ∈ MM

∂U (U,X) is Φ–essential in MM
∂U (U,X). Also assume for any map

J ∈ MM
∂U (U,X) with J |∂U = F |∂U there exists a map HJ : U × [0, 1] → 2X
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with HJ( . , η( . )) ∈ MM (U,X) for any continuous function η : U → [0, 1]
with η(∂U) = 0, Φ(x) ∩ HJ

t (x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here
HJ
t (x) = HJ(x, t)), HJ

1 = J , HJ
0 = G and

Ω =
{
x ∈ U : Φ(x) ∩HJ(x, t) 6= ∅ for some t ∈ [0, 1]

}
is closed. Then F is Φ–essential in MM

∂U (U,X).

Proof: Consider any map J ∈ MM
∂U (U,X) with J |∂U = F |∂U . We must

show there exists a x ∈ U with Φ(x) ∩ J(x) 6= ∅. Choose the map HJ and
the set Ω as in the statement of Theorem 2.16 and note Ω 6= ∅ (note G is
Φ–essential in MM

∂U (U,X) and HJ
0 = G). Then there exists a continuous

map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. Define the map R by
R(x) = HJ(x, µ(x)). Now R ∈MM

∂U (U,X) with R|∂U = G|∂U (note if x ∈ ∂U
then R(x) = HJ(x, 0) = G(x) and R(x) ∩ Φ(x) = Φ(x) ∩ G(x) = ∅). Since
G is Φ–essential in MM

∂U (U,X) there exists x ∈ U with R(x) ∩ Φ(x) 6= ∅ (i.e.
HJ
µ(x)(x)∩Φ(x) 6= ∅). Thus x ∈ Ω so µ(x) = 1. As a result HJ

1 (x)∩Φ(x) 6= ∅
i.e. J(x) ∩ Φ(x) 6= ∅. 2

Remark 2.17. Note in Theorem 2.16 if we replace Y a normal topological space
with Y a completely regular topological space then the result in Theorem 2.16
is true provided we replace Ω is closed with Ω is compact.
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