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On vibrations in Green-Naghdi
thermoelasticity of dipolar bodies

M. Marin, A. Chirilă, L. Codarcea and S. Vlase

Abstract

This study is concerned with the theory of thermoelasticity of type
III proposed by Green and Naghdi, which is extended to cover the bodies
with dipolar structure. In this context we construct a boundary value
problem for a prismatic bar which is subjected to some harmonic in time
vibrations. For the oscillations whose amplitudes have the frequency
lower than a critical value, we deduce some estimates for describing the
spatial behavior.

1. Introduction

Many studies published in the last years have highlighted that the classical
uncoupled theory of thermoelasticity predicts two phenomena not compatible
with concrete experiments: the equation of heat conduction does not contain
any elastic terms and the heat equation is of parabolic type and this means
that it predicts infinite speeds of propagation for the heat waves. In order
to eliminate the paradoxes of the classical theory, a great number of studies
were published. In this context, Green and Naghdi developed three different
theories, labeled type I, type II and type III, in [1]-[3]. So, the Green-Naghdi
theory of type I is equivalent to the classical coupled thermoelasticity theory.
In the Green-Naghdi theory of type II the energy of the system is constant
in time, in other words, this theory does not admit energy dissipation and
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implies a finite speed of propagation for the heat waves. Finally, the Green-
Naghdi theory of type III admits dissipation of energy and the heat flux is a
combination of type I and type II. Also, this type III implies a finite speed of
propagation for the heat waves.

Essentially, the theories of Green-Naghdi are based on an energy balance
law rather than an entropy inequality. In the context of thermodynamics the
so called ”thermal displacement” is introduced, denoted by τ , which is related
to the temperature variation θ by means of the relation

τ(t) =

∫ t

0

θ(s)ds. (1)

There are other studies (see, for instance, [4]) in which the Fourier law is
replaced by an approximation of the equation where the thermal displacement
function, the thermal conductivity tensor and the conductivity rate tensor
appeared. By using Taylor approximations, it is proved that this theory covers
the Green-Naghdi theories. The theory of bodies with microstructure has
primarily the aim to remove the differences which occur between experiments
and the classical theory of elasticity. The results of classical elasticity prove not
to be appropriate when the body’s overall deformations are subject to effects
of material microstructure. This happens in the case of ceramics, graphite,
human bones, polymers (that is, some granular bodies with large molecules),
and so on. Eringen was the first to study this kind of theory (see for instance
[5],[6]) which was continuously studied in various papers, such as [7]-[9]. Some
considerations on waves for specific bodies with microstructure can be found
in [10]-[13]. A specific aspect of the microstructure is the dipolar structure.
Many valuable researchers emphasized the importance of the dipolar structure
of materials. The start was given by the published results of R. D. Mindlin [14]
as well as A. E. Green and R. S. Rivlin [15], which approached also in other
papers the multipolar structures and in particular, the dipolar structures.
Another known reseacher, M. E. Gurtin published a few articles on multipolar
structures. It is enough to recall the paper [16], where Gurtin together with
E. Fried discover integral statements of force balance, energy balance, and
entropy imbalance for an interface between a body and its environment. We
want to outline that in the theory of dipolar continua the degrees of freedom
for each particle are three translations and nine micro-deformations and each
material point is constrained to deform homogeneously. The theories of dipolar
bodies are quite sufficient for a large number of solid mechanics applications.

Studies on harmonic oscillations appeared long time ago, but have been
of great interest for a large number of researchers in the last period of time.
So, in the context of the linearly damped wave, Flavin and Knops (1987)
treated the spatial behavior of harmonic vibration. Similar results, in other
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conditions, we find in Flavin and Knops (1990) and Knops (1991). Chiriţă
in (1996) extended the results to cover the linear theory of thermoelasticity.
Also, we must outline the results regarding the wave propagation obtained
by Quintanilla and Straughan (2004). We will formulate the mixed initial-
boundary value problem consisting of equations and conditions in the context
described above. These equations and conditions refer to the displacement
vector ui, the dipolar displacement tensor ϕij , the temperature θ, the mass
density %, the thermal capacity c, the thermal conductivity tensor, the thermal
displacement α and the elastic coefficients tensors. All these quantities are
smooth functions of the position, f = f(x). We will see that we need to
assume that the heat capacity, the mass density are positive and also, the
thermal conductivity tensor and the elasticity tensors are positive definite in
order to have the well-posedness of the Green-Naghdi thermoelasticity of type
III.

If, on the contrary, we do not assume the positivity of the elasticity tensors,
the mixed problem with the usual initial and boundary conditions becomes
ill-posed. The plan of our study is the following. In Section 2 we recall
the basic notations, the fundamental equations, the initial conditions and the
boundary conditions required to define the mixed problem for the type III
thermoelasticity of dipolar bodies. In Section 3 we include the main results.
In Proposition 1 and Theorem 1 we prove two estimates which are used to
obtain the two main results.

2. Notations and basic equations

Assume that at time t0 our dipolar thermoelastic body occupies the domain
B included in the Euclidean three-dimensional space R3. Its boundary is the
piecewise smooth surface ∂B. In B we will use a fixed system of rectangular
Cartesian axes Oxi, i = 1, 2, 3 so that in this system any point P from Ω
is characterized by three rectangular coordinates x1, x2, x3 and we use the
notation x for (x1, x2, x3). So, x will be the position and t will be the time.
The functions considered in the following are considered to be functions of
(x, t) defined on the cylinder B̄ × (0,∞), where B̄ = B ∪ ∂B. If there is
no likelihood of confusion, the spatial variables and the time variable of the
functions will be omitted. We will use the known convention of summation
over repeated subscripts and differentiation. Greek subscripts are understood
to range over the integers (1, 2) and Latin subscripts take the values 1, 2, 3.
We also use a superposed dot to denote the partial differentiation with respect
to time, t, ḟ = ∂f/∂t, and a subscript preceded by a comma denotes partial
differentiation with respect to the corresponding Cartesian coordinate, f,j =
∂f/∂xj . Our mathematical model requires a system of governing equations
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in the context of the linear theory of dipolar thermoelasticity. By using the
known procedure of Green and Rivlin we consider a new motion which differs
from the given motion only by a superposed rigid motion defined by a rotation
of uniform rigid body angular velocity and suppose that for the given motion,
all characteristics of the body are unaltered by such a superposed rigid motion.
So we deduce the following kinetic relations, which give the expressions of the
strain measures εij , γij and χijk and of the thermal displacement gradient αi
with regard to the variables of motion (see Eringen [5])

εij =
1

2
(ui,j + uj,i) , γij = uj,i − ϕij , χijk = ϕjk,i, αi = τ,i. (2)

The motion of the dipolar body in type III thermoelastodynamics will be
characterized by the displacement vector of components (ui), the dipolar dis-
placement tensor of components (ϕij) and the thermal displacement α.
We will consider that all components of the displacement and the temperature
variation from some reference temperature are small. Also, the space deriva-
tives of these functions and their time derivatives are small.
We restrict our considerations to the case where the materials have a center of
symmetry. Also, we suppose that the body is free from stress, in its reference
configuration, and has zero intrinsic equilibrated body forces and body cou-
ples. The linear theory requires a quadratic form for the specific Helmholtz
free energy H with regards to its independent constitutive variables.

%H =
1

2
Cijmnεijεmn +Gijmnεijγmn + Fijmnrεijχmnr +

1

2
Bijmnγijγmn

+Dijmnrγijχmnr +
1

2
Aijkmnrχijkχmnr +Mijmεijαm +Nijmγijαm (3)

+Rijαiα̇i + Pijkmχijkαm +Qiαiθ +
1

2
Kijαiαj − aijεijθ

−bijγijθ − cijkχijkθ −
1

2
cθ2.

Correspondingly, the internal energy density E has the expression

%E =
1

2
Cijmnεijεmn +Gijmnεijγmn + Fijmnrεijχmnr +

1

2
Bijmnγijγmn

+Dijmnrγijχmnr +
1

2
Aijkmnrχijkχmnr +Mijmεijαm +Nijmγijαm (4)

+Pijkmχijkαm +
1

2
Kijαiαj +Rijαiα̇j +

1

2
cθ2.

The specific Helmholtz free energy H is used in the inequality of entropy
to obtain the constitutive equations that give the expressions for the stress
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measures in terms of the strain measures

τij = Cijmnεmn +Gmnijγmn + Fmnrijχmnr − aijθ,
σij = Gijmnεmn +Bijmnγmn +Dijmnrχmnr − bijθ,
µijk = Fijkmnεmn+Dmnijkγmn+Aijkmnrχmnr−cijkθ, (5)

%η = aijεij + bijγij + cijkχijk −Niαi + cθ,

qm = Mijmεij +Nijmγij + Pijkmχijk +Kimαi +Rimα̇i +Nmθ.

In a similar manner, the motion equations are obtained in the form that follows

(τij + σij),j + %fi = %üi, (6)

µijk,i + σjk + %gjk = Ijsϕ̈ks.

and, also, the energy equation

%η̇ = qi,i + %r. (7)

We must specify that the above equations (1), (5)-(7) take place for (x, t) ∈
B̄ × (0,∞).
Also, the notations used in the previous relations have the following meanings:
% is the mass density; Ijk are the components of the inertia; θ is the variation
of the temperature related to the uniform reference temperature θ0; εij , γij ,
χijk and αi are the strain measures; τij , σij and µijk are the strain measures;
fi are the components of the external body forces; gjk are the components
of the external dipolar body forces; η is the entropy per unit volume; the
components of the heat flux are qi; r is the external rate of supply of heat
per unit mass; Cijmn, Gijmn, ..., Qi are the constitutive coefficients and these
characteristics of the material, together with the mass density and the heat
capacity c, are continuously differentiable functions, depending on the spatial
variable only and satisfying the following symmetry relations

Cijmn = Cmnij = Cjimn, Gijmn = Gjimn, Fijmnr = Fjimnr,

Bijmn = Bmnij , Aijkmnr = Amnrijk, Mijk = Mjik, Kij = Kji. (8)

According to Green and Naghdi [3], we can define the internal rate of supply
of the heat per unit mass through the thermal displacement gradient αi as
follows

θξ = Rijα̇iα̇j , (9)

where the heat conductivity tensor Rij is symmetric and satisfies the dissipa-
tion inequality

Rijα̇iα̇j ≥ 0. (10)
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3. Main results

In the following we will suppose that the lateral surface of the prismatic bar and
its base x3 = h are maintained at zero thermal displacement, null displacement
and null dipolar displacement and is subject to a given harmonic in time
vibration on the base x3 = 0. As a consequence, within the prismatic bar we
expect to get a solution that is harmonic in time, that is of the form

uj(x, t) = Uj(x)eiwt, ϕjk(x, t) = Φjk(x)eiwt, τ(x, t) = T (x)eiwt, (11)

where i is the complex unit, i2 = −1, and w is a given positive constant.
If we take into account equations (11), then the kinetic relations (2) become

Emn =
1

2
(Um,n + Un,m) , Γmn = Uj,i − Φij , Cijk = Φjk,i, Ak = T,k. (12)

As a consequence, the constitutive equations (5) receive the form

Tij = CijmnEmn +GmnijΓmn + FmnrijCmnr − iwaijT,
Sij = GijmnEmn +BijmnΓmn +DijmnrCmnr − iwbijT,
Λijk = FijkmnEmn+DmnijkΓmn+AijkmnrCmnr−iwcijkT, (13)

%η = aijEij + bijΓij + cijkCijk −NiAi + iwcT,

Qm = MijmEij +NijmΓij + PijkmCijk +KimAi + iwRjmAj + iwNmT.

In the absence of the external body forces and of the external dipolar body
forces, and considering equations (11) the equations of motion (6) become

(Tmn + Smn),n + %w2Um = 0,

Λkmn,n + Skm + w2IksΦms = 0. (14)

If we take into account equations (11), the energy equation (7) receives the
form

Qj,j − iwajkEjk − iwbjkΓjk − iwcjkmCjkm + iwNmAm + cw2T = 0. (15)

Along with the basic equations above, we will now add the boundary con-
ditions. The generic cross-section of the cylinder will be denoted by Ω and
assume that its boundary ∂Ω is smooth enough to apply the divergence the-
orem. Then the boundary conditions on the base of the cylinder, that is, the
end x3 = 0 have the form

Uj(x) = Ũj(x), Φjk(x) = Φ̃jk(x), T (x) = T̃ (x), on Ω(0). (16)
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On the end x3 = l we have

Uj(x) = 0, Φjk(x) = 0, T (x) = 0, on Ω(l), (17)

where l is the length of the cylinder.
The lateral boundary conditions have a similar form

Uj(x) = 0, Φjk(x) = 0, T (x) = 0, on ∂Ω× [0, l]. (18)

We will denote with (P ) the boundary problem that consists of the basic
equations (12)-(15) and the boundary conditions (16)-(18).
The following two estimates will be useful in the following.

Theorem 1.. If (Uj ,Φjk, T ) is the amplitude of a vibration which is a solution
of the problem (P ), then the following two estimates take place

2

∫
Ω(x3)

[
CklmnEklĒmn+Gklmn

(
EklΓ̄mn+ĒklΓmn

)
+Fklmnr

(
EklC̄mnr

+ĒklCmnr
)

+BklmnΓklΓ̄mn +Dklmnr

(
ΓklC̄mnr + Γ̄klCmnr

)
+AjklmnrCjklC̄mnr+Mklm

(
EklĀm+ĒklAm

)
+Nklm

(
ΓklĀm+Γ̄klAm

)
+Pjklm

(
CjklĀm+C̄jklAm

)
+KjlαkĀj − w2

(
%UjŪj + ImnΦmkΦ̄nk

+cT T̄
)

+ iwajk
(
EjkT̄ − ĒjkT

)
+iwbjk

(
ΓjkT̄−Γ̄jkT

)
(19)

+iwcjkm
(
CjkmT̄−C̄jkmT

)
+iwNm

(
T T̄,m−T̄ T,m

)]
dA

=
d

dx3

∫
Ω(x3)

[
Um

(
S̄3m+T̄3m

)
+Ūm (S3m+T3m)

+ ΦjkΛ̄3jk+Φ̄jkΛ3jk+
(
TQ̄3+T̄Q3

)]
dA,

∫
Ω(x3)

RmnAmĀndA =
d

dx3

∫
Ω(x3)

i

2w

(
TQ̄3 − T̄Q3

)
dA

+
d

dx3

∫
Ω(x3)

i

2w

[
Um

(
S̄3m+T̄3m

)
+ΦjkΛ̄3jk−Ūm (S3m+T3m)−Φ̄jkΛ3jk

]
dA, (20)

where a bar over a function refers to the complex conjugate of the respective
function.

Proof. We multiply in (13)1 and (13)2 by Ūn, in (13)3 by Φ̄nr and in (13)5

by T̄ , then we add the three relations that result. If we use the equations (14)
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and (15) we are led to the relation[
(Tmn + Smn) Ūn + ΛmnrΦ̄nr +QmT̄

]
,m

= CklmnEklĒmn+Gklmn
(
EklΓ̄mn+ĒklΓmn

)
+Fklmnr

(
EklC̄mnr

+ĒklCmnr
)

+BklmnΓklΓ̄mn +Dklmnr

(
ΓklC̄mnr + Γ̄klCmnr

)
(21)

+AjklmnrCjklC̄mnr +Mklm

(
EklĀm+ĒklAm

)
+Nklm

(
ΓklĀm+Γ̄klAm

)
+Pjklm

(
CjklĀm+C̄jklAm

)
+KjlAlĀj − w2

(
%UjŪj + ImnΦmkΦ̄nk

+cT T̄
)

+ iwajk
(
EjkT̄ − ĒjkT

)
+iwbjk

(
ΓjkT̄−Γ̄jkT

)
+iwcjkm

(
CjkmT̄−C̄jkmT

)
+ iwNm

(
T T̄,m−T̄ T,m

)
+ iwRmnAmĀn.

Now we apply the complex conjugate in (13)1-(13)3 and (13)5 and then in the
first relation that we obtain, we multiply by Un, in the second by Φnr and in
the last by T . If we add the three relations and use the equations (14) and
(15), we obtain the relation [(

T̄mn + S̄mn
)
Un + Λ̄mnrΦnr + Q̄mT

]
,m

= CklmnEklĒmn+Gklmn
(
EklΓ̄mn+ĒklΓmn

)
+Fklmnr

(
EklC̄mnr

+ĒklCmnr
)

+BklmnΓklΓ̄mn +Dklmnr

(
ΓklC̄mnr + Γ̄klCmnr

)
(22)

+AjklmnrCjklC̄mnr +Mklm

(
EklĀm+ĒklAm

)
+Nklm

(
ΓklĀm+Γ̄klAm

)
+Pjklm

(
CjklĀm+C̄jklAm

)
+KjlAlĀj − w2

(
%UjŪj + ImnΦmkΦ̄nk

+cT T̄
)

+ iwajk
(
EjkT̄ − ĒjkT

)
+ iwbjk

(
ΓjkT̄−Γ̄jkT

)
+iwcjkm

(
CjkmT̄−C̄jkmT

)
+ iwNm

(
T T̄,m−T̄ T,m

)
− iwRmnAmĀn,

in which we took into account the symmetry relations (8).
Finally, we integrate in (21) and (22) on the cross-section Ω(x3) and with the
help of the lateral boundary conditions (18) we get the desired relations (19)
and (20).
In order to obtain our main result, namely a spatial behavior of the amplitude
(Uj ,Φjk, T ) of the harmonic vibrations which is a solution of the problem (P ),
we need the following function

F(x3) = − δi

2w

∫
Ω(x3)

[
Um

(
S̄3m+T̄3m

)
+ΦjkΛ̄3jk−Ūm (S3m+T3m)

−Φ̄jkΛ3jk

]
dA− 1

2

∫
Ω(x3)

[
Um

(
S̄3m+T̄3m

)
+ΦjkΛ̄3jk+Ūm (S3m+T3m) (23)

+Φ̄jkΛ3jk

]
dA+

1

2

∫
Ω(x3)

[
δi

w

(
TQ̄3 − T̄Q3

)
+
(
TQ̄3 + T̄Q3

)]
dA,
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where x3 ≥ 0 and δ is a parameter which can take any positive value we need.
Also, in order to estimate the amplitude of the harmonic vibration, we need
the following measure

M(x3)=λ1

∫
Ω(x3)

CklmnEklĒmndV + λ2

∫
Ω(x3)

BklmnΓklΓ̄mndV

+λ3

∫
Ω(x3)

AjklmnrCjklC̄mnrdV + λ4

∫
Ω(x3)

RmnAmĀndV, (24)

where λ1, λ2, λ3 and λ4 are positive parameters which can be conveniently
chosen.
We will use the following hypotheses:

i) the mass density and the tensor of inertia are strictly positive, that is,
% > 0, Ijk > 0;

ii) the heat conductivity tensor Rmn satisfies the condition:

µmξmξm ≤ Rmnξmξn ≤ µMξmξm for all ξm, (25)

where the positive constants µm and µM are related to the minimum and
maximum eigenvalues of the positive definite tensor Rmn.
Similar conditions satisfy the elasticity tensors that occur in the internal en-
ergy density.

Theorem 2.. If (Uj ,Φjk, T ) is the amplitude of a vibration which is a solution
of the problem (P ) having a frequency w lower than a prescribed value w∗,
then we can compute a constant ν such that the measure M(x3) satisfies the
following estimate

0 ≤M(x3) ≤M(0)eν(h−x3), h ≤ x3 ≤ l, h ∈ (0, l]. (26)

Proof. Let us denote by λ0 the first eigenvalue of the problem

u,ββ = −λu in Ω,

u = 0 on ∂Ω. (27)

Clearly, (27) is the clamped membrane problem.
Based on the lateral boundary conditions (18) we can deduce that∫

Ω(x3)

T,βT̄,βdA ≥
∫

Ω(x3)

T T̄dA. (28)
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By using the relations (19) and (20) we are led to

dF(x3)

dx3

= −
∫

Ω(x3)

[
δRmnAmĀn + CklmnEklĒmn+Gklmn

(
EklΓ̄mn+ĒklΓmn

)
+Fklmnr

(
EklC̄mnr+ĒklCmnr

)
+Dklmnr

(
ΓklC̄mnr + Γ̄klCmnr

)
+BklmnΓklΓ̄mn +AjklmnrCjklC̄mnr +Mklm

(
EklĀm+ĒklAm

)
+Nklm

(
ΓklĀm+Γ̄klAm

)
+ Pjklm

(
CjklĀm+C̄jklAm

)
+KjlAkĀl (29)

−w2
(
%UjŪj + ImnΦmkΦ̄nk + cT T̄

)
+ iwajk

(
EjkT̄ − ĒjkT

)
+iwbjk

(
ΓjkT̄−Γ̄jkT

)
+iwcjkm

(
CjkmT̄−C̄jkmT

)
+iwNm

(
T T̄,m−T̄ T,m

)]
dA, for any x3 ≥ 0.

By using the Cauchy-Schwarz inequality and also the arithmetic-geometric
mean inequality, we can obtain some upper bounds for the integrals in the
right-hand side of equation (29). For instance, if we use the notation

M∗ = sup
B

√
MklmMklm,

we have∣∣∣∣∣
∫

Ω(x3)

Mklm

(
EklĀm+ĒklAm

)
dA

∣∣∣∣∣ ≤ M∗

µm
p1

∫
Ω(x3)

CklmnEklĒmndA

+
M∗

νp1

∫
Ω(x3)

RmnAmĀndA, ∀p1 > 0. (30)

Also, we have∣∣∣∣∣
∫

Ω(x3)

Nklm
(
ΓklĀm+Γ̄klAm

)
dA

∣∣∣∣∣ ≤ N∗

µm
p2

∫
Ω(x3)

BklmnΓklΓ̄mndA

+
N∗

νp2

∫
Ω(x3)

RmnAmĀndA, ∀p2 > 0, (31)

∣∣∣∣∣
∫

Ω(x3)

Pjklm
(
CjklĀm+C̄jklAm

)
dA

∣∣∣∣∣ ≤ P ∗

µm
p3

∫
Ω(x3)

AjklmnrCjklC̄mnrdA

+
P ∗

νp3

∫
Ω(x3)

RmnAmĀndA, ∀p3 > 0, (32)
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where
N∗ = sup

B

√
NklmNklm, P ∗ = sup

B

√
PjklmPjklm.

For the other integrals from (29) we deduce∣∣∣∣∣
∫

Ω(x3)

KmnAmĀndA

∣∣∣∣∣ ≤ K∗

µm

∫
Ω(x3)

RmnAmĀndA, (33)

K∗ = sup
B

√
KmnKmn,

∣∣∣∣∣
∫

Ω(x3)

cw2T T̄dA

∣∣∣∣∣ ≤ w2c∗
∫

Ω(x3)

T T̄dA

≤ w2c∗

λ0µm

∫
Ω(x3)

RmnAmĀndA, c∗ = sup
B
|c|, (34)

∣∣∣∣∣
∫

Ω(x3)

iwajk
(
EjkT̄ − ĒjkT

)
dA

∣∣∣∣∣ ≤ wa∗p4

µm

∫
Ω(x3)

CklmnEklĒmndA

+
wa∗

λ0νmp4

∫
Ω(x3)

RmnAmĀndA, p4 > 0, a∗ = sup
B

√
amnamn, (35)

∣∣∣∣∣
∫

Ω(x3)

iwbjk
(
ΓjkT̄ − Γ̄jkT

)
dA

∣∣∣∣∣ ≤ wb∗p5

µm

∫
Ω(x3)

BklmnΓklΓEmndA

+
wb∗

λ0νmp5

∫
Ω(x3)

RmnAmĀndA, p5 > 0, b∗ = sup
B

√
bmnbmn, (36)

∣∣∣∣∣
∫

Ω(x3)

iwcjkm
(
CjkmT̄ − C̄jkmT

)
dA

∣∣∣∣∣ ≤ wc∗p6

µm

∫
Ω(x3)

AjklmnrCjkl

·C̄mnrdA+
wc∗

λ0νmp6

∫
Ω(x3)

RmnAmĀndA, p6 > 0, c∗ = sup
B

√
cmnrcmnr, (37)

∣∣∣∣∣
∫

Ω(x3)

iwNm
(
T T̄,m − T̄ T,m

)
dA

∣∣∣∣∣
≤ wN∗

1

νm
√
λ0

∫
Ω(x3)

RmnAmĀndA, N
∗
1 = sup

B

√
NmNm, (38)
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∣∣∣∣∣
∫

Ω(x3)

Gklmn
(
EklΓ̄mn + ĒklΓmn

)
dA

∣∣∣∣∣ ≤ G∗

µm
p7

∫
Ω(x3)

CklmnEklĒmndA

+
G∗

νp7

∫
Ω(x3)

BklmnΓklΓ̄mndA, p7 > 0, G∗ = sup
B

√
GklmnGklmn, (39)

∣∣∣∣∣
∫

Ω(x3)

Fklmnr
(
EklC̄mnr + ĒklCmnr

)
dA

∣∣∣∣∣
≤ F ∗

µm
p8

∫
Ω(x3)

CklmnEklĒmndA+
F ∗

νp8

∫
Ω(x3)

AjklmnrCjklC̄mnrdA, (40)

p8 > 0, F ∗ = sup
B

√
FklmnrFklmnr,

∣∣∣∣∣
∫

Ω(x3)

Dklmnr

(
ΓklC̄mnr + Γ̄klCmnr

)
dA

∣∣∣∣∣ ≤ D∗

µm
p9

∫
Ω(x3)

BklmnΓklΓ̄mndA

+
D∗

νp9

∫
Ω(x3)

AjklmnrCjklC̄mnrdA, p9 > 0, D∗ = sup
B

√
DklmnrDklmnr. (41)

If we take into account the estimates (30)-(41), from (29) we are led to the
inequality

−dF(x3)

dx3
≥
(
1− M∗p1

µm
− wa∗p4

µm
− G∗p7

µm
− F ∗p8

µm

)∫
Ω(x3)

CklmnEklĒmndA

+

(
1− N∗p2

µm
− wb∗p5

µm
− G∗

νp7
− D∗p9

µm

)∫
Ω(x3)

BklmnΓklΓ̄mndA

+

(
1− P ∗p3

µm
− wc∗p6

µm
− F ∗

νp8
− D∗

νp9

)∫
Ω(x3)

AjklmnrCjklC̄mnrdA (42)

+

(
δ−M

∗

νp1
+
N∗

νp2
+
P ∗

νp3
−K

∗

µm
−w

2c∗1
λ0µm

− wa∗

λ0νmp4
− wb∗

λ0νmp5
− wc∗

λ0νmp6
− wN∗

1√
λ0νm

)
×
∫

Ω(x3)

RmnAmĀndA.

According to Flavin and Knops (1987), the frequency of the vibration must
satisfy the following restriction

0 < w < inf

∫
B

[
CklmnEklĒmn+BklmnΓklΓ̄mn +AjklmnrCjklC̄mnr

]
dV∫

B

(
%U,mU,n + ImnΦmkΦ̄nk

)
dV

(43)
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If we take into account the end boundary conditions (17), from (23) we deduce
that F(l) = 0.
On the other hand, if we choose

λ1 =

(
1− M∗p1

µm
− wa∗p4

µm
− G∗p7

µm
− F ∗p8

µm

)
,

λ2 =

(
1− N∗p2

µm
− wb∗p5

µm
− G∗

νp7
− D∗p9

µm

)
, (44)

λ3 =

(
1− P ∗p3

µm
− wc∗p6

µm
− F ∗

νp8
− D∗

νp9

)
,

λ4 =

(
δ−M

∗

νp1
+
N∗

νp2
+
P ∗

νp3
−K

∗

µm
−w

2c∗1
λ0µm

− wa∗

λ0νmp4
− wb∗

λ0νmp5
− wc∗

λ0νmp6
− wN∗

1√
λ0νm

)
,

then taking into account equations (42) and (43), from (29) we deduce that

F(x3)≥λ1

∫
Ω(x3)

CklmnEklĒmndV +λ2

∫
Ω(x3)

BklmnΓklΓ̄mndV

+λ3

∫
Ω(x3)

AjklmnrCjklC̄mnrdV + λ4

∫
Ω(x3)

RmnAmĀndV. (45)

Let us introduce the notation

Ω(x3, h) = Ω(x3) \ Ω(x3 + h).

Then, using (24) we deduce that

− ∂

∂x3

(
1

h

∫ x3+h

x3

M(τ)dτ

)
= − 1

h
[M (x3 + h)−M (x3)]

=−1

h

∫ x3+h

x3

∂M

∂τ
(τ)dτ=

λ1

h

∫
Ω(x3)

CklmnEklĒmndV +
λ2

h

∫
Ω(x3)

BklmnΓkl (46)

·Γ̄mndV +
λ3

h

∫
Ω(x3)

AjklmnrCjklC̄mnrdV +
λ4

h

∫
Ω(x3)

RmnAmĀndV.

Using the definitions (23) and (24) and the inequality (45), we are led to

0 ≤M(x3) ≤ F(x3) ≤ w + δ

2w

∫
Ω(x3)

∣∣TQ̄3 + T̄Q3

∣∣ dA
+
w + δ

2w

∫
Ω(x3)

[
Um

(
S̄3m+T̄3m

)
+ΦjkΛ̄3jk+Ūm (S3m+T3m)+Φ̄jkΛ3jk

]
dA, (47)
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from where we deduce that we can calculate the positive constants ν1, ν2, ν3

and ν4 so that

0 ≤ 1

h

∫ x3+h

x3

M(τ)dτ ≤ ν1

h

∫
Ω(x3)

CklmnEklĒmndV

+
ν2

h

∫
Ω(x3)

BklmnΓklΓ̄mndV +
ν3

h

∫
Ω(x3)

AjklmnrCjklC̄mnrdV (48)

+
ν4

h

∫
Ω(x3)

RmnAmĀndV.

Now we introduce the decay rate χ by

1

χ
= max

{ν1

h
,
ν2

h
,
ν3

h
,
ν1

h

}
and from (46) and (48) we obtain the following differential inequality

χ

h

∫ x3+h

x3

M(τ)dτ +
∂

∂x3

(
1

h

∫ x3+h

x3

M(τ)dτ

)
≤ 0, (49)

for any x3 ∈ [0, l − h].
Clearly, by integrating in (49) we obtain the estimate

0 ≤
∫ x3+h

x3

M(τ)dτ ≤
∫ h

0

M(τ)dτe−ix3 . (50)

But M(x3) is a non-increasing function on the interval [0, l], so we can deduce
that

M(x3 + h) ≤ 1

h

∫ x3+h

x3

M(τ)dτ ≤M(x3),

and, taking into account this inequality, from (50) we obtain the desired esti-
mate (26) and the proof of the theorem is concluded.

4. Conclusions

It should be stressed that the procedure used in this study is slightly different
from that used in the classical case of simple elastic solids. Although the
context offered by the Green-Naghdi thermoelasticity of type III for dipolar
bodies is much more complicated, the estimates describing the spatial behavior
of the harmonic vibrations were obtained in a similar manner. This behavior
is obtained only for the amplitudes for which the frequency is lower than a
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critical value, which is influenced only by the mechanical effects. It can not
be deduced that the choice of χ as above determines the best value for the
decay rate, but surely it assures an exponential decay. It can be anticipated
that the results remain valid for other end boundary conditions provided that
the heat flux and the tractions are assumed to be harmonic in time functions
and provided that the lateral boundary conditions are null.
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