Riemann-Lagrange geometry for starfish/coral
dynamical system
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Abstract. In this paper we develop the Riemann-Lagrange geometry,
in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-
Mills-like energy, associated with the dynamical system concerning social
interaction in colonial organisms. Some possible trophodynamic interpre-
tations are derived.
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1 Social interactions in colonial organisms

Let m > 2 be an integer. We introduce social interactions for starfish/coral dynamics
as follows (see Antonelli et al. [1]):
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where

® a1, ag, A1, A2, 61, 02, B, v, p are positive coefficients;

e N', N? are coral densities;
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F is the starfish density;

A1 and Ao are growth rates;

A1/aq and Ag/aq are single species carrying capacities;

B, 61 and J- are the interaction coefficients for starfish preying on corals;

e 7 is the coefficient of starfish aggregation.

Note that m is the effect of increasing the social parameter. If we set m = 2, we
obtain the (2 corals/1 starfish)-model of Antonelli and Kazarinoff [2], in which every
term of degree greater than one is quadratic. It is m > 3 which forces the social
interaction terms to be nonquadratic.

By differentiation, the dynamical system (1.1) can be extended to a dynamical
system of order two coming from a first order Lagrangian of least squares type. This
extension is called in the literature in the field as geometric dynamical system (see
Udrigte [7]).

2 The Riemann-Lagrange geometry
The system (1.1) can be regarded on the tangent space TR?, whose coordinates are
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Remark 2.1. We recall that the transformations of coordinates on the tangent space
TR3 are given by
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Y,
where 4,5 = 1, 3.

In this context, the solutions of class C? of the system (1.1) are the global minimum
points of the least squares Lagrangian function (see [7], [6])
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Remark 2.2. The solutions of class C? of the system (1.1) are solutions of the Euler-
Lagrange equations attached to the least squares Lagrangian (2.2), namely (geometric
dynamics, in Udrigte’s terminology)
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is endowed with the geometrical meaning of semispray of L (for more geometrical
details, see Miron and Anastasiei book [5] and Udriste’s book [7]).

But, the least squares Lagrangian (2.2), together with its Euler-Lagrange equa-
tions (2.3), provide us with an entire Riemann-Lagrange geometry on the tangent
space TR?, in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-
Mills-like energy. These geometrical objects are naturally associated with the tropho-
dynamical system (1.1).

Let us recall the main geometrical ideas developed in the Miron and Anastasiei
book [5]. The canonical nonlinear connection N = (N ;)l =132 produced by the semis-

pray (2.4) is given by the components
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Remark 2.3. We recall that, under a transformation of coordinates (2.1), the local
components of the nonlinear connection obey the rules [4], [5]
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From a geometrical point of view, we point out that the coefficients IV ; of the above
nonlinear connection have not a global character on TR3.
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Remark 2.4. Using the well-known Cartan-Kosambi-Chern (KCC) theory, used also
in the paper of Bohmer, Harko and Sabau [3], we can remark that the deviation
curvature tensor associated with the dynamical system (1.1) is given by the formula

, G ON!  ON} ,
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P} = 231,]- 2G 3y + ozl Y + N/ Nj.
It is important to note that the solutions of the Euler-Lagrange equations (2.3) are
Jacobi stable iff the real parts of the eigenvalues of the deviation tensor P} are strictly
negative everywhere, and Jacobi unstable, otherwise. For more details, see [3] and
references therein.

The canonical nonlinear connection defines the adapted bases of vector fields and
covector fields on the tangent space TR3, namely
s _ 0 o o
Szt Ozt Yoyl Oyt

} C X(TR?),

{da’, 6y’ = dy' + Njda’ } ¢ X*(TR?).
The adapted local components of the Cartan N-linear connection CT'(N) = (L; > C; k)
are given by the formulas
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The only non-vanishing d-torsion adapted component associated with the Cartan
N-linear connection CT'(N) is given by the coefficient
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At the same time, all the adapted components of the curvature attached to the Cartan
N-linear connection CT'(N) are zero (for all curvature formulas, see [5]).

The electromagnetic-like distinguished 2-form attached to the Lagrangian L, de-
fined via its deflection d-tensors (for more details, see Miron and Anastasiei book [5]),
is given by F = F;;0y’ A dz?, where

Fij =5 (0] = gioN7) = 5 (N} = /) = N,

N
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In this context, let us use the notation
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where
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Following the above Miron and Anastasiei’s geometrical ideas, we obtain the fol-
lowing geometrical results:

Theorem 2.1. (i) The canonical nonlinear connection on TR?, produced by the sys-
tem (1.1), has the local components N = (N})ij:ﬁ’ where N; are the entries of the
skew-symmetric matriz
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Ni=-N} = % (BF +6:N'), Nj=-Nj= % (BF + 02N?).

(ii) All adapted components of the canonical Cartan connection CT(N), produced
by the system (1.1), are zero.

(iii) The effective adapted components R;k of the torsion d-tensor T of the canon-
ical Cartan connection CT'(N), produced by the system (1.1), are the entries of the
following skew-symmetric matrices:
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(iv) All adapted components of the curvature d-tensor R of the canonical Cartan
connection CT'(N), produced by the system (1.1), vanish.

(v) The geometric electromagnetic-like distinguished 2-form, produced by the sys-
tem (1.1), is given by F = Fijéyi A dz?, where the adapted components F;; are the
entries of the skew-symmetric matriz F' = (Fi;); ;_15 = N.

(vi) The geometric Yang-Mills-like energy, produced by the system (1.1), is given
by the formula

EYM(t) = Fiy + Fiy + Fy =

2 1\ym—1 oym—1
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+
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Remark 2.5. In the author’s opinion, from a trophodynamic point of view the zero
level of the jet geometric Yang-Mills energy produced by the system (1.1) is important.
The jet geometric Yang-Mills trophodynamical energy produced by the system (1.1)
is zero iff

BF 4+ 6 N' =0, BF+06,N?=0,

("t

(a1N2 - a2N1) t |02 (Ng)m—Q
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If §; # J2, these conditions imply the impossible fact that F = N!' = N2 = 0, and if
§1 = 82 = §, then we obtain N* = N2 = —3F/§. In this last case, we find a Bernoulli
differential equation as the last equation of the system (1.1), namely

dF 8\
(=22
a P “L<7 5)

This equation can be integrated by using the changing of variable z = F~!. The
solution of the above Bernoulli differential equation is

1
aexp (pt) +b’

where a € R is an arbitrary constant, and we have

_1 B
=1 (25)

At the same time, we consider that the constant level surfaces of the jet geometric

Yang-Mills trophodynamical energy EYM(t) = C, C > 0, could contain important
trophodynamic connotations. Consequently, the graphical representation of these
surfaces in the system of axes OFN!N? could be a fruitful and open problem in
trophodynamics.
Remark 2.6. The deviation curvature tensor components PJZ can be obtained by
contracting with 4* the nonzero components of the torsion tensor R;k, that is P; =
R;kyk = (8]\7 JZ / 8mk) y*. Consequently, the matrix of the deviation curvature tensor
is given by
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The eigenvalues of the matrix P are the real values
)\1 :0, /\273 =+ a2+b2+62.

In conclusion, the behavior of neighboring solutions of the Euler-Lagrange equations
(2.3) is Jacobi unstable.
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Open problem. The trophodynamic interpretations associated with the geometrical
objects constructed in this paper still represent an open problem.
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