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Abstract. In this paper we develop the Riemann-Lagrange geometry,
in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-
Mills-like energy, associated with the dynamical system concerning social
interaction in colonial organisms. Some possible trophodynamic interpre-
tations are derived.
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1 Social interactions in colonial organisms

Let m ≥ 2 be an integer. We introduce social interactions for starfish/coral dynamics
as follows (see Antonelli et al. [1]):

(1.1)
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+ γF 2 − ρF,

where

• α1, α2, λ1, λ2, δ1, δ2, β, γ, ρ are positive coefficients;

• N1, N2 are coral densities;
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• F is the starfish density;

• λ1 and λ2 are growth rates;

• λ1/α1 and λ2/α2 are single species carrying capacities;

• β, δ1 and δ2 are the interaction coefficients for starfish preying on corals;

• γ is the coefficient of starfish aggregation.

Note that m is the effect of increasing the social parameter. If we set m = 2, we
obtain the (2 corals/1 starfish)-model of Antonelli and Kazarinoff [2], in which every
term of degree greater than one is quadratic. It is m ≥ 3 which forces the social
interaction terms to be nonquadratic.

By differentiation, the dynamical system (1.1) can be extended to a dynamical
system of order two coming from a first order Lagrangian of least squares type. This
extension is called in the literature in the field as geometric dynamical system (see
Udrişte [7]).

2 The Riemann-Lagrange geometry

The system (1.1) can be regarded on the tangent space TR3, whose coordinates are(
x1 = N1, x2 = N2, x3 = F, y1 =

dN1

dt
, y2 =

dN2

dt
, y3 =

dF

dt

)
.

Remark 2.1. We recall that the transformations of coordinates on the tangent space
TR3 are given by

(2.1) x̃i = x̃i(xj), ỹi =
∂x̃i

∂xj
yj ,

where i, j = 1, 3.

In this context, the solutions of class C2 of the system (1.1) are the global minimum
points of the least squares Lagrangian function (see [7], [6])

(2.2) L =
(
y1 −X1
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))2
+
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+
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X2
(
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)
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X3
(
N1, N2, F

)
= βF

(
N1 +N2

)
+ γF 2 − ρF,

Remark 2.2. The solutions of class C2 of the system (1.1) are solutions of the Euler-
Lagrange equations attached to the least squares Lagrangian (2.2), namely (geometric
dynamics, in Udrişte’s terminology)

(2.3)
∂L

∂xi
− d

dt

(
∂L

∂yi1

)
= 0, yi =

dxi

dt
, ∀ i = 1, 3,⇔

d2xi

dt2
+ 2Gi(xk, yk) = 0 ⇔ d2xi

dt2
+

1

2

(
∂2L

∂yi∂xk
yk − ∂L

∂xi

)
= 0 ⇔

d2xi

dt2
=

(
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− ∂Xk

∂xi

)
yk +

∂Xk
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Xk,

where

(2.4)

Gi(xk, yk) =
1

4

(
∂2L

∂yi∂xk
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∂xi

)
=

= −1

2
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∂Xi
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∂xi
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yk +
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]
is endowed with the geometrical meaning of semispray of L (for more geometrical
details, see Miron and Anastasiei book [5] and Udrişte’s book [7]).

But, the least squares Lagrangian (2.2), together with its Euler-Lagrange equa-
tions (2.3), provide us with an entire Riemann-Lagrange geometry on the tangent
space TR3, in the sense of nonlinear connection, d-torsions, d-curvatures and Yang-
Mills-like energy. These geometrical objects are naturally associated with the tropho-
dynamical system (1.1).

Let us recall the main geometrical ideas developed in the Miron and Anastasiei
book [5]. The canonical nonlinear connection N =

(
N i

j

)
i,j=1,2

produced by the semis-

pray (2.4) is given by the components

N i
j =

∂Gi

∂yj
= −1

2

(
∂Xi

∂xj
− ∂Xj

∂xi

)
.

Remark 2.3. We recall that, under a transformation of coordinates (2.1), the local
components of the nonlinear connection obey the rules [4], [5]

Ñk
l = N j

i

∂xi

∂x̃l

∂x̃k

∂xj
− ∂xi

∂x̃l

∂ỹk

∂xi
.

From a geometrical point of view, we point out that the coefficients N i
j of the above

nonlinear connection have not a global character on TR3.
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Remark 2.4. Using the well-known Cartan-Kosambi-Chern (KCC) theory, used also
in the paper of Böhmer, Harko and Sabău [3], we can remark that the deviation
curvature tensor associated with the dynamical system (1.1) is given by the formula

P i
j = −2

∂Gi

∂xj
− 2Gl

∂N i
j

∂yl
+

∂N i
j

∂xl
yl +N i

lN
l
j .

It is important to note that the solutions of the Euler-Lagrange equations (2.3) are
Jacobi stable iff the real parts of the eigenvalues of the deviation tensor P i

j are strictly
negative everywhere, and Jacobi unstable, otherwise. For more details, see [3] and
references therein.

The canonical nonlinear connection defines the adapted bases of vector fields and
covector fields on the tangent space TR3, namely{

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,

∂

∂yi

}
⊂ X (TR3),

{
dxi, δyi = dyi +N i

jdx
j
}
⊂ X ∗(TR3).

The adapted local components of the CartanN -linear connection CΓ(N) =
(
Li
jk, C

i
jk

)
are given by the formulas

Li
jk =

gir

2

(
δgrk
δxj

+
δgrj
δxk

− δgjk
δxr

)
, Ci

jk =
gir

2

(
∂grk
∂yj

+
∂grj
∂yk

− ∂gjk
∂yr

)
,

where

gij =
1

2

∂2L

∂yi∂yj
= δij .

The only non-vanishing d-torsion adapted component associated with the Cartan
N -linear connection CΓ(N) is given by the coefficient

Rr
ij =

δNr
i

δxj
−

δNr
j

δxi
=

∂Nr
i

∂xj
−

∂Nr
j

∂xi
.

At the same time, all the adapted components of the curvature attached to the Cartan
N -linear connection CΓ(N) are zero (for all curvature formulas, see [5]).

The electromagnetic-like distinguished 2-form attached to the Lagrangian L, de-
fined via its deflection d-tensors (for more details, see Miron and Anastasiei book [5]),
is given by F = Fijδy

i ∧ dxj , where

Fij =
1

2

(
girN

r
j − gjrN

r
i

)
=

1

2

(
N i

j −N j
i

)
= N i

j .

In this context, let us use the notation

J(X) =

(
∂Xi

∂xj

)
i,j=1,3

=


J11 J12 J13

J21 J22 J23

J31 J32 J33

 ,
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where

J11 = λ1 − 2α1N
1 − α2

(
m

m− 1

)
·N2 − α1

(
m− 2

m− 1

) (
N2

)m
(N1)

m−1 − δ1F,

J12 = −α2

(
m

m− 1

)
·N1 + α1

(
m

m− 1

) (
N2

)m−1

(N1)
m−2 ,

J13 = −δ1N
1, J21 = −α1

(
m

m− 1

)
·N2 + α2

(
m

m− 1

) (
N1

)m−1

(N2)
m−2 ,

J22 = λ2 − 2α2N
2 − α1

(
m

m− 1

)
·N1 − α2

(
m− 2

m− 1

) (
N1

)m
(N2)

m−1 − δ2F,

J23 = −δ2N
2, J31 = βF, J32 = βF, J33 = β

(
N1 +N2

)
+ 2γF − ρ.

Following the above Miron and Anastasiei’s geometrical ideas, we obtain the fol-
lowing geometrical results:

Theorem 2.1. (i) The canonical nonlinear connection on TR3, produced by the sys-
tem (1.1), has the local components N =

(
N i

j

)
i,j=1,3

, where N i
j are the entries of the

skew-symmetric matrix

N = −1

2

[
J(X)− TJ(X)

]
=


N1

1 N1
2 N1

3

N2
1 N2

2 N2
3

N3
1 N3

2 N3
3

 ,

where

N1
1 = N2

2 = N3
3 = 0,

N1
2 = −N2

1 = −1

2

{(
m

m− 1

)(
α1N

2 − α2N
1
)
+

+

(
m

m− 1

)[
α2

(
N1

)m−1

(N2)
m−2 − α1

(
N2

)m−1

(N1)
m−2

]}
,

N1
3 = −N3

1 =
1

2

(
βF + δ1N

1
)
, N2

3 = −N3
2 =

1

2

(
βF + δ2N

2
)
.

(ii) All adapted components of the canonical Cartan connection CΓ(N), produced
by the system (1.1), are zero.

(iii) The effective adapted components Ri
jk of the torsion d-tensor T of the canon-

ical Cartan connection CΓ(N), produced by the system (1.1), are the entries of the
following skew-symmetric matrices:

R1 =
(
Ri

j1

)
i,j=1,3

=
∂N

∂N1
=


0

∂N1
2

∂N1

δ1
2

−∂N1
2

∂N1
0 0

−δ1
2

0 0

 ,
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where

∂N1
2

∂N1
=

1

2

(
m

m− 1

)[
α2 − α2 (m− 1)

(
N1

N2

)m−2

− α1 (m− 2)

(
N2

N1

)m−1
]
;

R2 =
(
Ri

j2

)
i,j=1,3

=
∂N

∂N2
=


0

∂N1
2

∂N2
0

−∂N1
2

∂N2
0

δ2
2

0 −δ2
2

0

 ,

where

∂N1
2

∂N2
=

1

2

(
m

m− 1

)[
−α1 + α2 (m− 2)

(
N1

N2

)m−1

+ α1 (m− 1)

(
N2

N1

)m−2
]
;

R3 =
(
Ri

j3

)
i,j=1,3

=
∂N

∂F
=


0 0

β

2

0 0
β

2

−β

2
−β

2
0

 .

(iv) All adapted components of the curvature d-tensor R of the canonical Cartan
connection CΓ(N), produced by the system (1.1), vanish.

(v) The geometric electromagnetic-like distinguished 2-form, produced by the sys-
tem (1.1), is given by F = Fijδy

i ∧ dxj , where the adapted components Fij are the
entries of the skew-symmetric matrix F = (Fij)i,j=1,3 = N.

(vi) The geometric Yang-Mills-like energy, produced by the system (1.1), is given
by the formula

EYM(t) = F 2
12 + F 2

13 + F 2
23 =

=
1

4

(
m

m− 1

)2
[
α1N

2 − α2N
1 + α2

(
N1

)m−1

(N2)
m−2 − α1

(
N2

)m−1

(N1)
m−2

]2

+

+
1

4

(
βF + δ1N

1
)2

+
1

4

(
βF + δ2N

2
)2

.

Remark 2.5. In the author’s opinion, from a trophodynamic point of view the zero
level of the jet geometric Yang-Mills energy produced by the system (1.1) is important.
The jet geometric Yang-Mills trophodynamical energy produced by the system (1.1)
is zero iff

βF + δ1N
1 = 0, βF + δ2N

2 = 0,

(
α1N

2 − α2N
1
)
+

[
α2

(
N1

)m−1

(N2)
m−2 − α1

(
N2

)m−1

(N1)
m−2

]
= 0.
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If δ1 ̸= δ2, these conditions imply the impossible fact that F = N1 = N2 = 0, and if
δ1 = δ2 = δ, then we obtain N1 = N2 = −βF/δ. In this last case, we find a Bernoulli
differential equation as the last equation of the system (1.1), namely

dF

dt
= −ρF +

(
γ − 2

β2

δ

)
F 2.

This equation can be integrated by using the changing of variable z = F−1. The
solution of the above Bernoulli differential equation is

F (t) =
1

a exp (ρt) + b
,

where a ∈ R is an arbitrary constant, and we have

b =
1

ρ

(
γ − 2

β2

δ

)
.

At the same time, we consider that the constant level surfaces of the jet geometric
Yang-Mills trophodynamical energy EYM(t) = C, C > 0, could contain important
trophodynamic connotations. Consequently, the graphical representation of these
surfaces in the system of axes OFN1N2 could be a fruitful and open problem in
trophodynamics.

Remark 2.6. The deviation curvature tensor components P i
j can be obtained by

contracting with yk the nonzero components of the torsion tensor Ri
jk, that is P i

j =

Ri
jky

k =
(
∂N i

j/∂x
k
)
yk. Consequently, the matrix of the deviation curvature tensor

is given by

P = Rky
k =


0

∂N1
2

∂N1

δ1
2

−∂N1
2

∂N1
0 0

−δ1
2

0 0

 y1 +


0

∂N1
2

∂N2
0

−∂N1
2

∂N2
0

δ2
2

0 −δ2
2

0

 y2+

+


0 0

β

2

0 0
β

2

−β

2
−β

2
0

 y3 =


0 a b

−a 0 c

−b −c 0

 ,

where

a =
∂N1

2

∂N1
y1 +

∂N1
2

∂N2
y2, b =

δ1
2
y1 +

β

2
y3, c =

δ2
2
y2 +

β

2
y3.

The eigenvalues of the matrix P are the real values

λ1 = 0, λ2,3 = ±
√

a2 + b2 + c2.

In conclusion, the behavior of neighboring solutions of the Euler-Lagrange equations
(2.3) is Jacobi unstable.
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Open problem. The trophodynamic interpretations associated with the geometrical
objects constructed in this paper still represent an open problem.

Acknowledgements. A version of this paper was presented at the XIII-th Inter-
national Conference ”Differential Geometry and Dynamical Systems” (DGDS-2019),
10-13 October 2019, Bucharest, Romania.

References

[1] P. Antonelli, P. Auger, R. Bradbury, Corals and starfish waves on the Great Bar-
rier Reef: Analytical trophodynamics and 2-patch aggregation methods, Mathl.
Comput. Modelling, 27, 4 (1998), 121-135.

[2] P. Antonelli, N. Kazarinoff, Starfish predation of a growing coral reef community,
J. Theor. Biol. 107 (1984), 667-684.
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