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Integral theorems for the quaternionic
G-monogenic mappings
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Abstract

In the paper [1] considered a new class of quaternionic mappings, so-
called G-monogenic mappings. In this paper we prove analogues of clas-
sical integral theorems of the holomorphic function theory: the Cauchy
integral theorems for surface and curvilinear integrals, and the Cauchy
integral formula for G-monogenic mappings.

Introduction. The Cauchy integral theorem and Cauchy integral formula
for holomorphic functions of the complex variable are fundamental results of
the classical complex analysis. Analogues of these results are also important
tools in the quaternionic analysis.

Maybe the first quaternionic analogues of the mentioned results for a sur-
face in R? are obtained by G. Moisil and N. Theodoresco [2]. Namely, they
proved some analogues of the Cauchy’s theorems for a smooth surface and for
continuously differentiable functions f satisfying the equality

of . of . of,
axz—f— ayj—i— 3zk_0’

where i, j, k are the basis quaternionic units.
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R. Fueter [3] transferred the results of paper [2] for a smooth surface in
R* and for so-called the regular functions f which by definition satisfies the

equality
o of, of, o
agt Oz Oy 0z
The proofs of [2] and [3] are based on the Stokes formula.

B. Schuler [4] generalized the results of Fueter by adapting of Goursat’s
proof of the Cauchy’s theorem. Due to this, he replaced the condition of
continuity of partial derivatives to the differentiability of the real-valued com-
ponents in the Stolz sense.

A. Sudbery [5] proved the Cauchy theorem and Cauchy formula under more
general conditions on a function and a surface. He assumed as in the complex
analysis only differentiability of real-valued components of the integrand. He
also considered the so-called differentiable surface and the rectifiable 3-chain.

O. Herus [6] proved the quaternionic Cauchy theorem for a surface in R3
under the same conditions on the function as in [5], but for another class of
surfaces.

Some analogues of the quaternionic Cauchy theorem and Cauchy integral
formula in the theory of s-regular functions are established in [7].

In this paper for quaternionic G-monogenic mappings we prove analogues
of the Cauchy theorem for surface and curvilinear integrals and the Cauchy
integral formula curvilinear integral.

1. The algebra of complex quaternion H(C) and G-monogenic
mappings.

Let H(C) be the quaternion algebra over the field of complex numbers C,
whose basis consists of the unit 1 of the algebra and of the elements I, J, K
satisfying the multiplication rules:

IP=J=K=-1,
lJ=—-JI=K, JK=-KJ=1I, KI=-IK=J
In the algebra H(C) there exists another basis {e1, €2, 3, €4}:

e1 = %(1 +il), ex= %(1 —il), e3= %(iJ— K), e4= %(U—FK),
where 7 is the complex imaginary unit. Multiplication table in a new basis can
be represented as
Lew e |es]ea|
€1 €1 0 €3 0
ea || O [ex| O [es]- (1)
€3 0 €3 0 €1
€4 ey 0 €2 0
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The unit 1 can be decomposed as 1 = ej + es.
Consider linear functionals f; : H(C) — C and f5 : H(C) — C satisfying
the equalities

filer) = files) =1,  fi(e2) = fi(ea) =0,
fa(e2) = fales) =1, fa(e1) = fa(ez) = 0.

Let us consider the vectors
il =1= e + €2, iz =aie; + ag€9, i3 = 6161 + b2€2,

ag, by € C, k = 1,2, which are a linearly independent over the field of real
numbers R (see [8, p. 223]). It means that the equality

oty + agio + aziz =0, ap,az,03 €R

holds if and only if a1 = as = a3 = 0.

In the algebra H(C) consider the linear span E3 := {( = xi1 + yia +
ziz : x,y,z € R} generated by the vectors i1, 43,43 over the field R. Denote
fe(Es) == {fx({) : ¢ € E3}, k =1,2. In what follows, we make the following
essential assumption: fi(Fs3) = fo(EF3) = C. Obviously, it holds if and only
if at least one of the numbers in each of pairs (a1,b1) or (az,bs) belongs to
C\R.

Let us introduce the notations

&= filQ) =z +yar +2zb1, &= fo(Q) =z +yaz + zbo.

Now, the element ¢ € F3 can be represented in the form ¢ = {1e1 + &zes.

A set S C R? is associated with the set Se = {¢ = xiy + yiz + zi3 :
(r,y,2) € S} in E3. We also note that a topological property of a set S¢
in E3 understand as the same topological property of the set S in R3. For
example, we will say that a curve v. C E3 is homotopic to the zero if v C R3
is homotopic to the zero, etc. Let €2¢ be a domain in Fs.

A continuous mapping ® : Q — H(C) (or D : Q¢ — H(C)) is right-G-
monogenic (01" resp. left—G—monogenic) in a domain §2¢ C Ej3, if @ (or resp.
5) is differentiable in the sense of the Gateaux in every point of Q¢, i. e. if for
every ¢ € Q¢ there exists an element @ (¢) € H(C) (or resp. ®'(¢) € H(C))
such that

lim (cp(g teh) — @(g))sfl = hd'(¢) Vhe B

<0r resp.lim (<T>(g +eh) — %(g)) el =3 (O)h Vhe E3>.
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®'(() is the right Gateaux derivative in the point ¢ and 5’(() is the left Gateaux
derivative in the point .

A mapping ®(¢) (or ®(¢)) of the variable ( = x + yis + zi3 € Q¢ with
differentiable real-valued components is right-G-monogenic (or resp. left-G-
monogenic) if and only if the following Cauchy—Riemann conditions are satis-

fied [1]:

o | 0P o0 | 0P

%222%7 &:’ng (2)
or resp.

0® 0D 0 0D

@:%ZQ, Friai L (3)

It follows from the decomposition of the resolvent

(=07 = mp et e VIEC: t26 146G

that the points (z,y,z) € R3 corresponding to the noninvertible elements
¢ = xiy + yia + zi3 of the algebra H(C) form the straight lines in R3:

L': x4+ yRea; + zReb; =0, ylma; + zImb; =0,

L?: z + yReas + zRebs = 0, ylmag + zIm by =0

in the three-dimensional space R3.

Denote by Dy C C the image of )¢ under the mapping fi, k¥ =1,2. A
constructive description of all right- and left-G-monogenic mappings by means
of holomorphic functions of the complex variable are obtained in the paper [1].
Namely, proved the theorem:

Let a domain Q C R3 is convex in the direction of the straight lines L', L?
and fi(E3) = fo(E3) = C. Then any right-G-monogenic mapping ® : Q¢ —
H(C) can be expressed in the form

Q) = Fi(&1)er + Fa(§2)ea + F3(&1)es + Fu(§2)ea (4)

VC = xt1 + Yio + 2i3 € Qc,

where F, Fy are the certain holomorphic in a domain D; functions of the
variable & := x + ya; + 2b; and F5, F3 are the certain holomorphic in a
domain D functions of the variable & := = 4 yao + zbs. R

Under the same assumptions, any left-G-monogenic mapping ® : € —
H(C) can be expressed in the form

B(¢) = Fi(&1)er + Fo(&2)ea + Fi(Ea)es + Fu(€1)ea, (5)



INTEGRAL THEOREMS FOR THE QUATERNIONIC G-MONOGENIC
MAPPINGS 275

where F,, n = 1,4 are defined similarly to above.

2. Cauchy integral theorem for a curvilinear integral.
Let v be a Jordan rectifiable curve in R®. For a continuous mapping
U : v, = H(C) of the form

4 4
\I](<> :ZUk(x7yvz)ek:+ZZVk($7yaz)ekv (6)
k=1

k=1

where (2,y,2z) € v and Uy : v = R, Vi : v = R, we define integrals along a
Jordan rectifiable curve ¢ by the equalities:

4
/dC\I! Zek/ (r,y,2 dfr+zzzek/Uk (z,y, 2)dy+
k=1

Ye k=1

4
+Zi36k/Uk T,Y, 2 dz+zZek/Vk x,y, z)dz+
k=1

k=1 y

4 4
-H'Zigek/Vk(x7y,z)dy+iZigek/Vk(x,y,z)dz
k=1 k=1
¥ v
and

/ :Zek/Uk T dJU—FZBkZz/Uk-(%ZJvZ)dy"‘
v

ve k=1 k=1 Y

4
—&-Zekig/Uk T,Y,2 dz—l—zZek/Vk x,y, z)dr+
k=1
o

k=1

4
+iZeki2/Vk(x,y,z)deriZeM:;/Vk(x,y,z)dz
k=1
5

k=1 y

where d¢ := dx + i2dy + i3dz.

Let ¥ be a piece-smooth surface in R?. For a continuous function ¥ : X —
H(C) of the form (6), where (x,y,2) € X, we define surface integrals on X,
with the differential form o := dydz + dzdxis + dxdyis by the equalities

4

/U\I/ Z ek/Uk x,y, 2)dydz + Zzgek/Uk(x y, z)dzdz+

Se k=15
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4
Zwek/ (z,y,2 )dwdyﬂzek/ w(2,y, 2)dydz+
2 b

k=1

—|—22226k/Vk T,Y, 2 dzdx—l—zz:z;;ek/ (z,y, z)dxdy;

/\If(()a = iek/U (z,y,z )dydz—l—Zem/ k(x,y, 2)dzdz+
b))

Y. k=1 5 k=1

+ ek23/Uk T,Y, 2 dacdy—l—zZek/Vk(x,y,z)dydz—l—

k=1 k=1 »

4

4
+226k12/vk x,Y, 2 )dzda:+iZeki3/Vk(z,y,z)dxdy.
k=1

k=1 »

If a mapping ¥ : Q, — H(C) is continuous together with partial derivatives
of the first order in a domain ¢, ¥ is a piece-smooth surface in 2 and the
edge ~v of surface X is a rectifiable Jordan curve, then the following analogues
of the Stokes formula are true:

ov  ov ov ov
\I/ i
/d( / ( o 83/) dxdy + ( By 1282> dydz+

ov ov
(az - Zgax) dZd.T, (7)
ov v ov
/\Il(()d(: (8 12—6y>dﬂcd +(8 3= )dydz+
Ve ¢
ov oV

Now, the next theorem is a result of the formulas (7), (8) and the equalities
(2), (3), respectively.

Theorem 1. Suppose that ® : Q; — H(C) is a right-G-monogenic map-
ping in a domain ¢ and D : Q¢ — H(C) is a left-G-monogenic mapping in
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Q¢. Suppose also that X is a piece-smooth surface in Q, and the edge v of
surface 3 is a rectifiable Jordan curve. Then

Jaceo = [aa—o (9)

In the case where a domain €2 is convex, then by the usual way (see, e. g.,
[9]) the equality (9) can be prove for an arbitrary closed Jordan rectifiable
curve 7.

In the case where a domain {2 is an arbitrary, then similarly to the proof
of Theorem 3.2 [10] we can prove the following

Theorem 2. Let ® : Q¢ — H(C) be a right-G-monogenic mapping in a
domain ¢ and D Qe — H(C) be a left-G-monogenic mapping in Q¢ . Then
for every closed Jordan rectifiable curve s homotopic to a point in §¢, the
the equalities (9) holds.

3. Cauchy integral formula.

To establish the Cauchy integral formula for a curvilinear integral, consider
the following auxiliary statement.

Lemma 1. Suppose that a domain Q C R? is convexr in the direction
of the straight lines L', L? and f1(E3) = f2(E3) = C. Suppose also that
O : QO — H(C) is a right-G-monogenic mapping in Q¢, and d Q¢ — H(C)
is a left-G-monogenic mapping in ¢, and ¢ is an arbitrary rectifiable curve
in Q¢. Then

/dC‘I’(C) =81/Fl(él)dfl-irez/F2(€2)d§2+63/Fs(ﬁl)d&-i-ez;/F4(§2)d§27
¢ 71 Y2 1 Y2

(10)
and respectively

/‘f’(C)dCZ61/ﬁl(fl)dfl-f—@/ﬁ2(fz)d§2+€3/ﬁ3(§2)d€2+€4/ﬁ4(§1)d§1,
Y1 Y2 Y1

¢ V2

(11
where 1, 2 are the images of y¢ under the mappings f1, f2 and F,, F,, n =
1,4 are the same functions as in (4) and (5) respectively.

~—

Proof. The equality (10) follows immediately from the representation (4),
the equality d¢ = d&je; + d€zes and the multiplication rules (1). Similarly we
can prove the equality (11). The Lemma is proved.

Let ¢ € E3. An inverse element (! is of the following form:

a1 .1
¢ —§1€1+€2€2 (12)
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and it exists if and only if £&; # 0 and & # 0.

Let {p = do)el +§£0)€2 be a point in a domain Q¢ C FEs. In a neighborhood
of (o contained in € let us take a circle C((p) with the center at the point
¢o. By Ck C C we denote the image of C({y) under the mapping fr, k =1,2.
We assume that the circle C(o) embraces the set {( — o : ¢ € Ly U LZ}. Tt

means that Cj, bounds some domain Dj, and f,(co) eD;, k=12

We say that the curve 7. C Q¢ embraces once the set {¢ — (o : ¢ €
L{ U LZ}, if there exists a circle C((p) which embraces the mentioned set and
is homotopic to ¢ in the domain Q¢ \ {( = (o : ¢ € L% U Lg}

Theorem 3. Suppose that a domain Q@ C R3 is conver in the direction
of the straight lines L', L? and f1(E3) = fo(E3) = C. Suppose also that
P : Q¢ — H(C) is a right-G-monogenic mapping in Q¢ and D Q¢ — H(C) s
a left-G-monogenic mapping in Q. Then for every point (o € Q¢ the following
equalities are true:

B(60) = 5 [ (¢ =G HdCB(Q) (13)
and
B60) = 5 [ BOC ~ ) e (14)

where ¢ is an arbitrary closed Jordan rectifiable curve in §¢, that embraces
once the set {( — (o : C € L1 UL? L

Proof. Inasmuch as 7¢ is homotopic to C((p) in the domain Q¢ \ {¢ — o :
¢ € L{U L2}, it follows from Theorem 2 that

1
2

(€~ o) dC D) = = / (¢ = Co)1dC B(0).
Y C(¢o)

Further, using the equality (12), Lemma 1 and the integral Cauchy formula
for holomorphic functions F,, n = 1,4, we obtain immediately the following

equalities:

1 1 1 Fi (&) Fy(&2)

o [ €= KO =i | et e | S
c(co) @

1 [ B(&) 1 F4(§2)
/5 ¢y + gy =

2mi ) 6 - g e-g)

C1
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= (5(0))61 + F (550))62 + F3(5£0))€3 + F4(§§0))€4 = ®((o),

where (y = § e; + 52 eo. Similarly can be proved the equality (14). The
Theorem is proved.

We note that the method of this proof is similarly to the proof of the
Theorem 6 of the paper [8], where Cauchy integral formula is obtained in a
finite-dimensional semi-simple commutative algebra.

4. Cauchy integral theorem for a surface integral.

Let © be a bounded domain in R3. For a continuous mapping ¥ : Qe —
H(C) of the form (6), where (x,y,2) € Qand Uy : @ - R, V;, : Q = R, we
define a volume integral by the equality

/\II(C)d:rdydz —Zek/Uk (z,y,2 )dacdydz—l—lZek/Vk (z,y, z)dzdydz.

de k=1

Let ¥ be a piece-smooth surface in R3. For a continuous mapping ¥ : Yo —
H(C) of the form (6), where (x,y,2) € Zand Uy : ¥ - R, V;, : ¥ — R, we
define the surface integrals on a piece-smooth surface X with the differential
form o := dydz + dzdzis + dxdyiz by the equalities

4
/O—\IJ = Ze /Uk .T ,Y, 2 )dde+Zl2ek/Uk(x7y7z)dde+
k=1

S =1 x
4 4
+Zisek/Uk(x,y,Z)dwdy+iZek/Vk(x,y,Z)dyd2+
k=1 k=1

—HZdek/Vk T,Y,2 )dzdx+1223ek/Vk(x,y,z)dxdy

k=1 5
and
4

4
/ Zek/ x, Y,z )dydz+ZekZQ/Uk(xayaz)dZdI+
)

=1 k=1

+Zek23 / Unlo Moy +13 et [ Vitoy.2)aydz

k=1 »

4
+i Z exio / Vie(z,y, 2)dzdx + 1 Z eris / Vie(z,y, z)dzdy.
k=1 % k=1 %
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If a domain © C R? has a closed piece-smooth boundary 9 and a mapping
U : Qe — H(C) is continuous together with partial derivatives of the first
order up to the boundary 92, then the following analogues of the Gauss —
Ostrogradsky formula are true:

ov  9v  9v
/U\II(C):/<8x+z2ay—|—2382> dxdydz. (15)
80 Qc
and oV  ov ov
/\P(C)a:/(ax—i-@lg—i-azm) dxdydz. (16)

Now, the next theorem is a result of the formulas (15), (16) and the con-
ditions (2), (3), respectively.

Theorem 4. Suppose that Q has a closed piece-smooth boundary 0. Sup-
pose also that the mapping ® : Q¢ — H(C) is a right-G-monogenic in Q¢ and
D Q¢ — H(C) is a left-G-monogenic in ¢, and these mappings are continu-
ous together with partial derivatives of the first order up to the boundary 0S¢.
Then

/a@(g):/(1+z‘§+i§)<1>’(g)d:cdydz (17)
Q¢ Qe

and
/<’15(<)a:/6’(@)(1+¢3+z’§)dxdydz. (18)
a0 Q¢

Corollary. Under the conditions of Theorem 4 with the additional as-
sumption 1+ i3 + i3 = 0, i. e. the mappings ® and ® are solutions of the
three-dimensional Laplace equation, then the equalities (17) and (18) can be

rewritten in the form
/ o®(¢) = / ®(¢)o = 0.

Q. Q.
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