Existence of weak solutions for p-Laplacian problem
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Abstract. By virtue of variational method and critical point theory, we
will investigate the existence of weak solutions for a p-Laplacian impulsive
differential equation with boundary conditions.
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1 Introduction

Impulsive differential equations arising in real world phenomena describe the dynam-
ics of processes in which sudden, discontinuous jumps occur. These processes are
subject to short term perturbations whose duration is negligible in comparison with
duration of the process. In fact, it is known, for example, that many biological phe-
nomena involving thresholds, optimal control models in economics, pharmacokinetics
and frequency modulated systems, do exhibit impulse effects. The theory of impul-
sive differential equations has been emerging as an important area of investigation in
recent years [4, 23, 31].

Recently, variational methods and critical point theory have been successfully
employed to investigate impulsive differential equations, to the best our knowledge;
we refer the reader to [30, 32, 33, 34, 38] and references cited therein. Meanwhile,
some people begin to study p-Laplacian differential equations with impulsive effects;
for example, see [1, 2, 26, 15, 16, 35].

Chen and Tang [15] adopt the least action principle and the saddle point theo-
rem to obtain some existence theorems for second-order p-Laplacian systems with or
without impulsive effects under weak sublinear growth conditions. In [16], They also
consider that a class of second-order impulsive differential equations with Dirichlet
problems has one or infinitely many solutions under more relaxed assumptions on
their nonlinearity f, which satisfies a kind of new superquadratic and subquadratic
conditions. [8] proved the existence of weak solutions for p-Laplacian Dirichlet bound-
ary value problem with impulsive e ects by topological degree theory and the Fountain
theorem under the Cerami condition. In [5], the authors investigated the existence
of weak solutions for a p-Laplacian impulsive differential equation with antiperiodic
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boundary condition by using the Browder theorem and the Fountain theorem under
the Cerami condition.

The problem of finding infinitely many large energy solutions is a very classical
problem; there is an extensive literature concerning the existence of infinitely many
large energy solutions of a plethora of problems via the symmetric mountain pass
theorem and fountain theorem; for instance, see [25, 3, 14, 22, 24, 27, 12, 37].

In this paper we consider the following problem
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wherep > 1,T > 0, p(x), s(x) € L™ ([0, T]) satisfy the conditions essinf,c[o, 77 p(x) >
0, essinficpo, ys(z) > 0,0 = 29 < 11 < 22 < -+ < T < Ty = T, and
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2 Variational structure
We first introduce the Banach space
X={ueWwW"?(0, T]): u(0)=u(T)=0},

endowed with the norm

=

2.) ful = | [ o ||+ [ st u@)”

Suppose that u € C[0;T] satisfies the Dirichlet conditions u(0) = u(T") = 0. Take
v € X and multiplying
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Now, we consider the first term
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and then, we get

0
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Considering the above, we introduce the following concept for the solution for
problem (1.1).

Definition 2.1. A function u € X is said to be a weak solution of (1.1) if u satisfies
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(2.2) )

for any v € X.
From (2.2), we can obtain the weak solutions for (1.1) that coincide with critical
points of the energy functional
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Lemma 2.1. ( see [14, Proposition 2.1]) Let w € X. Then

(2.5) el o, 9y < Mo llull”,

where My := max {essinfxe[Q 71 p(); essinfyepo, 1) s(m)} )

Lemma 2.2. ( see [14, Proposition 2.2]) Let w € X. Then
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where pg := essinf o, 17 p(7).
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Definition 2.2. (see [10, page 303])Let X be a reflexive real Banach space and X*
its dual. The operator £ : X — X* is said to be demicontinuous if £ maps strongly
convergent sequences in X to weakly convergent sequences in X*.

Lemma 2.3. (Browder theorem, see [17, Theorem 5.3.22]) Let X be a reflexive real
Banach space. Moreover, Let £ : X — X™ be an operator satisfying the following
conditions:

(i) £ is bounded and demicontinuous;
(i1) £ is coercive, that is, lim;||— o (£(x), z) / ||z|| = +o00;

(#4i) £ is monotone on the space X; that is; for all z,y € X, one has

(2.7) (£(x) = £(y), = —y) >0.

Then the equation £(z) = f* has at least one solution x € X for every f* € X*.
If, moreover, the inequality (2.7) is strict for all z, y € X, x # y, then the equation
£(x) = f* has precisely one solution =z € X for all f* € X*.

3 Main results

In this section, we list our assumptions on f and I; (j = 1,2,...,n), which will be
used in this paper;

(H1) f(x, u) is a decreased function about u, uniformly in z € [0, T, and I;(u)
(j=1, 2, ---, n) are increased functions with w.

(H?2) there exist o, 8; > 0 and ~; € [1, p) such that |I;(u)] < a; + B [u| ",
foralue Rand j=1,2, -+, n.

(H3) There exist ¢y, ¢; > 0 such that f(z, u) < ¢1 + ¢ ul’ ™", for all u € R,
zelo, T].

—pF(z, Wiz, W) 5

(H4) There is a positive constant a > 0 such that lim,|— o ol

uniformly in z € [0, T7].
(H5) p [I;(s)ds — Lj(w)u>0, [I;(s)ds >0, forallueR, j=1,2,...,n.
0 0

(H6) Jimyy| o0 “ (55"
(H7) F (x, u) is an even function about w and Ij(u) (j =1, 2,..., n) are odd
functions about u, for all z € [0, T7.

= 400, uniformly on z € [0, T7].

Theorem 3.1. Let 0 < o < ﬁo’ and (H1) — (H3) hold. Then (1.1) has precisely a
weak solution.
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Proof.
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(£(u), v) = (L1(u), v) + (La(u), v) — (Ls(u), v), Yu, veX.

Then, to find a weak solution of (1.1) is equivalent to finding a solution for the op-
erator equation £(u) = 0. In what follows, we shall sketch the properties of operators
L; (i=1, 2, ---, n). By Holder inequality, we have

(L), v)| = / ()
0
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using the following inequality

(3.2) (a+b)° (c+d) P >alc =P 4 pPat—P

which holds for any g € (0, 1) and a >0,b>0,¢>0,d > 0. Set 8 = pp%l and

0 = / o) o @) dw b= / () [u(@)|” da,
¢ = / o(@) o' (@) da d- / () [o(2) P da,

then we can deduce that
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The last integral tends to zero as ||u, — u|| — 0. Hence L; is continuous.
We assume that u, — v in X; by Lemma 2, we know that there is a subsequence,

still denoted by

and

{un}, which strongly converges to u in C'[0, T] implies that

fts un () — f (&t u(t), VEel0, T]

[f(t un ()< sup  [f(t, y)l=K(t)e L ([0, ),

ye[—-M, M]

then by the Lebesgue’s dominated convergence theorem, we have

we have

[(Ls (un) — Ls(u),v)

T
/ft U ( dt—)/ftu ))dt asn — oo,
0

= /[f(taun(t))—f(tu(t))]v(t)dt —0 asn— oo.
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So, L3 is continuous. In the same methods, we see that L, is also continuous.
By (2.6) and (Hs), for all u, v € X, we have

[(La(u), v)| =
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where p1 = esssup,¢jo, 1) p(¥), then by (2.5) and (H3) we have

T
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therefore, Ly and L3 are bounded. Up to now, we have proved that £ is bounded
and continuous, so (¢) of Lemma 3 holds.

Now, we prove the monotonicity of £. Hence by (H1) for u, v € X, we have
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Consequently, £ is monotone.

Finally, we prove £ is coercive, by (2.5) and (2.6) for u, v € X, it follows from
(H2) and (H3) that
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T T n T
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[, w(@)) u(z)de

25
P

n T
= lull” + 37 p () I () u () — / f (@, u(@)) ula)da
j=1 0
n T
>l = |3 p () I () u ()|~ / f (@, u(@) u(z)dz
Jj=1 0
n T
>l =3 pte) (a5 + 85l o)l ey = [ (et colul ™) fulda
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2l =3 ol (o5 + By llulll ) ulloe = @75l = 2l
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Therefore, by the span of ¢ € (O, Mi0> , we arrive lim, | — o0 (£(u), u) /||ul| =

+o00. As a result, (i) and (7i7) of Lemma 3 hold. Hence, Lemma 3 implies that (1.1)
has precisely a weak solution. This completes the proof. O

Example 3.1. Let p =4, z1 = % Consider the problem

’

(35) - <(1 +/7) ’u’2u> +
N

where f (2, u) = —sin (5)—cou®, and I; (u (z1)) = {/u (x1), Mo = max{l, 21%77},
ca € (0, 1). Clearly, (H1) — (H3) hold true. By Theorem 1, (3.5) has only a weak
solution.

|u|2u = f(xa u) in [Oa 7‘—];

24x

@ ue) = Vaw
w(0) = wu(l)=0,

4 Infinitely many weak solutions for (1.1)

Definition 4.1. (see [16, Definition 1.1]). Assume that X is a Banach space with
norm |||, we say that ¢ € C! (X,R), satisfies Cerami condition (C), if for all d € R :

1
TP\ " p=1 1 TP\ ,
(1= o) ul” — oy (aj( ) ot Ma’) full = nsior (=) "l
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(i) any bounded sequence {u,} C X satisfying ¢ (u,) — d, ¢ (un) —> 0, pos-
sesses a convergent subsequence;

(i1) there exist &, ¢, 7 > 0 such that for any u € ¢~ ([d — §, d + §]) with |Jul| > &,
o' @) el =

As X is reflexive Banach space, there exist (see [28, Section 17]){e,} -, C X
and {f,},—, C X* such that f, (€m,) = 6n, m, X =Span{e, :n=1,2,...} and X* =
span”’” {fn:n=1,2,...}. For j, k € N, denote X := span{e;}, Vi := EB;?ZlXj,
and Zy 1= @52, X;. Clearly, X = @®;enX; with dim X; < oo for all j € N. Denote
Sri={ueX: |ul|l=1}.
Lemma 4.1. ( see [16, Proposition 1.2]) Let X, Yy, Z). be defined as above. Assume
that ¢ € C* (X, R) satisfies condition (C), and ¢ (—u) = ¢(u). for each k € N, there
exist T, > 1 > 0 such that

(@) by := infyez,ns,, ¢(u) — +00, k — oo,
(i) ok == maxyey,ns,, ¢(u) < 0.
Then ¢ has a sequence of critical points u,,, such that ¢ (u,,) — +00 as n — oo.

Lemma 4.2. Let (H3) — (H5) hold. Then ¢ satisfies Cerami condition (C).

Proof. For all d € R, we assume that {u,} _, C X is bounded and

(4.1) ¢ (un) — d, ¢ (un) — 0, n —> oo.

Going, if necessary, to a subsequence, we can assume that u, — u weakly in X,
and then

+ 3 p(@g) (I (un (7)) = I (u () (un (25) — u (25))
(4.2) [ ) = £ ) (= ) d
0

by Lemma 2, X< C'[0, T] enables us to obtain that

> o) (I (un (7)) = I (u(2))) (un () —u(z;)) — 0,
j=1

/(f(xa un) — f(x, u)) (up —u)de — 0 asn— oo.
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’

It follows from u, — u weakly in X and <¢/ (un) — ¢ (u), up — u> — 0 that

’

u

T
p—2 , ’ ’ -2 —2
u (un —u ) da:—|—/s(a:) <|un|p Up — |ul? u) (Up, —u)dz — 0 as n — oo.
0

Note that (3.3), we have

T

(bl = ™) = ey < [ ot (

0

p—2 ,

U, —

/

U,

(4.4) —|—/s(x) (|un|p_2 Uy — |ufP? u) (up, — u)
0

and thus ||lu, —u|]| — 0 as n — oo. Hence, condition (i) of Definition 3 holds.
Next, we prove condition (i¢) of Definition 3, if not, there exists a sequence {u, } C X
such that

(4.5) 6 () —> d; ¢ (un)||- Junll — 0, n—> o0,
and
(4.6) ltun|| — 00, 1 — 0.

By (4.6), there exists a constant £; > 0 such that

(4.7) 6 (un) - %qﬁ' (tn) tn < €1

On the other hand, (H4) implies that there is a L > 0 such that —pF (z, u) +
f(z, wyu > alul, Vlu| > L and x € [0, T]. Furthermore, —pF (z, u) + f (z, u)u
is bounded for |u| < L and z € [0, T].Therefore, there exists ¢ > 0 such that -
F(z, u) + %f(a:, wu > 3lul —c, Vu € R, x € [0, T]. This, together with (H5),
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yields
1 n u.,,,(:t7) 1
8 un) = 6 (wn)un = ;pw / Iy (a)ds = 15 (un () ()

(4.8) +/T<—F(x, un)—l—%f(x, un)un> do

v

v

T
which implies of |tn| dv < B (T'c 4 e1). Therefore, there is a e > 0 such that [Juy, || <

€9.
It follows from (H3) that there are c3, ¢4 > 0 such that

(4.9) F(z, u)<cslul+cauff YueR, ze€l0, T].

By this and (H5), we can find

un (25)

T
1 p - : S\ X — Tr, U X
Ou) = +;p(x3> | B 0/F<, )

0
T
1
(4.10) > <l - / (c3 [un] + ca Jun|P) da
0
1
> funll = ol = eaT e
1
Z - ||un||p - 63T€2 - C4T€g,
p

and thus ¢ (u,) — oo if (4.7) holds, which contradicts ¢ (u,) — d in (4.6) . this
proves that ¢ satisfies condition (C'). O

Theorem 4.3. Suppose (H2) — (HT) hold, then (1.1) has infinitely many weak solu-
tions.

Proof. By (HT), we know that ¢ is even. Denote nx = sup,cz,nsg, [ull,, by the
compactness of the embedding X << LP ([0, 1), we know that n, — 0ask — oo
(see [22, Lemma 3.8]). Note that (4.10) we have by (H5) and Holder inequality, for
any u € Zy, and |ul| = rg :=n;
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T
1
0w = o ful’ - / (s Jul + 4 [ul?) da
0
1 » p=1 p
> Ll - s ull, - e ful?
1 p p=1 » p
(4.11) > Dl - x5 o lul) — ean? 1l
> ZD&, —-ngnggi — C4.

We easily have rp, — 0o as k — oo, then we have

—p
(4.12) ¢()>UL763TT’ —c4g —r 00 as k — co.
p
Hence,
(4.13) by = inf o(u) — oo as k — oo.

u€Zy, ||ull=rk

On the other hand, by (H6), we find that there are b, ¢ > 0 such that

(4.14) F(z, u) >bluf’ —c, Vu e R, z €10, T].
Since all the norms of a finite dimensional normed space are equivalent, note that

[[-l,, is a norm of Y}, so there exists a ¢ > 0 such that

(4.15) [ull? > Cllull”,  Yu € Y.
Noting (2.6) , we have

u(z;)

o) = LYot / 4 /TF
J=1 0

. n u(ﬂfj) T
< Sl + o) [ (o) de— [ -
P Jj=1 0 0
1 n B
< e o) (aj ju(zy)] + 2 u(xj>|”f) bl 4T
p = Vi
<

1 - B; ,
Ly~ ol + 3 ol (aj . + 2 ||u||z;) T
p = i

1 i
TP=1\ » B (TP~I\® _
4.16) < ~—b ull? + a( > u+j( ) ull | +¢T
(4.16) ( <)||| S o [ o )l + 2 (2

j=1 J
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Note that we can choose a large enough b such that % —b( < 0 by (H6) and p > ;,
by (H2), and then there exists positive constants dj such that

(4.17) od(u) <0, foreach ueYy, |ul > dy.

By this and (4.14), we can take 73, := max {dy, ry + 1}, and thus ¢ := max,cy,, |julj=r, ¢(u) <
0.Up until now, we have proved the functional ¢ satisfies all the conditions

of Lemma 4, then ¢ has infinitely many solutions. Equivalently, (1.1) has infinitely
many weak solutions. This completes the proof. O
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