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Abstract

The paper introduces Laplace-type operators for functions defined
on the tangent space of a Finsler Lie algebroid, using a volume form on
the prolongation of the algebroid. It also presents the construction of a
horizontal Laplace operator for forms defined on the prolongation of the
algebroid. All the Laplace operators considered in the paper are also
locally expressed using the Chern-Finsler connection of the algebroid.

Introduction

The Laplacian is one of the most important and therefore intensely studied dif-
ferential operator in geometry. Its main applications, in the harmonic integral
and Bochner technique theories, have been analyzed in the case of Riemann
and Kahler manifolds, where the Weitzenbock formulas and Hodge decompo-
sition theorems have been obtained. In Finsler geometry, Laplacians and their
applications have been mainly studied in P.L. Antonelli, B. Lackey [3], D. Bao,
B. Lackey [4], O. Munteanu [15] for the real case. In complex Finsler geometry,
Laplace-type operators have been considered by C. Zhong, T. Zhong [23, 24]
and C. Ida [5].
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The concept of Lie algebroid is a generalization of that of tangent bundle.
Real Lie algebroids have been studied by A. Weinstein [21], P. Popescu [17, 18],
M. Anastasiei [2], L. Popescu [20]. Complex and holomorphic Lie algebroids
have been investigated by C.-M. Marle [11], P. Popescu [19], P. Popescu, C.
Ida [6].

E. Martinez [12, 13] has introduced the notion of prolongation of a Lie
algebroid, as a tool for studying the geometry of a Lie algebroid in a context
which is similar to the tangent bundle of a manifold. In this paper, we use
this setting in complex geometry to continue the study of holomorphic Lie
algebroids from [7, 8, 9] for introducing Laplace-type operators for functions
and for forms on a Finsler algebroid.

The first section briefly recalls notions from the geometry of Finsler Lie
algebroids [7, 8] which will be used in defining the Laplace operators. The
second section presents the case of Finsler algebroids [9], when a Chern-Finsler
connection is defined from a Finsler function on the algebroid. The third
section introduces two Laplacians for functions, a horizontal and a vertical
one, following the ideas from the case of a complex Finsler manifold [23]. In
the last section a horizontal Laplacian for forms is defined and expressed in
coordinates.

Let M be a complex n-dimensional manifold and E a holomorphic vec-
tor bundle of rank m over M. Denote by w : E — M the holomorphic
bundle projection, by I'(E) the module of holomorphic sections of = and let
TceM =T'M @ T" M be the complexified tangent bundle of M, split into the
holomorphic and antiholomorphic tangent bundles.

The holomorphic vector bundle E over M is called anchored if there exists
a holomorphic vector bundle morphism p : E — T'M, called anchor map.

A holomorphic Lie algebroid over M is a triple (E, [, g, pg), where E is
a holomorphic vector bundle anchored over M, [-, -] is a Lie bracket on I'(E)
and pg : I'(E) — I'(T"M) is the homomorphism of complex modules induced
by the anchor map p such that

[s1, [s2]e = f[s1,82]E + pE(s1)(f)s2 (0.1)

for all s1,s2 € I'(E) and all f € H(M).

As a consequence of this definition, we have that pg([s1, s2]r) = [pr(s1),
pE(s2)]7 ar [11], which means that pg : (T'(E), [, |g) = (D(T"M),[-,-]) is a
complex Lie algebra homomorphism.

Locally, if {zk}k:ﬁ is a complex coordinate system on U C M and
{ea}totmm is a local frame of holomorphic sections of E on U, then (2", u®)
are local complex coordinates on 71 (U) C E, where u = u®e,(z) € E.
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The action of the holomorphic anchor map pg can locally be described by

pE(€a) = %@7 (0.2)
while the Lie bracket [-,-]g is locally given by
leas e8]m = € gy (0.3)

The holomorphic functions pf = pk(z) and Cas = CJls(z) on M are called
the holomorphic anchor coefficients and the holomorphic structure functions
of the Lie algebroid FE, respectively.

Since F is a holomorphic vector bundle, the natural complex structure acts
on its sections by Jg(en) = ie, and Jg(€,) = —iéy. Hence, the complexified
bundle E¢ of E decomposes into Ec = E' @ E”. The local basis of sections of
E' is {eq} 417> while for E”, the basis is represented by {€, := €a},—17-
Since pg : T'(E) — T'(T" M) is a homomorphism of complex modules, it extends
naturally to the complexified bundle by p’(en) = pr(eq) and p”’(es) = pr(es).
Thus, we can write pp = p’ @ p” on the complexified bundle, and since E is
holomorphic, the functions p(z) are holomorphic, hence p¥ = p% = 0 and

&= Pk

As a vector bundle, the holomorphic Lie algebroid E has a natural structure
of complex manifold. As usual in Finsler geometry, it is of interest to consider
the complexified tangent bundle TcE. Two approaches on the tangent bundle
of a holomorphic Lie algebroid E were described in [8]. The first is the classical
study of the tangent bundle of the manifold F, while the second is that of the
prolongation of E. The latter idea appeared from the need of introducing
geometrical objects such as nonlinear connections or sprays which could be
studied in a similar manner to the tangent bundle of a complex manifold and
therefore this setting seems more attractive for studying Finsler structures.

1 The prolongation of a holomorphic Lie algebroid

We briefly recall here the construction of the prolongation algebroid, as defined
in [12, 13] in the real case and described in detail in [7, 8] for the holomorphic
case.

For the holomorphic Lie algebroid E over a complex manifold M, its pro-
longation was introduced using the tangent mapping 7, : TE — T'M and the
holomorphic anchor map pg : E — T'M. Define the subset 7’F of E x T'E
by TE = {(e,v) € ExXT'E | p(e) = m,(v)} and the mapping 7y : T'E — E,
given by 7l (e,v) = mg(v), where 7, : T"E — E is the tangent projection.
Then (T'E,nl, E) is a holomorphic vector bundle over E, of rank 2m. For
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this reason, we can introduce on T'FE some specific elements (for instance,
the Chern-Finsler connection) from complex Finsler geometry. Moreover, it
is easy to verify that the projection onto the second factor pfy : T'E — T'E,
p5 (e, v) = v, is the anchor of a new holomorphic Lie algebroid over the complex
manifold E.

The holomorphic Lie algebroid E has a structure of holomorphic vector
bundle with respect to the complex structure Jg. Let Ec be the complexified
bundle of E and TcE = T'E & T"E, its complexified tangent bundle. A
similar idea to that of Martinez [13] and Popescu [20] in the real case leads
to the definition of the complexified prolongation JcE of E as follows. We
extend C-linearly the tangent mapping «, : T'F — T'M and the anchor
pe + E — T'M to obtain m.¢c : TcE — TcM and prc : Ec — TcM,
respectively. If mg ¢ : TcE — Ec is the tangent projection extended to the
complexified spaces, then we can define the subset TcE of F¢ x T E by

TcE = {(671)) € Ec xIcE | pE’C(e) = 71'*,((;(1})}

and the mapping 7y ¢ : TcE — E¢ by 7y c(e,v) = g c(v). Thus, we obtain
a complex vector bundle (T¢E, 7y ¢, Ec) over Ec. Also, the projection onto
the second factor,

prc:TcE = TcE, pyclev)=w,

is the anchor of a complex Lie algebroid over E¢, called the complexified pro-
longation of E.

The vertical subbundle of the complexified prolongation is defined using
the projection onto the first factor 7 : 'E — E, 11(e,v) = ¢, by

VI'E =kert = {(e,v) € TE | 11(e,v) = 0}.

Any element of VJ'E has the form (0,v) € E x T'E, with 7 (v) = 0, thus
vertical elements (0,v) € VI’E have the property v € ker 7. By conjugation,
we obtain VJ”E and the complexified vertical subbundle of the prolongation
TcEis VIcE=VITE®VI'E.

The local basis of holomorphic sections in I'(T'E) is {Zq, Vs }, defined by

) mo-(at])

} is the natural frame on T'E. Therefore, a local basis of

2a(0) = (a0, o 5

0
Where {azk, @
sections in I'(TcE) is {Za, Va, Za, Va}, where Z5, V5 are obtained by conju-
gation.
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For a change of local charts on E with the transition matrix M,
F=7F), = Mg,
the basis of sections on E, {e,}, changes by the inverse W := M1,
Co = Whes, (1.1)

the local coefficients of the anchor map, p¥, change as

- oz*
Pa=Wirhs (1.2)
. o 0
while the natural frame of fields 95 Do from T'E changes by the rules
zF’ Ou
7k oMY
o 0z 0 5 g 0 (1.3)

0zh ~ 9zh 0%k | 0zh | oue
o ., 0
ouP P gue’
see [8] for more details. E is a complex manifold, such that all of the above
rules can also be conjugated.
The rules of change for the local basis of sections {Zy,Va, Za,Va} from
[(TcE) are:

n OMZ

Zﬂ ZWE (Za—p Oh

Vs = W§Va,

W,;UE\L—) ,

together with their conjugates.
We shall further use the well-known abbreviations

0 0] . 0 0
—— =0 73:&1,7,5: k' A—n
Ok M Gue ozk k due
Locally, we describe the action of the anchor map py on TE by
p‘T(Za) = P(kﬁk =: Oq, pﬂ'(va) = 3(17
p7(Za) = pe0y =: 0a,  pr(Va) = Oa.

= 8@.

2 Nonlinear connections on J'F

In [8], we have considered an adapted frame on T’ F given by a complex nonlin-
ear connection. In [9], we have introduced a complex nonlinear connection of
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Chern-Finsler type on the holomorphic prolongation 7’E. Here we only recall
the notions we need for defining Laplace type operators on the holomorphic
Lie algebroid.

A complex nonlinear connection on J'E is given by a complex vector sub-
bundle HT'E of T'E such that 'E = HT'E @ VI'E. A local basis for
the horizontal distribution HJT'E, the adapted frame of fields on T'E, is
{Xo =20 — NBV5, V. }, where NkB are the coefficients of a nonlinear connec-

tion on T'E and N = pk N, f: are functions defined on F, called the coefficients
of the complex nonlinear connection on T'E. We have

pﬂ'(xa) = 6& = pz(ska

where {0 = Oy — N,fég} is an adapted frame on T'E [9].
The rules of change for the adapted frame {X,,V,} are

Xo = WEXs,
Vo = WEV.

On the complexified prolongation bundle, a complex nonlinear connection
determines the splitting of TcE as

JoE = HTcE @ VIcE @ HICE @ VICE (2.1)

such that an adapted frame {X,, V4, X5, Va} is obtained on T¢ F with respect
to the complex nonlinear connection.

Proposition 2.1. The Lie brackets of the adapted frame {Xq, Vo, X, Va} are

]
[Xa Xgl7 = (85N V5 — (0aNF) V5,
[Xas Vslo = (95N2) V-,
[Xa, Val = (95N2)Vs,
Va, Vs]r =0,
[vagh =0,

where
Ry = CogNY — 0N + 05N,
The dual of the adapted frame is {Z%,§V* = V* + Ng 28}, where {2%,V}
is the dual frame of {Z4, V4 }.



LAPLACE OPERATORS ON HOLOMORPHIC LIE ALGEBROIDS 147

In [9], following the ideas from [1], we have introduced the Chern-Finsler
nonlinear connection of the prolongation 7’E. If F : E — R, is a Finsler
function on E [9], i.e. it is homogeneous, and the complex Finsler metric
tensor

hog = 0a03F,
is strictly pseudoconvex, then
N8 = h?89,0,F

are the coefficients of the Chern-Finsler nonlinear connection of the prolon-
gation T'E. Also, a Chern-Finsler linear connection of type (1,0) on T'FE is
given by . o
Lo?ﬁ = h%703(haz), CojB = h?708(has)-
Its connection form is
wl = L)s2% + CJyoV7.
Also, we note that
C(]B = Cﬁva (2.2)

and .

L(;YB = 6aNg. (2.3)
The prolongation algebroid J'F is called Kahler Finsler algebroid if

LI, =L%, (2.4)

see also [9] for more details.
If we denote by h = det(h,z), then using similar reasons as in the case of
a complex Finsler manifold [23] we get

Lb, =da(Inh), CJ =0da(Inh). (2.5)
A metric structure on the complexified prolongation J¢FE is given by
G = hop2® @ 2P + hopoV* @ 6V (2.6)

Next, we shall express the covariant derivatives of tensor fields on 7' E with
respect to the Chern-Finsler connection, following the ideas from the case of
a complex Finsler manifold ([23]). A complex horizontal covariant tensor field
is given by

1

_ - 3 3
_ZT(]!TU”' “Bq(Z,’u,)Zal/\.../\Zap/\Z’1/\.._/\2’(]’

apfi.
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where for the changes (1.1), the local components T, . 3,3, (%, u) change
by the rules

Ta1...ap31‘..5q (37 ﬂ) = T’Y1.-»’yp€1...5qM71 Lo MYPME L M.

a1 Ap Bl Bq

Similarly, we can define a horizontal contravariant tensor field, whose local
components, T*~-»51--Ba(z ), change as

Toeobioba(Z ) = T Sayen  Wweewh Wi,
1 P q

The differential of a function f on the complexified prolongation TcFE is
locally expressible as

df = (0 f)Z% + (Daf)OV™ + (0 )2 + (Daf)oV.

With respect to the (2.1) decomposition of the prolongation, the differential
can be written as

df =" f+0°f+0"f +0'f,

where
_ af f « v A a _ af o
Mf=(6.1)2% = ( PagE — NP o >z » 0 = (0af)OVY = 2oV,
_ 8f af a au (9. a _ af a
OMf = (6af)2% = ( Pa R Nfa B)z » 0 = (0af)OVE = 26V

In particular,
dz® = —7030(2, NZ —fC—CVZB/\Z, dV* =0
2 2 B ’ '

We shall now restrict our considerations on the horizontal bundle HTE of
the prolongation and describe the horizontal derivatives of tensors with respect
to the Chern-Finsler connection of the prolongation.

First, we define in a classical manner the horizontal covariant derivative of
a horizontal covariant tensor field T,,, ., 3,..3,(2,u) as

p
VXWTal...apBI.“Bq:xV(Ta apﬁ_l Bq _ZTal.A.ai,18a¢+1“.ap,31 BqL )

i=1

q
vx:YTal~~~apBI~-~Bq = xV(TOé apfBi... ZTal~~Otp31--~Bj—155j+1-~~BqL§j"y'
j=1
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Further, the horizontal covariant derivative of a contravariant tensor
Tor-awBr-Ba(z v) is defined by

p
vx Tal...apﬁl...ﬁq — xry(Tal...ozpél...Bq) + Tozl...(11;_16(11,+1...apgl...BqL (673
~ g

ey
i=1

_ _ _ _ q _ _ _ _ _
vx:yTal...apﬁl.“ﬂq _ x:/(Tal...(xpﬁl.“ﬂq) =+ ZTozl...ocpﬁl..Aﬂj,léﬁjJFl.“ﬂng%j'
Jj=1

The vertical covariant derivatives can be defined in a similar manner.

3 Vertical and horizontal Laplace type
operators for functions on F

In this section, we shall define vertical and horizontal Laplace type operators
for functions on the prolongation TE (we drop the index C), following the
ideas from the case of complex Finsler bundles [23, 5]. For this purpose, we
need to define the divergence of a vector field on TE and the gradient of a
function on TE.
First, we consider the Hermitian form associated to the metric structure §
from (2.6),
® =ih,z(2* N2+ 6V AGVP) = " + 3V (3.1)
Denote by
h\ym -m m(m=-1) 1 m 1 m
(@)™ =¢"(-1)" 2z mhZ A ANZT"ANZ Ao AT

(m—1)

(@)™ = i™(=1)" 7 mlh VI A AV ASVIA - A VT,

such that we can associate with § a volume form on TE by

1
(2m)!

v = 2 = 2™ B2 L AL A SV A DY, (3.2)

where
Z=2ZYAN- A2, SV =6VEA - ASY™

and their conjugates.
Let Z = Z°Xo + VYV + Z%X5 + V3V € T(TE). The divergence of Z is
defined by the classical equation

LzdV = (div Z)dV,

where £z is the Lie derivative.
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The expression of Z according to the splitting (2.1) gives the following
decomposition of the divergence of Z:

div Z = div" Z + div® Z + div" Z + div® Z,
where div' Z = div Z", div’ Z = div 27, div Z = div ZE7 div’ Z = div Z°.
In particular, on T7'E, we have

Proposition 3.1. The components of the divergence of Z = Z*Xo+ VYV, €
(T'E) are
div* Z = Vo Z% — Z%Lo — Z°C,, (3.3)
div' Z =Vy V*+Ve0,,

(3.4)
where we have denoted Lo = Ly — L, Co = Cly = CJ and Co = €[},
Proof. Using Proposition 2.1 and (2.3), we obtain:

[Z,X3] = (Zaegﬁ —65(Z27)) X, + (ZO‘RJB —05(V7) — V"‘L;ﬁ)\?v,
[Z, :XB] = —55(27)3(:7 + (ZO‘(SB(N(;Y) — (55(‘/7))\77
- (Zaéa(Ng) + Vaaa(Ng))v%
(2,V5) = =03(27)Xy + (Z2°L3, — 0s(V7)) V5,
(Z2,V5] = —05(Z7)Xy + (Z2%05(N2) — 95(V")) V.
Then, from the definitions of the covariant derivatives, we get

Vo, 2% = 6a(Z%) + Z°L[},

Vv, V= 0,(VY) +VeC),.
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From the definition of the divergence, we have

(div Z)h2 = (div Z)dV(X1, .- ., Xoms X1 o+ o Xirs Vi e ooy Vs V1o o, Vi)
= (L2dV) (X1, Xoms Xs e s Xors Vi ooy Vs Vi
:Z(dv((xla"'axmvxiw"7xﬁuvlv"'vvmaviv"‘vvm)))

=) dV(Xy, . X, [Z, X)X, Xy
B=1

= AV X X (2, X)X X )
B=1

= AV Ve Ve [ 2V, Ve Vi)

= AV Ve V5 (2,98 Ve Vi)

= Z(h?) — (2°CL, — 05(Z°) + Z°Lj, + 95(V7))h2.
Hence,

div' Z = h™22°%a(h?) — 2°Cl, + 65(2°) — Z°L},
=220 80 (h) — Z°€CLy + 05(2°) — 2° L},
=2200(Inh) — Z2°€y +05(2°) — Z2°LJ,
=Z°Lp, — Z°Cl + 6(2%)
=V, Z% — Z°Lo — Z*C4,

div’ Z = h=2V eV, (h?) + dp(VF)
=2V, (In h) + dg(V?)
=2VC) + 0a(V)
= Vy VO V0,

O

Note that, for a K&hler Finsler algebroid, the condition (2.4) yields L, = 0,
thus
div" Z = VX — X?C,.

The following step is defining the gradient of a function, which can be
introduced in a classical manner by

S(Zgrad f) = Zf, VZ eT(TE),
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and decomposing it in the adapted frame of T'F as
grad f = grad” f + grad” f,
where ) o
grad” f = h7%(05 f)Xa, grad’ f = hP(D-f)Vs. (3.5)

We will define two Laplace operators for functions, a horizontal and a
vertical one. The horizontal Laplace operator for functions on the prolongation
algebroid is

AP f = (div o grad™) f, (3.6)

and the vertical one is
A"f = (div’ ograd”)f. (3.7)

The expressions for the two Laplace operators are given in the following

Proposition 3.2. For a function f € C*(E), we have

AN f = L6 [R5, )] ~ [0 )€ (3.8)
and
AVf = %(% [Rh7% (05 )] + [T (95.f)] Ca- (3.9)

Proof. Using (3.3), (3.5), (3.6), (3.7) and (2.5) we obtain:
A" = Vo [W7(056)] = BT (03 f)La = B7%(85f)Ca
= 6 [W7(051)] + W (85 )L, — K7 (65f)Ca
= L[B035 )] — B (55 )€
Also,
AVf =Yy, [%051)] + h7*(d5f)Ch
= 0a[W7(05 )] + 207%(95f)Ca
- %aa (WD (9 £)] + h7(D5.f)Ca.
O

We note that the two Laplacian operators can also be expressed in terms
of the covariant derivatives with respect to the Chern-Finsler connection as
follows:

Alf =11 [V, Va f—Cq (Va f)]
Af = h1% [Vy, Vy_ f+ Ca (Vv, f)]
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In the end of this section, following [23], we will prove a result which will
be used in the last section to obtain the expressions of a horizontal Laplace
operator for forms.

Lemma 3.1. If Z = Z*X, e T(HT'E), then
(div Z 4+ €M)dV = d[izdV], (divZ + CM)dV = d[izdV), (3.10)
[ — [ IB
where C" = Z°@, = Z Cos-
Proof. First,

izdV = (=1)*"'Z*1*2* AT NSV NGV,

where we have denoted 2% = ZL A - AZX A -+ A 2™ Also,
d(6V7) = d(VF + NP2)
= 6a(NO)ZX A2 + 6—(N5)Zd A2+ 0o (ND)SVH N 2D

. _ 1 _
+ 0s(NJ)SZH A 2T — NBG"’ ZONZE - SNJCLZT N 2f

vy Yae
1 1 .
= [5Q(N5) - Nf@jv] Z* A2 + {&AN,?) - gNPeg, [z Az

+ 0a(NE)SV* A 27 + 05(NP)IZX A2,

Thus,
dlizdV] = ZZ )*105(2°h*) 2P A Z* AT A SV NSV
+ZZ _1 a—1+2m,—1+ﬁ—1ZothZd /\Z
ASVEA - Ad(BVEYA - ASV™ A GV
= [0a(Z2°h*) — Z*L 5, hJZ NZ A 6V A GV.
But

0a(Z°h2) — ZOLj h? = [6a(Z%) — 22°6a(Inh) — Z°L[ |h?
= [0a(2*) + Z*L},)1?

= [V, 2% — Z®La)h?

= [div" Z + Z%L,]h?,

such that the first identity is proved. The second identity can be obtained by
conjugation. O
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Using this and (3.3), we get

Proposition 3.3. If Z = Z*X,, is a horizontal field with compact support on
the prolongation of a Finsler algebroid, then

/ (Vo Z% — ZLo)dV = 0, / (Vo Z6 — Z6L)dV =0.  (3.11)
B B
In the case of Kéahler Finsler algebroids, (3.11) becomes

/ Vo, ZdV = 0, / Ve, Z0dV = 0. (3.12)
E E

4 A horizontal Laplace operator for forms on the pro-
longation algebroid TE

In this section we define a horizontal Laplace-type operator for forms with
compact support defined on the prolongation of a Finsler algebroid.

Consider two horizontal forms with compact support on TE, ¥ and &,
locally defined by

1 —
= WZZ’APBQ 24 N 2P,

where we have denoted the multi-indices A, = (a1 ...ap), By = (81 ... 53,) and
24p = ZOUN- L NZOP, Zp, = 281 A~ AZPr. We have considered here that the
coefficients of the forms are functions defined on E, i.e., ¥4 5, = ¥4, 5, (2 v)
and d)Aqu = ¢A,,Bq (z,u), as in the following we will consider the integrals
over E.

We now define

1 —_— —
< \I/’ @ >= MwAquququ = ZwAqu¢Aqu’ (4.1)

where the sum is after aq < -+ < ayp, 81 < - -+ < B, and ¢p#Ba = ¢@1--@fi--fa =
Puy.opipin...7g B .. hOerepPBL pPaBa - This inner product is independent
of the local coordinates, such that < ¥, ® > is a global inner product on FE.
In particular, the "norm” of a form WV is defined by

1
V? =< 0, ¥ >= WszpngAqu
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By using the volume form (3.2), we can now define a global inner product
on the space of horizontal forms on TE as

(xp,cp)z/ <V, 0> dVv, \|x1:||2=/ <V, ¥ > dav. (4.2)
E E

Similarly to the case of complex vector bundles, [14, 16], we define hori-
zontal differentials of horizontal (p, ¢)-forms by

p+1
@"9) 4 5, = D () 00 Wy B
i=1
(ah‘l’)APEq+1 = (_1)P Z;(_l)z—léﬁi (’(/)Apﬁl...éi.--ﬁﬁ-l). (43)

For the case of Kédhler Finsler algebroids, we can use the identity (2.4)
to replace these horizontal derivatives by the horizontal covariant derivatives,
that is,

p+1
h i—
(8 \I/)Ap+1§q = Z(_l) 1V:x:a71 wal...di“.ap+1§q’
=1
q+1
ah _ i—1 .
(3 \II)AIDE(IJrl - (_1)1)2(_1) vDCgiwApgll__Bi_“/qua

Following the usual steps in defining a Laplace operator for forms, we now
need to introduce the adjoint operators of 9" and 9" with respect to the inner
product (4.2). Denote by 9* and 9*" the two adjoint operators. We have

O Apf(HTE) = Ap g1 (HTE), (0"¥,®) = (¥,0""V),
oA, JHTIE) = A, 1 (HTE), (0"¥,®) = (V,9*"V),

where A, ,(HTE) denotes the space of horizontal forms of (p,q)-type with
compact support on the prolongation algebroid.

We are interested in expressing the adjoint operator 9*”. For this purpose,
let U € A, ,—1(HTE) and ® € A, ((HTE). Then, a similar computation to
the one from [23] leads to

(0" ®)AeP2Pu = —(—1)Ph =25, (¢ 0P Pap?) (4.4)

= _(_1)]) Z[6B1 + 26ﬁ1 (ln h)}(bApBl“ﬂqv
B1



LAPLACE OPERATORS ON HOLOMORPHIC LIE ALGEBROIDS 156

which, by lowering the indices, gives
(0"®) 4, 5,..5, = (“VPhT0,(d4,25,..5,)- (4.5)

We can now introduce a horizontal Laplace operator, 0" : A, ,(HTE) —
Ay o(HTE), by setting

0" = 9" 0 9" + 9" 0 O". (4.6)
The expression of (0" is given in the following

Theorem 4.1. The horizontal Laplace operator for a horizontal differential
form ® € A, ((HTE) on the prolongation of a Finsler Lie algebroid is given

by
(005, = =17 (8,000 5,) = S0 0300, 5 )
(4.7)
Proof. From (4.3) and (4.5) we have

(5h ° 5*h(1))AP§q — Z(_l)i—lhé’Y((SBi ¢} 5’Y)(¢Apégl---éi”w§q).

Also,
@000, 5, = 1 (6, 060)(04,5,) - S 16,200,055
and (4.7) follows immediately. O

Let us now consider the case of Kéhler Finsler algebroids, when using (3.12)
yields

/E Vs (¢APBQ¢APBB‘1>CW =0

and a similar computation as in the case of a Kéhler Finsler manifold [23]
leads to

Theorem 4.2. On a Kdihler Finsler algebroid, the horizontal Laplace operator
for a horizontal differential form on TE is

(Dhq))Apgq = _héwvxw © ng (¢Ap§q) + Z h [vx“f ’ Vxﬁi]asApéBlmEinq.

(4.8)



LAPLACE OPERATORS ON HOLOMORPHIC LIE ALGEBROIDS 157

References

[1]

2]

T. Aikou, Finsler geometry on complex vector bundles, Riemann Finsler
Geometry, MSRI Publications, 50, p. 85-107, 2004.

M. Anastasiei, Geometry of Lagrangians and semisprays on Lie alge-
broids, BSG Proc., 13, Geom. Balkan Press, Bucharest, p. 10-17, 2006.

P.L. Antonelli, B. Lackey, The Theory of Finslerian Laplacians and Ap-
plications, Dordrecht, Kluwer Acad. Publ., 459, MATA, 1998.

D. Bao, B. Lackey, A Hodge decomposition theorem for Finsler spaces,
C.R. Acad. Sci. Paris, 323, Serie 1, p. 51-56, 1996.

C. Ida, Vertical Laplacian on complex Finsler bundles, Acta Math. Acad.
Paedagog. Nyhazi.(NS) 26, p. 313-327, 2010.

C. Ida, P. Popescu, On Almost Complex Lie Algebroids, Mediterr. J.
Math., 13, no. 2, 803-824. Zbl 1341.32021, 2016.

A. Tonescu, On holomorphic Lie algebroids, Bulletin of Transilvania Univ.,
Vol 9(58), No. 1, 2016.

A. Tonescu, G. Munteanu, Connections in holomorphic Lie algebroids,
Mediterr. J. Math., 4, 14:163, 2017.

A. Tonescu, Finsler structures on holomorphic Lie algebroids, Novi Sad J.
Math., 47, no.2, p. 117-132, 2017.

C. Laurent-Gengoux, M. Stiénon, P. Xu, Holomorphic Poisson manifolds
and holomorphic Lie algebroids, Int. Math. Res. Not IMRN rnn88, 46,
2008.

C.-M. Marle, Calculus on Lie algebroids, Lie groupoids and Poisson man-
ifolds, Dissertationes Mathematicae, Inst. Math., Polish Acad. Sci. 457,
57, 2008.

E. Martinez, Lagrangian mechanics on Lie algebroids, Acta Applicandae
Mathematicae, 67, p. 295-320, 2001.

E. Martinez, Geometric formulation of mechanics on Lie algebroids, Proc.
of the VIIIth Workshop on Geometry and Physics (Medina del Campo,
1999), vol. 2 of Publ. R. Soc. Mat. Esp., p. 209-222, 2001.

G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton geome-
tries, Kluwer Acad. Publ., Dordrecht, 2004.



LAPLACE OPERATORS ON HOLOMORPHIC LIE ALGEBROIDS 158

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

O. Munteanu, Weitzenbock formulas for horizontal and vertical Lapla-
cians, Houston J. of Math, 29(4), p. 889-900, 2003.

G. Pitig, G. Munteanu, v-cohomology of complex Finsler manifolds, Studia
univ. Babes-Bolyai, 18, p. 75-81, 1998.

P. Popescu, Almost Lie Structures, Derivations and Curvature,
Rev.Roumaine Math. Pures Appl., 37, 9, p. 779-789, 1992.

P. Popescu, On generalized algebroids, New Developments in Differential
Geometry, Ed. J. Szenthe, Kluwer Acad. Publ., p. 329-342, 1998.

P. Popescu, Poisson structures on almost complex Lie algebroids, Int. J.
of Geom. Methods in Modern Physics, 11 (08), 2014.

L. Popescu, Geometrical structures on Lie algebroids, Publ. Math. Debre-
cen 72 (1-2), p. 95-109, 2008.

A. Weinstein, Lagrangian mechanics and grupoids, Fields Inst. Comm.,
7, p. 206-231, 1996.

A. Weinstein, The integration problem for complexr Lie algebroids, in
Maeda, Yoshiaki (ed.) et al., From geometry to quantum mechanics. In
honor of Hideki Omori, Basel: Birkhéuser, Progress in Mathematics, 252,
p.- 93-109, 2007.

C. Zhong, T. Zhong, Horizontal 0-Laplacian on complex Finsler mani-
folds, Sci. in China, Ser. A, Math., 48(s), p. 377-391, 2005.

C. Zhong, T. Zhong, Hodge decomposition theorem on strongly Kdhler
Finsler manifolds, Sci. in China, Ser. A, Math., 49(11), p. 1696-1714,
2006.

Alexandru IONESCU,

Department of Mathematics and Computer Science,
Transilvania University of Bragov,

Tuliu Maniu Blvd., 50, 500091 Bragov, Romania.
Email: alexandru-codrin.ionescu@unitbv.ro



