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Abstract

In this article, we focus on modules M such that every homomor-
phism from a projection invariant submodule of M to M can be lifted to
M. Although such modules share some of the properties of PI-extending
(i.e., every projection invariant submodule is essential in a direct sum-
mand) modules, it is shown that they form a substantially bigger class
of modules.

1 Introduction

Throughout this paper, let R be a ring with identity and let all modules be
unitary right R-modules. Let M be a module. The injective hull of M is
denoted by E(M). A submodule K of M is projection invariant (denoted by
K <, M) provided K is invariant under every idempotent endomorphism of
M (see [3], [5]). Note that the set of projection invariant submodules of a
module M forms a sublattice of the lattice of all submodules of M.

A module M is called an extending module, or a CS-module, if every sub-
module of M is essential in a direct summand, or, equivalently, if every closed
submodule of M is a direct summand. This condition has proven to be an im-
portant common generalization of the injective and semisimple module notions
(see, [4], [11]). In [3], the extending condition relative to various sets of sub-
modules have been investigated. Recall that a module M is called Pl-extending
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if every projection invariant submodule is essential in a direct summand of M.
In the papers [14] and [16], the authors studied the following property, for a
module M:

(P,) : For every submodule K of M such that K can be written as a finite
direct sum Ky & Ko & ... & K,, of complements K1, Ko, ..., K, of M, every
homomorphism « : K — M can be lifted to a homomorphism 8 : M — M.
Following an idea from [16], we are concerned with the study of self-p-injective
modules, i.e., modules M that satisfy the condition that every homomorphism
from a projection invariant submodule of M to M can be lifted to M. Observe
that the aforementioned property is equivalent to that of every homomorphism
from a finite direct sum of projection invariant submodules of M to M lifts
to M. Extending and PI-extending modules are examples of self-p-injective
modules. Our investigation focuses on the behavior of self-p-injective modules
with respect to direct sums and direct summands. To this end, we provide
algebraic geometrical examples which show that being self-p-injective is not
inherited by direct summands. In contrast, we prove that any direct sum of
self-p-injective modules enjoys with the property. Moreover we obtain useful
characterizations and direct sum property on relatively p-injective modules.
Finally, we give examples which show that there is no implication between
self-p-injective and tight concepts. Recall that a module M is said to be right
tight (resp.,right M-tight) if every finitely generated (resp., cyclic) submodule
of E(M) can be embedded in M (see [1], [6]).

Recall the following conditions for a module M.

(Cs): every submodule of M can be embedded in a direct summand of M.

(C3): for all direct summands K and L of M with KNL = 0, the submodule
K & L is also a direct summand of M.

Observe that Co implies C3 by [11, Proposition 2.2]. Recall further that,
a ring is called Abelian if every idempotent is central. Other terminology and
notation can be found in [2], [4], [10], and [11].

2 Direct Summands and Direct Sums

In this section, we concern ourselves with direct summands and direct sums
of self-p-injective modules. We provide examples which show that, in general,
direct summands of a self-p-injective module need not to be self-p-injective.
Amongst some affirmative answers for the former closure property we also
prove that any direct sum of self-p-injective modules is again self-p-injective.

Lemma 2.1. Let M be an indecomposable module. Then the following state-
ments are equivalent.
(1) M is quasi-injective.
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(ii) M is extending.
(#9i) M is PIl-extending.
(iv) M is self-p-injective.

Proof. (i) = (i) Obvious.

(#4) = (#41) Clear from [3, Proposition 3.7].

(73i) = (iv) Let X be a projection invariant submodule of M and ¢ : X —
M be a homomorphism. Then there exists a direct summand D of M such
that X is essential in D where M = D @ D’. Let 7 be projection map on X
in D. Then define o : M — M such that o = pm. It can be easily seen that
a lifts . Hence M is self-p-injective.

(tw) = (i) Since M is an indecomposable module, every submodule of M
is projection invariant. Then it is clear that self-p-injectivity implies quasi-
injectivity. O

Observe that every quasi-injective module is self-p-injective. However there
are self-p-injective modules which are not quasi-injective. For example let
My, = (Z/Zp)®Q where p is any prime integer. Then My is not quasi-injective
but it is self-p-injective by Theorem 2.8. Note that every PI-extending module
is self-p-injective. But the converse of this result is not true, in general. For
instance, let M be the Specker group, My = [[;=, A; with A; = Z for any
positive integer i. Then it can be checked that My is not PI-extending by [5],
but it is self-p-injective by Theorem 2.14.

The next example shows that direct summands of self-p-injective modules
need not to be self-p-injective, in general.

Example 2.2. (See, [3, Example 5.5] or [17, Example 4]) Let R be the real
field and n be any odd integer with n > 3. Let S be the polynomial ring
R[z1,...,x,] over R in indeterminates x1,...,2,. Let R be the ring S/Ss,
where s = 23 + ...+ 22 — 1. Then the free R- module, the countable direct sum
M = RM™) of copies of R is self-p-injective which contains a direct summand
Kpgr which is not self-p-injective.

Surprisingly, we may provide more examples in the next result which is

based on certain hypersurfaces in projective spaces, Pg+1 over complex num-
bers.

Theorem 2.3. Let X be the hypersurface in Pg+1, n > 2, defined by the
equation xi' + " + ...+ 2 = 0. Let R = Clxy, ..., Tnp1] /(O 4 1) be
the coordinate ring of X. There exist self-p-injective R-modules but contain
direct summands which are not self-p-injective for m > n + 2.
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Proof. By [12], there are indecomposable projective R-modules of rank n over
R. It follows that Fr = K & W where Fg is a free module, K is indecom-
posable and projective R-module of rank n. From [3, Corollary 4.11], Fg is
Pl-extending and hence it is self-p-injective. Now K is not uniform. Thus
K is not Pl-extending so it is not self-p-injective by Lemma 2.1. O

However, we deal with some special cases when the self-p-injectivity is
inherited by direct summands in the following results.

Proposition 2.4. Let M = My & My where My and Ms are projection in-
variant submodules of M. If M is self-p-injective then My, My are also self-
p-injective.

Proof. Let Ny be a projection invariant submodule of M; and ¢ : Ny — My
be a homomorphism. Since N; is projection invariant submodule of M; and
M, is projection invariant submodule of M, then N; is projection invariant
submodule of M. Observe that tp : Ny — M where ¢ is inclusion map. Then
there exists 0 : M — M such that 0 lifts to tp. Define v : M7 — M; by
v(my) = 6(mq). Tt is clear that ¢ can be extended to . Then M; is self-p-
injective. Similarly, it can be shown that M, is also self-p-injective. O

Corollary 2.5. Let M = My ® M, for submodules My and My of M with S =
End(Mg) an Abelian ring. If M is self-p-injective then any direct summand
of M is also self-p-injective.

Proof. Let m: M — My be projection map with ker(r) = M;. Let e = e? € S.
Since S is Abelian, e(ker(m)) C ker(w). Hence M; is projection invariant in
M. Now, apply Proposition 2.4 which yields the corollary. O

Proposition 2.6. Let M = My & My where My, My < M such that Ms is
a projection invariant submodule of M. If M is self-p-injective then My is
self-p-injective.

Proof. Let N be projection invariant submodule of M7 and ¢ : N — M; be
a homomorphism. Then N @ M, is projection invariant in M by [3, Lemma
4.13]. Now consider 8 = vpm where m1 : N @ My — N is projection and
t: My — M is inclusion. Thus there exists v : M — M such that ~ lifts to 6.
Hence

vy(n 4+ msg) = 0(n+ ms) = wem (n+my) = p(n).

Define 7 : M7 — My by 7 = w3 where 3 is a restriction of 6 to M; and
m: M — My. Thenlet n € N. 7(n) = nf(n) = m0(n) = p(n). Thus ¢ can be
extended to 7 so M is self-p-injective. O
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Proposition 2.7. Let M = My ® My for submodules My, My of M. If M is
self-p-injective then ¢ : N — M can be lifted to 0 : M — M for all projection
invariant submodule N of M.

Proof. Let N be projection invariant submodule of M; and ¢ : N — M be a
homomorphism. Then 71 € Hom(N, M;) where 1 : M — M;. Then there
exists 6 : My — M; such that 71 can be lifted to 6. Define v : M — M by
v = 0m;. It is easy to check that ~ lifts to ¢. O

Theorem 2.8. Any direct sum of self-p-injective modules is self-p-injective.

Proof. Let My (A € A) be a nonempty collection of self-p-injective modules.
Let M = & My and ¢ : N — M be homomorphism where N is a projection
AEA

invariant submodule of M. Let A" be a nonempty subset of A. Consider the
set
H={N,K'a,0)|N CAK QM = ® Myand o/ : K’ — M’
AEN
homomorphism with 6" : M’ — M’ such that 8’ lifts to o’}

which becomes a partially ordered set by the componentwise order < defined
by

(A1, Kq,a1,601) < (Ao, Ko a,02) & Ay C Ay, K C Ko,
ag |k, = a1 and 01 = mlae

where 7 is canonical projection from @& M)y to @ M) and ¢ is natural
AEA, AEA:
inclusion from & M), to & M,.
AEA; AEA,

Since M) is self-p-injective for all A € A, the identity map ¢ can extend to
0 : My — M,. Hence ({\}, My,¢,0) € H so H # &. Applying Zorn’s Lemma,
we can find a maximal element (A1, K1,a1,61) in K.

We claim that A = A;. Suppose not, then there exists u € A, pu & Aj.

Let Ao = Ay U{u}and M = @& My= & My@ M, =M & M,. Since
A€A2 AEA;
M, is self-p-injective, then for any projection invariant submodule IV, of M,

and o, : K, — M,, homomorphism, there exists 8, : M,, — M, such that 0,
extends to ¢,. Observe that K; @ K, is projection invariant in M " Consider
the homomorphism v : K1 ®K,, — M" such that Y(k1+ky) = an (k1) +au(ky).
It is clear that e>l</tends to ay. Define ”9 M = M by 8 = 61m1 +
0,m2 where 7y : M — M’ and mp : M — M,. Let m’ € M'. Then
mOu(m’) = w(O1mi(m') + 0,me(m’)) = w01 (m') = 61(m'). Hence 6; = wb..
Now (Ag, K1 & K,,,7,0) € 3. Note that (A1, K1, a1,61) < (A2, K1 K, 7,0)
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which contradicts the maximalitiy of (A1, K1, @1,671) in K. Therefore A = Aq,
so M = @ M, is self-p-injective. O
AEA

Corollary 2.9. Any direct sum of modules which are Pl-extending (resp.,
quasi-injective, extending or uniform) is self-p-injective.

Proof. Immediate by Theorem 2.8. O

Corollary 2.10. Let M be a right R-module and M = U @V where U and
V' are uniform submodules of M. Then every direct summand of M is self-p-
imjective.

Proof. Let 0 # K be a direct summand of M. If K = M then K is self-

p-injective from Corollary 2.9. If K # M then K is uniform. Hence K is
self-p-injective. O

Theorem 2.11. Let M be a Z-module such that M is a direct sum of uniform
modules. Then every direct summand of M is self-p-injective.

Proof. Let N be a direct summand of M. Then N is also a direct sum of
uniform modules by [15, Theorem 5.5]. Now Corollary 2.9 yields that N is
also self-p-injective. O

One might expect that an essential extension of a self-p-injective module
is self-p-injective. However, the next example eliminates this situation.

Example 2.12. Let R be a principial ideal domain. If R is not a complete dis-
crete valuation ring then there exists an indecomposable torsion-free R-module
M of rank 2 by [8, Theorem 19]. Hence there exist uniform Uy, Us submodules
of M such that Uy & Uy is essential in M. Then Uy & Us is self-p-injective by
Corollary 2.9. However M is not self-p-injective by Lemma 2.1.

Lemma 2.13. Let X = [[X; be a direct product of modules of X; for each

iel
i €I. If N is a projection invariant submodule of X then N = [[(N N X;).
i€l
Proof. 1t is straightforward to check. O

Theorem 2.14. Let X = [[X;. Then X is self-p-injective if and only if X;
el
is self-p-injective for all i € I.

Proof. Let N; be projection invariant in X; and ¢ : N; — X; be a homomor-

phism. Then T = [[N; is projection invariant in X. Let a; : T — N; be
il

a projection map. Consider tpa; : T — X where ¢ is inclusion. Then there
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exists 0 : X — X such that 0 lifts vpa;. Define v : X; — X; by v = w0t
where 7; is projection map from X to X;. It is clear that v lifts to ¢, so X;
is self-p-injective.

Conversely, let N be a projection invariant submodule of X and ¢ : N —
X be a homomorphism. Then N N X; is projection invariant submodule of
X;. Let 0 be the restriction of ¢ to NN X;. Then ;0 : NN X; — X; for
all ¢ € I. Hence there exists v : X; — X, such that v lifts to m;6 for all
i € I. Define o : X - X by a = vym;. Let n € N. By Lemma 2.13, n =
(mi(n))ier- Thus a(n) = a((mi(n))icr) = vymi((mi(n))ier) = vy((mi(n))ier) =
i b((mi(m)ier) = O(mi(n)ier) = ((m:(m))ier) = ¢(n). Hence a lifts to
so X is self-p-injective. O

The conditions Cs and C5 can be characterized by the lifting homomor-
phisms from certain submodules to the module itself, as was shown in [16].
We obtain relations between the class of modules which is self-p-injective and
the class of modules which has C3 condition. From [16, Lemma 1], we have
the following implication for a module M.

C3 = self-p-injective

Note that this implication is not reversible. For example, let Mz = ®72,Z.
Then My is self-p-injective by Theorem 2.8, but My does not satisfy C3 by
[16, Example 9].

The next few results, which generalize [9, Theorem 2.12 |, concern the endo-
morphism ring of self-p-injective m-duo modules. We call a module M is m-duo
if every submodule is projection invariant in M. We will use S and J(.5) to de-
note the endomorphism ring of a module M and the Jacobson radical of S, re-
spectively. Further A will stand for the ideal {a: € S | ker(«) is essential in M }.

Theorem 2.15. Let Mg be a self-p-injective module and S an Abelian ring.
Then S/A is a (von Neumann) regular ring and A = J(S).

Proof. Let f € S and K = kerf. Since ker(f) N ker(l — f) = 0, there exists
an isomorphism o« : K — (1 — f)K. Consider the inverse map of a. Since
M is w-duo module, (1 — f)K is projection invariant in M. By hypothesis,
there exists g € S such that g lifts inverse map of o. Then g(1 — f)(k) = k
for all k € K. Let B be a complement of ker(f) in M. Note that f restricts
to an isomorphism of B onto f(B), since B N ker(f) = 0. Observe that
f(B) is also projection invariant submodule of M as S is Abelian. By self-p-
injectivity of M, extend the inverse isomorphism f(B) — B to some v € S.
Now, v(f(b)) = b for all b € B and hence (fvf — f)(B) = 0. Moreover,
B@ker(f) <ker(fyf— f) < M which gives that (fyf — f) € A. Hence S/A
is a (von Neumann) regular ring. It is well known that, regular rings have zero
radical, hence J(S/A) = 0. Since J(S)/A C J(S/A), then J(S) = A. O
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Corollary 2.16. Let M be a nonsingular w-duo right R-module. If M is a
self-p-injective module , then S is a reqular ring.

Proof. Let g € A and N = ker(g). Then for any x € M, build up the following
set

L={reR|xzre N}

Then clearly L is a right ideal of R and also L is essential in R. Now, g(x)L = 0.
Since M is nonsingular then g(x) = 0, and since « is arbitrary g = 0. Therefore
A =0 ([13, Lemma 2.3]). Hence the result follows from Theorem 2.16. O

The following example shows that the converse of Corollary 2.16 does
not hold. Moreover this example explains that endomorphism ring of a PI-
extending (and hence self-p-injective) module need not to be Abelian.

Example 2.17.

(i) Let T = My(R) be the ring in [19, Example 4.77]. Note that Tr is
nonsingular self-p-injective which is not CS-module. Since T is regular, so
does S = End(Tr). However T is not w-duo. Because if it were w-duo, then
it would be a CS-module, a contradiction.

(it) Let V be a countably infinite dimensional vector space over a division
ring D and let S = End(Vp). Let {x1,x2,...} be a basis of V.. It is clear that
Vp is Pl-extending so it is self-p-injective. Since A = 0, S is reqular ring.
However S is not an Abelian ring. In fact, define o : V —V by o(x;) = xi41
foralli>1andm:V — ;D by w(x;) = x; and n(zx;) =0 for i # j. Now
0"/T(£L’7;) = O'(Zl) = Ti+1 but 7T0'(.’£1') = 7T(£L'i+1) =0.

3 Relatively p-injective Modules

In this section we introduce the concept of a relative p-injective module and
investigate some properties of these modules. Let us begin with the definition.

Definition 3.1. Let My and Mo be modules. The module Moy is My -p-injective
if every homomorphism o : N — My, where N is a projection invariant
submodule of My, can be extended to a homomorphism 3 : My — M.

It is clear that relative p-injectivity is more general than relative injectivity.
Next result provides equivalent conditions to be Pl-extending in terms of
relative p-injectivitiy.

Proposition 3.2. The following statements are equivalent for a module M.
(1) M is Pl-extending.
(i) Every module is M -p-injective.
(i4i) Every projection invariant submodule of M is M-p-injective.
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Proof. (i) = (ii) Let X be a module and N be a projection invariant sub-
module of M with ¢ : N — X homomorphism. Since M is Pl-extending,
there exists a direct summand D of M such that N is essential in D. Then
M = D & D’ for some D’ submodule of M. Let m be the projection map
on N in D. Define o : M — X by o = ¢m. Clearly, « lifts to ¢m so X is
M-p-injective.

(#4) = (i41) Tt is obvious.

(#3i) = (i) Let N be a projection invariant submodule of M. By hypothesis,
N is M-p-injective so the identity map ¢ : N — N can be extended to a : M —
N. It is easy to check that M = N @ ker a. Thus M is PI-extending. O

Next result, which generalizes [4, 7.5], concerns relative p-injective direct
summands of a module.

Theorem 3.3. Let My, My be modules and M = My & My. Then My is
M -p-injective if and only if every submodule N of M such that N N My = 0;
and w1 (N) is a projection invariant submodule of My, there exists a submodule
N’ of M such that N < N’ and M = N’ & M,.

Proof. Let N < M such that N N M = 0 and 7 (N) is projection invariant
submodule of M. Let m; : M — M be the projection and consider the
restriction of w1 to N. Then 71|y is an isomorphism between N to 1 (N),
since N N My = 0. Consider the homomorphism « : 71 (N) — Mz by a(x) =
ma(m1|n) " (w). Since 71 (N) is projection invariant submodule of M; and
Ms is M;-p-injective, the map « can be extended to a homomorphism S :
My — M. Define N’ = {z + B(x) | * € My}. Clearly, N’ is a submodule
of M and M = N' ® Ms. Let n € N. fm(z) = ami(x) = ma(z) and hence
z =m(x) + ma(z) = m(z) + Bmi(z) € N'. Then N < N'.

Conversely, let K be a projection invariant submodule of M7 and a : K —
M5 be a homomorphism. Define N = {z — a(z) | x € K}. N is a submodule
of M and NNMs = 0. Moreover, it can be easily seen that m; (V) = K. Hence
71(NN) is projection invariant submodule of M;. By hypothesis, there exists a
submodule N’ of M such that N < N’ and M = N’ & M,. Let 7 : M — M,
be projection with kernel N’ and let 8 : M; — M> be the restriction of 7 to
M. Let z € K. f(z) = n(x) = m(x — a(z) + a(z)) = a(z). It follows that
M,y is M;-p-injective. L]

Proposition 3.4. Let {M)}xea be a family of R-modules. Then X is My-p-
ingective for all A € A if and only if X is @ M)y-p-injective.
AEA
Proof. Let M = @& My and a: N — A be homomorphism with a projection
AEA

invariant submodule N of M. Then N = & (N N M,) where N N M) is
AEA
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projection invariant in M. Consider the restriction of & on N N M,. Then
there exists a homomorphism 6 : My — X such that 6 lifts to «|ynnr, . Define
v : M — X by v = 0my where my : M — M, canonical projection. Then it
can be easily seen that v lifts to «, hence X is M-p-injective.

Conversely, let K be projection invariant in M) for any A € A and « :
K\ — X be homomorphism. Then K = AG}AK A is projection invariant in

€

M = & M,. Now, there exists a homomorphism 6 : M — X such that 6 lifts

A€A
to amy where 7y is a projection map from K onto K. Define v : M) — X by

v = @t where ¢ is inclusion map. Then, it is clear that ~y lifts to a. Therefore
X is M)-p-injective. O

Our next two results give conditions for a module X and its quotient being
relative p-injective. To this end, we refer to [2, 16.8] for the corresponding
relative injectivity results.

Theorem 3.5. Let K be any projection invariant submodule of an R-module
M. Then an R-module X is M-p-injective if and only if

(1) X is K-p-injective.

(i1) X is (M/K)-p-injective.

(7i1) any homomorphism ¢ : K — X can be lifted to a homomorphism
0:M— X.

Proof. Suppose that X is M-p-injective. Then (¢) and (¢i7) clearly hold. Now
suppose that N/K is projection invariant in M/K for K C N < M and « :
N/K — X is a homomorphism. Since N/K is projection invariant in M/K,
then N is projection invariant in M. Let 71 : M — M/K and 7o : N — N/K
be the canonical epimorphisms. Since X is M-p-injective, the homomorphism
ame : N — X can be extended to the homomorphism v : M — X. Since
N < ker~y, there exists a homomorphism 5 : M/K — X such that Sm; = 7.
Let n € N. B(n+ K) = B(m1(n)) = v(n) = ama(n) = a(n+ K). Hence § lifts
to a so X is (M/K)-p-injective.

Conversely, suppose that X satisfies (4), (i¢) and (#i7). Let N be projection
invariant submodule of M and ¢ : N — X be homomorphism. It is clear that
N N K is also projection invariant in K. Let ¢’ be the restriction of ¢ to
NN K. By (i), there exists « : K — X such that ¢’ can be lifted to a. By
(#i1), there exists 8 : M — X such that § lifts to a.. Thus

B(k) = a(k) = ¢/ (k) = (k) for all k € N N K.

Let v = ¢ — 5. It is clear that v : N — X and v(N N K) = 0. Define
W' N+ K/K = X by ¢"(n+ K) =~vn+K) for all n € N. ¢" is well
defined, since v(N N K) = 0. Note that N + K and N + K/K are both
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projection invariant in M. Thus by (ii), there exists 8’ : M/K — X such that
0’ lifts to ¢”. Define 8” : M — X by 6”"(m) = 0'(m + K) for all m € M. Let
0=p3+0" where 0 : M — X. Let n € N. Then

0(n) = B(n) +6"(n) = p(n) — ¢"(n+ K) + 0'(n+ K) = ¢(n).
Thus 0 lifts ¢ so X is M-p-injective. O

Proposition 3.6. Let K C N be submodules of an R-module M. Then the
following statements are equivalent.

(1) N/K is M-p-injective.

(i) For all K < N < M with projection invariant submodule N/K of
M/K, N/K is a direct summand of M/K.

Proof. (i) = (i) N/K is M/K-p-injective by Theorem 3.5. Thus the identity
map ¢ : N/K — N/K can be lifted to a homorphism 6 : M/K — N/K. It is
easy to check that M/K = ker0 & (N/K).

(#4) = (i) Let X be a projection invariant submodule of M and ¢ : X —
N/K be a homomorphism with K = ker ¢. Since X/K is projection invariant
in M/K and K = kerp < X < A, then X/K is a direct summand of M/K by
(#t). Thus there exists L < M such that K C L, M/K = X/K ®L/K. Define
0: M — N/K by 0(x+1) = p(x) where x € X and [ € L. Note that if z € X
le Land x41=0,then x = -l € XNL = K. Thus 0 is well defined. Clearly
6 is an R-homomorphism and 6 lifts ¢. Thus N/K is M-p-injective. O

4 Examples

We provide examples which show that self-p-injective and tight are different
notions. Recall that 2-by-2 upper triangular matrix ring over a field is a right
CS ring by [18, Theorem 3.4]. To this end, the following example corrects [6,
Example 2.11].

Example 4.1. Let S = Z[z] and let R be the 2-by-2 full matriz ring over
S. Then R is not right CS by [4, Lemma 12.8]. By [10, Corollary 11.18 and
Corollary 11.19], R is a semiprime right Goldie ring. Then R is R-tight by

[7].

There is a self-p-injective module which is not tight (see, [1, Example 3.1]).
However the following example (see, [6, Example 2.13]) is R-tight but it is not
self-p-injective.

Example 4.2. Let R = {(m,n) | m =n(mod 2)} CZ x Z. Then R is tight
by [6, Example 2.13]. Since R is indecomposable, Lemma 2.1 yields that R is
not self-p-injective.
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