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Abstract. In this paper, the classical and non-classical symmetries of the
one dimensional Modified Kuramoto-Sivashinsky equation (MKS) as well
as its similarity solutions using infinitesimal criterion and compatibility
condition approaches, have been discussed. Looking at the adjoint repre-
sentation of the obtained symmetry group on its Lie algebra, we find the
preliminary classification of its group-invariant solutions which provides
new exact solutions to MKS equation. Also, some aspects of its symme-
try properties are given. The latter provides other new exact solutions to
MKS equation.
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1 Introduction

The symmetry group method plays an important role in the analysis of differential
equations. The history of group classification methods goes back to Sophus Lie. The
first paper on this subject is [8], where Lie proves that a linear two-dimensional second-
order PDE may admit at most a three-parameter invariance group (apart from the
trivial infinite parameter symmetry group, which is due to linearity). He computed
the maximal invariance group of the one-dimensional heat conductivity equation and
utilized this symmetry to construct its explicit solutions. The theory of Lie systems
[9, 20] deals with non-autonomous systems of first order ordinary differential equations
[4] and then for partial differential equations [5] such that all their solutions can
be written in terms of generic sets of particular solutions and some constants, by
means of a time-independent function. Such functions are called superposition rules
and the systems admitting this mathematical property are called Lie systems. Lie
succeeded in characterizing systems admitting a superposition rule. Saying it the
modern way, he performed symmetry reduction of the heat equation. Nowadays
symmetry reduction is one of the most powerful tools for solving nonlinear partial
differential equations (PDEs). Recently, there have been several generalizations of the
classical Lie group method for symmetry reductions. Ovsiannikov has developed the
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method of partially invariant solutions, [15, 16]. His approach is based on the concept
of an equivalence group, which is a Lie transformation group acting in the extended
space of independent variables, functions and their derivatives, and preserving the
class of partial differential equations under study. The original form of the Kuramoto-
Sivashinsky equation in one dimensional framework is ut = −uxxxx−uxx−u2

x, where
has been derived e.g. in the context of chemical turbulence [7]. It is also important
because it can describe the flow of a falling fluid film [18].

In this paper, we deal with the following equation:

∆1 : ut + uxx + uxxxx + (λ− 1)u2
x − σλu2

xx = 0,(1.1)

where λ and σ are arbitrary constants and λ 6= 1. This equation is a Kuramoto-
Sivashinsky type and called one dimensional Modified Kuramoto-Sivashinsky equa-
tion [1]. Here u(x, t) is an unknown function and x, t are space and time variables
respectively. This equation apply to model the various physical phonomania, e.g.
problems of thermodynamic phase transition arise naturally in solidification, com-
bustion. It is a host of other fields, also, appeared to describe interfaces which are
marginally long-wave unstable (See more information in [1, 17]).

Physical applications and mathematical properties of this type of equations have
been a motivation for some other papers (See e.g. [17, 19, 7, 18]). Here, symmetry
classification for similarity solutions of its one dimensional modified type is focused.

This paper organized as follows: Section 2 is devoted to perform the basic simi-
larity reductions for this system. Reduced equations and exact solutions associated
with the symmetries are also obtained in this section. We find an optimal system of
one-dimensional sub-algebras for symmetry algebra of this system, in Section 3. We
then compute, in Section 4, the invariants associated with the symmetry operators
by integrating the characteristic equations. Section 5 provides to obtain some new
non-classical symmetries and then some new exact solutions of MKS equation corre-
sponding obtained non-classical symmetries are obtained. We summarize our results
in Section 6 and discuss their implications for the full intrinsic

2 Lie symmetry of the system

Let a partial differential equation contains p independent variables and q dependent
variables is given. The one-parameter Lie group of transformations(

xi, uα
)
7−→

(
xi, uα

)
+ ϵ

(
ξi(x, u), φα(x, u)

)
+O(ϵ2),

where i = 1, . . . , p and α = 1, . . . , q. The action of the Lie group can be recovered
from that of its associated infinitesimal generators. We consider general vector field

X =

p∑
i=1

ξi(x, u) ∂xi +

q∑
α=1

φα(x, u) ∂uα .(2.1)

on the space of independent and dependent variables. Therefore, the Lie characteristic
of the vector field X given by (2.7) is the function

Qα(x, u(1)) = φα(x, u)−
p∑

i=1

ξi(x, u)
∂uα

∂xi
, α = 1, . . . , q.(2.2)
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Theorem 2.1. [14] Let X be a vector field given by (2.1), and let Q = (Q1, . . . , Qq)
be its characteristic, as in (2.2). The nth prolongation of X is given explicitly by

X(n) =

p∑
i=1

ξi(x, u) ∂xi +

q∑
α=1

∑
J

φα
J (x, u

(n)) ∂uα
J
,(2.3)

with coefficients φα
J,i = Diφ

α
J −

∑p
j=1 Diξ

juα
J,j. Here, J = (j1, . . . , jk), with 1 ≤ k ≤ p

is a multi-indices, and Di represents the total derivative with respect to the i-th inde-
pendent variable xi the first order differential operator Di = ∂/∂xi+

∑q
α=1

∑
J uα

J,i∂/∂u
α
J .

Theorem 2.2. [14] A connected group of transformations G is a symmetry group
of a differential equation ∆ = 0 if and only if the classical infinitesimal symmetry
condition

X(n)(∆) ≡ 0 mod ∆ = 0,(2.4)

holds for every infinitesimal generator X ∈ g of G.

As before, in this section, we will have an attempt to perform the basic similarity
reductions for the equation (1.1) using infinitesimal criterion method (Find more
information in [14, 13]).

Theorem 2.3. Let X := ξ1(x, t, u)∂x + ξ2(x, t, u)∂t +φ(x, t, u)∂u be an infinitesimal
generator of the classical Lie point symmetry group for equation ∆1, we then have:

ξ1 = c1 + 2t(λ− 1)c4, ξ2 = c2, φ = c3 + c4x,(2.5)

where cis for i = 1, 2, 3, 4 are arbitrary constants.

Proof: Applying the invariance condition (2.4) in Theorem 2.2 for (1.1) equation,
we find

X(4)
[
ut + uxx + uxxxx + (λ− 1)u2

x − σλu2
xx

]
≡ 0 mod (1.1),(2.6)

where X(4) is the fourth prolongation obtained using (2.3) in Theorem 2.1, with the
following form

X(4) = ξ1∂x + ξ2∂t +

4∑
̸=J=0

φJ(x, t, u(̸=J))∂uJ
,(2.7)

with coefficients φJ = DJQ + ξ1uJ,x + ξ2uJ,t, where DJ = Dj1 . . . Djk is a multi-
index J = (j1, . . . , jk) and Q = φ − ξ1ux − ξ2ut, depending on x, t, u and first order
derivatives of u, is the same Lie characteristic introduced in (2.2). Substituting (2.7)
into (2.6), and introducing the relation ut = −uxx − uxxxx + (1 − λ)u2

x + σλu2
xx to

eliminate ut we are left with a polynomial equation involving the various derivatives
of u(x, t) whose coefficients are certain derivatives of ξ1, ξ2 and φ. We can equate the
individual coefficients to zero, and then it leads to the complete set of determining
equations:

ξ1x, ξ
1
u, ξ

1
tt, ξ

2
x, ξ

2
t , ξ

2
u, φu = 0, 2(λ− 1)φx = ξ1t , (λ 6= 1).

Finally, solving this system leads to (2.5). �
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Corollary 2.4. The Lie algebra g of infinitesimal projectable symmetries of equation
(1.1) is spanned by the four vector fields

X1 = ∂t, X2 = ∂x, X3 = ∂u, X4 = 2t(λ− 1)∂x + x∂u.(2.8)

The commutator table of Lie algebra g for (1.1) is given Table 1.

Table 1: Commutation relations satisfied by infinitesimal generators (2.8)

[ , ] X1 X2 X3 X4

X1 0 0 0 2(λ− 1)X2

X2 0 0 0 X3

X3 0 0 0 0
X4 2(1− λ)X2 −X3 0 0

To obtain the group transformation which is generated by the infinitesimal genera-
tors (2.8), we need to find its integral curves. Consequently, we conclude the following
theorem:

Theorem 2.5. If gis(x, t, u) be the one parameter group generated by (2.8) then

g1s = (x, t+ s, u), g2s = (x+ s, t, u),

g3s = (x, t, u+ s), g4s =
(
x+ 2ts(λ− 1), t, u+ ts2(λ− 1) + xs

)
,

(2.9)

In general to each one parameter subgroups of the full symmetry group of a system
there will correspond a family of solutions, called group-invariant solutions.

Theorem 2.6. If u = f(x, t) is a solution of (1.1), so are the functions

u1 = f(x, t− s), u2 = f(x− s, t),

u3 = f(x, t)− s, u4 = f
(
x− 2ts(λ− 1), t

)
− ts2(λ− 1)− xs,

(2.10)

where ui = gsi · f(x, t), i = 1, 2, 3, 4, and s << 1 is any positive number.

3 Optimal system of sub-algebras

As it is well known, the Lie group theoretic method plays an important role to find ex-
act solutions of differential equations as well as performing the symmetry reductions.
Since any linear combination of infinitesimal generators is also an infinitesimal gener-
ator, there are always infinitely many different symmetry subgroups for the essentially
different types of solutions is necessary and significant for a complete understanding
of the invariant solutions. As any transformation in the full symmetry group maps a
solution to another solution, it is sufficient to find invariant solutions which are not
related by transformations in the full symmetry group, this has led to the concept of
an optimal system [13]. The problem of finding an optimal system of subgroups is
equivalent to that of finding an optimal system of subalgebras. For one-dimensional
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subalgebras, this classification problem is essentially the same as the problem of clas-
sifying the orbits of the adjoint representation. This problem is attacked by the naive
approach of taking a general element in the Lie algebra and subjecting it to various
adjoint transformations so as to simplify it as much as possible. The idea of using the
adjoint representation to classify group-invariant solutions was due to [13] and [14].

The adjoint action is given by the Lie series Ad(exp(sXi)Xj) = Xj−sadXi
(Xj)+

(s2/2)ad2
Xi

(Xj)− · · · , where adX(Y ) = [X,Y ].

Table 2: Adjoint representation of infinitesimal symmetries of the equation (1.1)

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4 + 2(1− λ)sX2

X2 X1 X2 X3 X4 − sX3

X3 X1 X2 X3 X4

X4 X1 + 2s(λ− 1)X2 + (s2/2)X3 X2 + sX3 X3 X4

Theorem 3.1. A one-dimensional optimal system of (1.1) is provided by those gen-
erated by

Y1 = X1, Y2 = X2, Y3 = X3, Y4 = X4,

Y5 = X4 +X1, Y6 = X4 −X1, Y7 = X3 +X1, Y8 = X3 −X1,

Y9 = X2 +X1, Y10 = X2 −X1.

(3.1)

Proof: Let X =
∑4

i=1 aiXi, be a nonzero vector field of g. We will simplify as
many of the coefficients ai, i = 1, · · · , 4 as possible through proper adjoint applica-
tions on X. We follow our aim in the below easy cases:

I. At first, assume that a4 6= 0. Scaling X if necessary, we can assume that a4 = 1
and so we get X = a1X1+a2X2+a3X3+X4. Using the table of adjoint (Table
2), if we act on X with Ad(exp a3X2), the coefficient of X3 can be vanished

X ′ = a1X1 + a2X2 +X4. Then we apply Ad(exp
a2

2(λ− 1)
X1) on X ′ to cancel

the coefficient of X2, that is

X ′′ = a1X1 +X4,(3.2)

which by choosing a1 equal to ±1 or zero, (3.2) leads to Y4, Y5 and Y6 in (3.1).

II. The remaining one-dimensional subalgebras are spanned by vector fields of the
form X with a4 = 0.

a. If a3 6= 0 then by scaling X, we can assume that a3=1. Now by the action

of Ad(exp
a2

(1− λ)a1
X4) on X, we can cancel the coefficient of X2, that is

X̄ = a1X1 +X3,(3.3)
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which by choosing a1 equal to ±1 or zero, (3.3) leads to Y3, Y7 and Y8 in
(3.1).

b. Let a3 = 0 and a2 6= 0, then by scaling X is in the form

X̃ = a1X1 +X2,(3.4)

which by choosing a1 equal to ±1 or zero, (3.4) leads to Y2, Y9 and Y10 in
(3.1).

There is not any more possible case for studying and the proof is complete. �
According to our optimal system of one-dimensional subalgebras of the full sym-

metry algebra g, we need only find group-invariant solutions for four one-parameter
subgroups generated by X in (2.9).

4 Lie invariants and similarity solutions

We can now compute the invariants associated with the symmetry operators (3.1).
They can be obtained by integrating the characteristic equations. For the operator,
X = ∂t + ∂x, this means dx/1 = dt/1. The corresponding invariants of this system
have the form I1 = x − t, and I2 = u. Taking into account the last invariant, we
obtain a similarity solution of the form w = w(r) = w(x−t), and we substitute it into
(1.1) to determine the form of the function w, and then we conclude that w(x − t)
is a solution of the following differential equation as similarity reduced equation:
wrrrr + wrr − wr + (1− λ)w2

r − σλw2
rr = 0,

For other example consider operator X = ∂t+ ∂u. The characteristic equation for
this case has the following form: dt/1 = du/1. So the corresponding invariants are
r = x and w = u− t. Taking into account the last invariant, the following similarity
solution is obtained: w = w(r) = w(x), where solution satisfies in the similarity
reduced equation wrrrr + wrr + (λ− 1)w2

r − σλwr = 0.

5 Non-classical symmetry of the system

Motivated by the fact that symmetry reductions for many PDEs are known that
are not obtained by using the classical symmetries, there have been several gener-
alizations of the classical Lie group method for symmetry reduction. The notion of
non-classical symmetries was firstly introduced by Bluman and Cole [2] to study the
symmetry reductions of the heat equation. The non-classical symmetries method
consists of adding the invariant surface condition to the given equation, and then ap-
plying the classical symmetries method. The main difficulty of this approach is that
the determining equations are no longer linear.(Find more information in [6, 2, 3, 12]).

For the non-classical method, we seek invariance of both the original equation and
its invariant surface condition. This can also be conveniently written as:

X(4)∆1 ≡ 0, mod ∆1 = 0,∆2 = 0,(5.1)

where X = ξ1(x, t, u)∂x + ξ2(x, t, u)∂u + φ(x, t, u)∂u, ∆1 := ut + uxx + uxxxx + (λ−
1)u2

x − σλu2
xx, and ∆2 := ξ2ut + ξ1ux − φ.
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We must consider two different cases: ξ2 = 0 and ξ2 = 1. In continuation, we
discuss about both of these two cases details:

Case I: ξ2 = 1. In this case, ∆2 = 0 will be changed to ut = φ − ξ1ux. First, we
compute the total derivation with respect to t:

Dt(ut) = Dt((1− λ)u2
x + σλu2

xx − uxx − uxxxx),(5.2)

and substituting ut = φ− ξ1ux in (5.2) leads to

Dt(φ− ξ1ux) = 2(1− λ)uxDx(φ− ξ1ux) + 2σλuxxDxx(φ− ξ1ux)

−Dxx(φ− ξ1ux)−Dxxxx(φ− ξ1ux),
(5.3)

Therefore solving (5.3), we obtain:

φt = 2(1− λ)uxφ
x + 2σλuxxφ

xx − φxx − φxxxx

− 2(1− λ)uxξuxx + (1− 2σλuxx)ξuxxx + ξuxxxxx + ξuxt

(5.4)

In addition, we have:

uxt = 2(1− λ)uxuxx + (2σλuxx − 1)uxxx − uxxxxx,(5.5)

Substituting (5.5) into (5.4), we find φt with following form:

φt = 2(1− λ)uxφ
x + (2σλuxx − 1)φxx − φxxxx,(5.6)

where φt, φx, φxx and φxxxx are:

φt = Dt(φ− ξux − ξ2ut) + ξuxt + ξ2utt = Dt(φ− ξux) + ξuxt,

φx = Dt(φ− ξux − ξ2ut) + ξuxx + ξ2uxt = Dx(φ− ξux) + ξuxx,

φxx = D2
x(φ− ξux − ξ2ut) + ξuxxx + ξ2uxxt = D2

x(φ− ξux) + ξuxxx,

φxxxx = D4
x(φ− ξux − ξ2ut) + ξuxxxxx + ξ2uxxxxt = D4

x(φ− ξux) + ξuxxxxx,

Applying Lie symmetry method and solving resulted determining equations, we ob-
tain: ξ1 = c1x/2(1 − λ) + c3 and φ = c1t + c2. We have the following possibility
cases:

• When c1 = 1 and c2 6= c3 6= 1, the symmetries are: σ1 = h − ut, σ2 = ux and
σ3 = 1;

• When c1 = 1, c2 = c3 and c2 6= 1, the symmetries are: σ4 = σ1 and σ5 = 1−ux;

• When c1, c2 = 1 and c3 6= 1, the symmetries are: σ6 = h− ut + 1 and σ7 = ux;

• When c1, c2, c3 = 1, the symmetries are: σ8 = h− ux − ut + 1;

• When c1, c3 = 1 and c2 6= 1, the symmetries are: σ9 = h− ux − ut and σ10 = 1;

• When c2, c3 = 1 and c1 6= 1, the symmetries are: σ11 = 1−ux−ut and σ12 = h;

• When c2 = 1 and c1 6= c3 6= 1, the symmetries are: σ13 = 1 − ut, σ14 = h and
σ15 = ux;
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• When c2 = 1 and c1 = c3 6= 1, the symmetries are: σ16 = 1−ut and σ17 = h−ux;

• When c3 = 1 and c1 6= c3 6= 1, the symmetries are: σ18 = ux + ut, σ19 = h and
σ20 = 1;

• When c3 = 1 and c1 = c2 6= 1, the symmetries are: σ21 = ux+ut and σ22 = h+1;

• When c1 = c2 = c3 6= 1, the symmetries are: σ23 = ut and σ24 = h− ux + 1;

Where h = t+xux/2(λ−1). Since other remained cases don’t provide new symmetries,
so we ignore them.

Next, using above symmetries, we will solve the group invariant solutions of the
equation (1.1):

1. σ1 = σ4 = h− ut. Assuming σi(u) = 0 ; i = 1, 4 and with an integrating gives:

u(x, t) =
1

2
(t2 − ξ) + f(ξ),(5.7)

where ξ = t + 2(λ − 1) lnx and f is an arbitrary function. Substituting this
obtained u(x, t) in equation (1.1), we can find the indicated reduced similarity
equation:

fξξξ + (3x2 − 1)fξξ + 2x2f2
ξ − x2(4x2f + x2 + 1)fξ

+ 2(x2 − 2)f2 + (x5 + 6x2 − 3)f +
x2

2
(11x3 + 6x2 − t)− 1 = 0.(5.8)

2. σ2 = σ7 = σ15 = ux. Assuming σi(u) = 0 ; i = 2, 7, 15 and with an integrating,
we obtain u = f(t), then substituting it into (1.1) gives u = c, where c is an
arbitrary constant.

3. σ3 = σ10 = σ20 = 1. Suppose σi(u) = 0 ; i = 3, 10, 20, with an integrating we
have u = 0.

4. σ5 = 1−ux. Let σ5(u) = 0, and then u = x+f(t). Substituting it into (1.1), we
can obtain similarity equation with form f ′ + λ− 1 = 0, which has the solution
f = (1−λ)t+ c where c is an arbitrary constant. So the MKS equation has the
following solution:

u(x, t) = x+ (1− λ)t+ c,(5.9)

5. σ6 = h− ut + 1. substituting it into σ(u) = 0 gives:

u(x, t) =
1

2
(t− ξ)(t+ ξ + 2) + f(ξ),(5.10)

where ξ = t+ 2(λ− 1) lnx.

6. σ8 = h− ux − ut + 1. Solving integral σ8(u) = 0 gives:

u(x, t) =
1

2
(t− ξ)(t+ ξ + 2) + f(ξ),(5.11)

where ξ = t+ 2(λ− 1) ln(2λ− x− 2).
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7. σ9 = h− ux − ut. Now Solving integral σ9(u) = 0 gives:

u(x, t) =
1

2
(t2 − ξ2) + f(ξ),(5.12)

where ξ = t+ 2(λ− 1) ln(2λ− x− 2) and f is an arbitrary function.

8. σ11 = 1− ux − ut. Substituting σ11(u) = 0 leads to u = x+ f(t− x), then the
indicated reduced similarity equation has the form fξξξξ−σλf2

ξξ+fξξ+λfξ = 0.

9. σ12 = σ14 = σ14 = h. Therefore we have u = 2(1 − λ)t lnx + f(t), and by
substitute it into (1.1), we can obtain indicated reduced similarity equation.

10. σ13 = σ16 = 1 − ut. Then σi(u) = 0, i = 13, 16 leads to u = t + f(x), and
substituting it into (1.1), we can obtain indicated reduced similarity equation
as: fξξξξ − σλf2

ξξ + fξξ + (1− λ)fξ + 1 = 0.

11. σ17 = h− ux. With integrating σ17(u) = 0, we have u = 2t(1− λ) ln(2λ− x−
2) + f(t), as an exact solution.

12. σ18 = σ21 = ut + ux. Therefore we have u = f(t− x), substituting it into (1.1),
we obtain fξξξξ + fξξ + (λ− 1)f2

ξ − σλf2
ξξ + fξ = 0.

13. σ22 = h + 1. Integrating σ22(u) = 0, we find u = 2(1 − λ)(1 + t) lnx + f(t),as
an exact solution.

14. σ23 = ut. Then we have u = f(x), substituting it into (1.1), we can obtain
indicated reduced similarity equation as fξξξξ + fξξ + (λ− 1)f2

ξ − σλf2
ξξ = 0.

15. σ24 = h−ux +1. Solving σ24(u) = 0, we can let u = 2(1+ t)(1−λ) ln(2λ−x−
2)+ f(t), by substitute it into (1.1), we can obtain indicated reduced similarity
equation.

Case II: ξ2 = 0. In this case without loss of generality we can set: ξ1 = 1. So,
we have ux = φ and A(x, t, u) = φx − φxxx + (1 − λ)φ2 − σλφ2

x. Substituting this
expression in determining equation i.e. Aφu + φt −Auφ−Ax = 0, we have:

φxφu − φxxxφu + 3(1− λ)φ2φu − σλφ2
xφu − φφxu − φφxxxu

−2σλφφxφxu − φxx − φxxxx + 2(1− λ)φφx − 2σλφφxx + φt = 0.
(5.13)

Assuming φ = φ(x, t), the (5.13) equation will be changed to:

φt − φxx − φxxxx + 2(1− λ)φφx − 2σλφφxx = 0.(5.14)

This equation is indicated similarity reduced equation in the case ξ2 = 0.
Theorem 2.6 provides a way to generate new solutions using older. For instance,

by considering obtained solution u = (1 − λ)t + c to MKS equation and using this
theorem we can claim the following expressions are solutions of equation (1.1):

u1 = (1− λ)(s− t), u2 = (1− λ)(s2 + 1)t− sx+ c.
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Figure 1: (a) is the figure of solution (5.7), (b) is the figure of solution (5.7), (c) is the
figure of solution (5.9), (d) is the figure of solution (5.10), (e) is the figure of solution
(5.12), for f(0) = 0 and λ = 1/2.
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6 Conclusions

Present paper addresses the classical and non-classical symmetries of the one dimen-
sional Modified Kuramoto-Sivashinsky equation (MKS) as well as its similarity solu-
tions using infinitesimal criterion and compatibility condition approaches, have been
discussed. In the last section, we obtain some exact solution for the (1.1) equation.
The paper [1] presented calculations of the 1D MKS on a periodic domain and showed
that the singularities exhibit all a self-similar structure in uxx. We obtained the some
new exact solution for the Modified Kuramoto-Sivashinsky equation (MKS), and pro-
vided a comparison between the obtained exact solutions u(x, t). Also, illustrative
figures (see Fig. 1) were included for the solutions (5.7–5.12).
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