Existence and symmetry results for
some overdetermined free boundary problems

Mohammed Barkatou

Abstract. In this paper, we prove that a domain which verifies some
integral inequality is either (strictly) contained in the solution of some
free boundary problem, or it coincides with an N-ball. We also present
new overdetermined value problems which have an N-ball as a solution.
To reach our results, we use an integral identity which involves the domain
derivative of the solution of the corresponding Dirichlet problem.
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1 Introduction

Assuming throughout that: D ¢ RN (N > 2) is a bounded ball which contains all
the domains we use. If w is an open subset of D, let v be the outward normal to dw
and let |Ow| (respectively |w|) be the perimeter (respectively the volume) of w. Let
f be a positive function belonging to L?(RY) and having a compact support K with
nonempty interior. Denote by C' the convex hull of K.

Consider the following overdetermined boundary value problems.

—Aug =f in ),
QS(f,k) un =0 on 09,
—% =k = cst. on 9N

and

—Aug=f inQ,uo=00n00 }PQ,f),
P(f, C) 7A'UQ = UuQ in Q , U = 0 on 8(2 }P(Q, ’lLQ) 5

dug Ovg __ . __
G2 G2 = c = cst. on of.

. . . F) F)
Notice that since uq (resp. vg) vanishes on 0 then —%2 = |Vug| (- 52 = [Vuql).
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Remark 1.1. The second problem is equivalent to the following biharmonic one:

A%y =f inQ,
vQ :A'UQ =0on 89,
|Vuq||Vva| = ¢ on 0.

The problem QS(f,k) is called the quadrature surfaces free boundary problem
and arises in many areas of physics (free streamlines, jets, Hele-show flows, electro-
magnetic shaping, gravitational problems, etc.) It has been intensively studied from
different points of view, by several authors. For more details about the methods used
for solving this problem see the [21, Introduction]. Imposing boundary conditions
for both ug and |[Vug| on 9Q makes problem QS(f,k) overdetermined, so that, in
general without any assumptions on data this problem has no solution. Gustafsson
and Shahgholian [21] conclude their paper by giving [21, Theorem 4.7] the following

sufficient condition: If Suppf C Bg and if fBR flz)dz > (GZIJ%[C|BR|) with Bsrp C €,
(Br being some ball of radius R) then QS(f, k) has a solution. The method used by
Gustafsson and Shahgholian goes back to K. Friedrichs [18], or even to T. Carleman
[12], and was considerably developed by H. W. Alt and L. A. Caffarelli [1]. Recently,
by combining the maximum principle to the compatibility condition of the Neumann
problem, Barkatou et al. [3] gave, |Vuc| > k on OC as a sufficient condition of exis-
tence for Qs(f, k). Later, Barkatou [2] showed that this problem admits a solution if

and only if the condition [, f(z)dz > k|8C]| is valid.

In 1971, Serrin [34] proved that if Problem QS(1,k) has a solution ug € C?(Q)
then  must be an N-ball and ugq is radially symmetric. The method used by Serrin
combines the maximum principle together with the device of moving planes [20] to a
critical position and then showing that the solution is symmetric about the limiting
plane. In the same year, Weinberger [36] gave a simplified proof of this problem. His
strategy of proof consists first in showing that |Vu|2 + %u = k% in Q and to derive
a radial symmetry from this. A method which does not need the maximum principle
was developed by Payne and Schaefer [30]. They developed integral identities which
are equivalent to the problems they considered and led to the conclusion that the do-
main ) must be an N-ball. Another technique which does not involve the maximum
principle was introduced by Brock and Henrot [8] (see also [14] or [5]). It consists of
using the domain derivative to get the same conclusion. For more details about the
symmetry results see [17, Introduction] and the references therein. Fragala et al [17],
obtained their symmetry result by combining the maximum principle for a suitable
P-function with some geometric arguments involving the mean curvature of 0f.
The problem P(1, ¢) arises from a variational problem in Probability [19, 25]. Fromm
and McDonald [19] related this problem to the fundamental result of Serrin. Then,
using the moving plane method combining with Serrin’s boundary point Lemma, they
showed that if this problem admits a solution €2 then it must be an N-ball. Huang
and Miller [23] established the variational formulas for maximizing the functionals
(they considered) over C* domains with a volume constraint and obtained the same
symmetry result for their maximizers.

The problem P(f,c) was first studied in [24]. In general, without any assump-
tions about data, the problem P(f, ¢) has no solution. In [24], by using the maximum
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principle, the authors showed that if |Vuc||Voe| > ¢ on C, then this problem has
a solution. The aim here is to give a sufficient condition of existence of the problem
P(f,c) better than the earlier (see Section 3.).

In the present paper, we will use some integral inequality on €2 verified by f and k
(respectively ¢) to prove that the domain {2 is either (strictly) contained in a solution
of the problem QS(f, i) (respectively P(f, ) for some constant u or 2 is an N-ball.
Next, we will use integral identities involving the domain derivative of the solution
of the Dirichlet problem in order to show that the solution of a new overdetermined
value problem (if it exists) must be an N-ball. We will also show that stationary
point of some functionals of a domain are balls.

2 Preliminaries

Definition 2.1. Let K; and K5 be two compact subsets of D. We call a Hausdorff
distance of K; and Ky (or briefly dy (K71, K>)), the following positive number:

dy (Ky, K3) = max [p(Ky, K), p(K2, K1)]
where p(K;, K;) = max,ck,d(z, K;), i,j = 1,2, and d(z, K;) = minycg; |2 —y .

Definition 2.2. Let w, be a sequence of open subsets of D and let w be an open
subset of D. Let K, and K be their complements in D. We say that the sequence
wy, converges in the Hausdorff sense, to w (or briefly w, N w) if

lim dp(K,, K) = 0.

n—-+o0o

Definition 2.3. Let {w,,w} be a sequence of open subsets of D. We say that the

sequence w,, converges in the compact sense, to w (or briefly wy, N w) if
e every compact subset of w is included in w,, for n large enough, and
e every compact subset of w° is included in @¢, for n large enough.

Definition 2.4. Let {w,,w} be a sequence of open subsets of D. We say that
the sequence w, converges in the sense of characteristic functions, to w (or briefly

p

1OC(RN)7 p # 00, (xw is the characteristic

Wy~ w) if x., converges to X, in L
function of w).

Definition 2.5. [2] Let C' be a compact convex set, the bounded domain w satisfies
C-Gnp if

1. w D int(C),
2. dw \ C is locally Lipschitz,

3. for any ¢ € OC there is an outward normal ray A, such that A.Nw is connected,
and

4. for every x € Ow \ C the inward normal ray to w (if exists) meets C'.
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Remark 2.6. If Q) satisfies the C-GNP and C' has a nonempty interior, then Q is
connected.

Put
Oc={wC D:w satisfies C — GNP}.

Theorem 2.1. Ifw, € O¢, then there exist an open subset w C D and a subsequence
(again denoted by wy,) such that (i) wy, A, (i) wn, £, (111) Xw, converges
to Xw in LY(D) and (iv) w € O¢. Furthermore, the assertions (i), (ii) and (i) are
equivalent.

Barkatou proved this theorem [2, Theorem 3.1] and the equivalence between (i),
(ii) and (iii) [2, Propositions 3.4, 3.5, 3.6, 3.7 and 3.8].

Proposition 2.2. Let {w,,w} C O¢ such that wy, . Let U, and u,, be respec-
tively the solutions of P(w,) and P(w). Then u, converges strongly in Hg (D) to u,
(un, and u,, are extended by zero in D).

This proposition was proven for N = 2 or 3 [2, Theorem 4.3]).

Definition 2.7. Let C be a convex set. We say that an open subset w has the C-sp,
if

1. w D int(C),
2. 0w \ C is locally Lipschitz,

3. for any ¢ € OC there is an outward normal ray A, such that A .Nw is connected,
and

4, forallz € Ow\C K,Nw= , where K, is the closed cone defined by

{yeRY :(y—2).(z—2) <0, forall z€ C}.

Remark 2.8. K is the normal cone to the convex hull of C' and {z}.

Proposition 2.3. [2, Proposition 2.8] w has the C-GNP if and only if w satisfies the
C-sp.

Proposition 2.4. [10, Theorem 3.5] Let v, and v, be respectively the solutions of
the Dirichlet problems P(wy, gn) and P(w,g). If g, converges strongly in H=1(D) to
g then v, converges strongly in H}(D) to v, (vs, and v, are extended by zero in D).

Lemma 2.5. [9, 32] Let w, be a sequence of open and bounded subsets of D. There
exist a subsequence (again denoted by w,) and some open subset w of D such that

1. w, converges to w in the Hausdorff sense, and
2. |w| < liminf, o |wn.
Theorem 2.6. [2] QS(f,k) has a solution if and only if [ fdx > k|OC|.

Lemma 2.7. Let ug € C*%(Q) be the solution of P(Q, N). Then Q is an N-ball if
and only if |Vuq(z)| = #(r)’ for every x € 0.
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For the proof of this lemma, see Theorem 2.4 [27].

Theorem 2.8. Let uq (respectively vq ) be the solution of P(Q,1) (respectively P(Q, ugq)).
If one of the following conditions is satisfied, then € is an N-ball.

1. |Vuq| = c on 0Q.
2. |Vog| = cx.v on 0L
3. |Vuq| = ¢|Vugq| on 99.

For the proof of this theorem, see [31].
As we use the standard tool of the domain derivative [35] to prove many of the
propositions we state here, we begin by recalling its definition.

Suppose that the open w is of class C2. Consider a deformation field V &
C?RN;RY) and set w; = w + tV(w), t > 0. The application Id + tV (a pertur-
bation of the identity) is a Lipschitz diffeomorphism for ¢ sufficiently small and, by
definition, the derivative of J at w in the direction V is

dJ(w,V) = lim M

As the functional J depends on the domain w through the solution of some Dirichlet
problem, we need to define the domain derivative u,, of u,,:

Ug,

)

’
u,, = lim
e t—0 t

—Aul, =0 inw
u, = —%V.V on Jw.
The domain derivative v, of v, (solution of P(w, u,)) is the solution of:

/ .
—Av, =u, inw
u

T Oue
w=—F=V.von dw.

Now, to compute the derivative of the functionals we consider below, recall the fol-
lowing:

1. The domain derivative of the volume is

/ V.vdo.
Ow

2. The domain derivative of the perimeter is

/ (N —1)H,V.vdo,
Ow

H,, being the mean curvature of Ow.

3. Suppose that u, € Hi(D) and w is of class C?, then
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(a) If F(w) = [, uldz, then
dF (w,V) = 2/ uwu;dx.
But v, € H}(D) and —Av,, = u,, in w, so by Green’s formula we obtain

dF(w,V) = 2/ |V, || Vo, |V.vdo.
ow

(b) If G(w) = [, |[Vuy|?dz, then by Hadamard’s formula

dG(w,V) = / |V, |[*V.vdo.
Ow

Since the set w satisfies the C-GNP, we ask the deformed set w; to satisfy the same
property (for ¢ sufficiently small). The aim in the sequel is to prove that the C-GNP
is stable by small deformation.

w having the C-GNP, by Proposition 2.3, it satisfies the C'-sp. Then

forallz € dw\C: K,Nw= .

For ¢ sufficiently small, let w; = w + tV (w) be the deformation of w in the direction
V. Let z; € Ow;. There exists ¢ € dw such that z; = 4+ tV(x). Using the definition
of K,, and the equation above, we get (for ¢ small enough and for every displacement
V):

for all 2 € Owy \ C : Ky, Nwy = &,

which means that w; satisfies the C-sP (and so the C-GNP) for every direction V when
t is sufficiently small. In fact, suppose, by contradiction, there exists z; € dw; \ C

such that K,, Nwy # & . Let y; € K, Nwy, there exists y € w, y = y; — tV (y) such
that:
Vee C, (yr —xt).(c—x¢) < 0.

Show that y € K:
(y—a)(c—z) = (p—tV(y) —xs +tV(x)).(c —x¢ + tV(x))
= (y—z+t(V(y) = V(2))).(c — 2t +tV(x))
(Yt — @1).(c — x1) + €(2),

where €(t) = t(y; — x¢).V(2) +t(V(y) — V(2)).(c — z¢) +t2(V (y) — V(2)).V (x) which,
as t, tends to 0. Obtaining the contradiction.

3 Existence and symmetry for OS(f, k) and P(f,c)

Suppose there exists  a solution of P(f,c). Then by Cauchy-Schwarz’s inequality

mamz/ \/|Vug|\wms</ |Vua|>%</ Vual)?.
o0 o0 o0
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By using Green’s formula,

Ao < ([ ([ ua).

Now C C © and C is convex, then |0C| < |09, and so,

c|3C|2</f/uQ.
c Ja

Theorem 3.1. If c|dC|* < [, f [, uc, then there exists Q 2 C solution of P(f,c).

In the sequel, we will prove

To prove Theorem 3.1, we proceed as follows.
By using the domain derivative [35], the problem P(f,c) seems to be the Euler equa-
tion of the following optimization problem. Put

Oc ={wCD:w satisfies C — GNP}.

Find Q € O¢ such that

and

Uy, is the solution of P(w, f).

Proposition 3.2. 1. There exists (2 € O¢ such that
J () = Min{J(w), w e O¢}.
2. If Q is of class C?, then

(3.1) |[Vug||Vug| < ¢ ondQnaoC
' |Vug||Vug| = ¢ on0Q\ 0C.

1
Mo =——

1
F(w):MC|w|—§/ui, and

Now, put

OQZ{UJCQ7 WEOC},
Proposition 3.3. 1. There exists Q* € Oq such that

F(Q) = Min{F(w), w € Oq}.
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2. If Q* is of class C?, then
|Vug«||Vvas| < Mc on 02 N dC
(3.2) |[Vug:||Vvg:| > Mg on 0Q2* NN
|V'LLQ* ||VUQ*| = MC on O0* \ (80 U 89)

The proof of the propositions 3.2 and 3.3 uses Theorem 2.1, Propositions 2.2 and
2.4 and Lemma 2.5.
Next, we prove by contradiction that 9Q N 0C = & . The contradiction is obtained
according to (3.1) and (3.2) after applying the maximum principle to  and Q*. In
fact, since int(C) C 2* C Q, one of the following situations occurs.

1. 09 = aC;
2. 90 # 0C and 0Q* = 9C;
3. 00 # 0C and 0Q* # 9C;
4. 9Q # 0C and 9Q = 00*;
5. 90 # 9C and 99 #£ 99"

For any of the above cases, using the maximum principle together with (3.1) and
(3.2), we obtain

c< Mg = |VUQ*||V’UQ*

< |Vugl||Vug| < ¢, on 9Q* N o2 N IC,

which is absurd.

Up to now, we will investigate several situations where an integral inequality on
some domain 2 says that

1. either Q is (strictly) contained in the solution of QS(f,u) (or of P(f,n)) (for
some constant p),

2. or, ) is an N-ball.
In the sequel, we suppose that int(C) C Q C D.
Proposition 3.4. Let ug be the solution of P(Q, f). If
|[Vuq| >k on 09,
then
1. either, there exists Q* 2 Q such that Q* is solution to QS(f, k),
2. or, [ f=Fk|0Q|, in that case,

(i) either, there exists Q** 2 C such that Q** is solution to QS(f,k)
(i) or, Q = int(C) and |Vug| =k on 0.
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Proof. By Green’s formula,

/f:/ Vuq| > k[0
Q N

1. either [, f > k|09, and so, by Theorem 2.6, there exists Q* 2 € such that Q*
is solution to QS(f, k).

Then

2. or, [, f = k[0, in that case, since C' is convex and int(C) C €, then [, f >
k|0C|, and so

(a) either [, f > k|0C], and so, Q** 2 C such that Q** is solution to QS(f, k).
(b) or, [, f=klOC|, and so Q = int(C), [Vug| =k on 0Q.

(|
Corollary 3.5. Let ug be the solution of P(Q, xc). Suppose that
|[Vug| >k on 0Q.
Then
1. either, there exists Q* 2 Q such that Q* is solution to QS(xc, k),
2. or, |C| = k|0Q|, in that case

(i) either, there exists 1** 2 C' such that Q** is solution to QS(xc, k).
(ii) or, Q is an N-ball.
Proof. If we replace in the previous proof f by x¢, we obtain item 1. and item 2 (i).

For item 2 (ii), we obtain [, f = k[0C|, and |Vuq| = k on 0Q which means that Q
is solution to a Serrin’s problem and so it coincides with an N-ball. (]

Corollary 3.6. Let uc be the solution of P(C,1) and let vg be the solution of
P(Q,uc). Suppose that
[Vug| >k on 0N

Then
1. either, there exists Q* 2 Q such that Q* is solution to QS(uc, k),
2. or, [ouc = k|0Q|, in that case

(i) either, there exists ** 2 C such that Q** is solution to QS(uc, k),
(ii) or,  is an N-ball.
Proof. If we replace in the previous proof f by uc, we obtain item 1. and item 2 (i).

For item 2 (ii), we obtain [ f = k|0C|, uq = uc, vo = ve and [Vvg| =k on €.
But according to Theorem 2.8, this means that €2 is an N-ball. O
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Proposition 3.7. Let ug be the solution of P(Q, f). Suppose that
|[Vuq| >k on 09.
Then
1. either, there exists Q* 2 Q such that Q* is solution to QS(fQ,kQ%).

2. or, Q is an N-ball.

Proof. By Green’s formula and Cauchy-Schwarz’s inequality,

bool < [ vual = [ 1 <] )t

k2100 < 9| / .

As in the proof of Proposition 3.4, we get item 1. For item 2., k|09 = |Q] [, /2,
implies that f is constant in 2, |Vug| =k on 9Q which means that € is solution to
a Serrin’s problem and so 2 is an N-ball.

Then

O

Remark 3.1. Put f = 1. Let uq (respectively vq) be the solution of P(Q,1) (re-
spectively P(Q,ugq)). Suppose

|[Vuq| >k on 0.

Since ug is not constant in €2, then there exists Q* 2  such that Q* is solution to
2 1.2]9Q
QS (ud, k155,

Remark 3.2. When () satisfies the uniform interior ball property with radius R, one
can replace in the preceding propositions the constant k& by NR.

Proposition 3.8. Let ug be the solution of P(Q, f) and let v be the solution of
P(Q,ugq). Suppose that
|[Vug||Vug| > ¢ on 09

Then,
1. either, there exists Q* 2 Q such that Q* is solution to P(f,c),
2. or, [Vugq||Vva| = ¢ on 09.

Proof. By Green’s formula and Cauchy-Schwarz’s inequality,

vilool = [ VFulVunl < ([ [wuad([ Vet < ([ pEC[ ua)t.

Aol < ([ ([ ua).

This inequality allows us to get

[N

So
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1. either, there exists Q* 2 Q such that Q* is solution to P(f, c),
2. or, |Vug||Vvg| = ¢ on 0.
O

Remark 3.3. Item 1. of Proposition 3.8 implies the existence of Q! (respectively 2?)
which (strictly) contains Q and such that Q? is solution to QS (uq, c‘fa—gf‘) (respectively
Q

02 is solution to Q«S«'(f7 |99 ),

o uQ

Proposition 3.9. Let ug be the solution of P(Q,1) and let vq be the solution of
P(Q,uq). Suppose that
[Vug||Vug| > ¢ on 09

Then
1. either, there exists 2* 2 Q such that Q* is solution to QS (ug,c ‘fgll‘)
2. or, Q is an N-ball.

Proof. When f =1,
1. either, there exists Q* 2 Q such that Q* is solution to QS (uq,c |‘a§?||)

2. or, |Vugq||Vva| = c on 02, and so § is an N-ball according to Theorem 2.8.

Notice that, we also get |Vug| = A|Vugq| on 0Q (where A is constant). This implies
that, in particular, that €2 is solution to Serrin’s problem with v/ Ac as constant. O

Remark 3.4. When  satisfies the uniform interior ball property with radius R, one
can replace in the preceding propositions the constant ¢ by - ) R,

Proposition 3.10. Let uq be the solution of P(Q,1) and let v be the solution of
P(Q,ugq). Suppose that
[Vug| > k|Vug| on 0Q

Then
1. either, there exists Q* 2 Q such that Q* is solution to QS(UQ,k‘gS)I‘)
2. or, Q is an N-ball.

Proof. By Green’s formula,
L \8Q|—k/ Vg </ |vm|=/ug.
IBQI 0 0

1. either, there exists Q2* 2 2 such that Q* is solution to QS (ugq, kl‘aﬁll)

Then

2. or, |Vug| = k[Vug| on 09 and so Q is an N-ball.
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Remark 3.5. When () satisfies the uniform interior ball property with radius R, one
can replace in the preceding propositions the constant & by NL+2R3 .

Proposition 3.11. Let uq be the solution of P(Q,1) and let v be the solution of
P(Q,ugq). Suppose that
[Vua| > kz.v on 0.

Suppose that ) is starshaped w.r.t. the origin, then
1. either, there exists Q* 2 Q such that Q* is solution to QS(ugq, kN%),
2. or, Q is an N-ball.

Proof. Since 2 is starshaped w.r.t. the origin,

oo = [ v [ 19l =
kEN——10Q| =k v < Vgl = [ uq.
o0] PN =K [yt = f Vel = f v

Then
1. either, there exists 2* 2  such that Q* is solution to QS (ugq, k’N“a%),
2. or, |Vug| = kz.v on 9Q and so € is an N-ball.

According to item 2. of Theorem 2.8, €2 is an N-ball. (]

4 Symmetry results for some overdetermined
problems

In this section, we consider new overdetermined boundary value problems. We use
essentially the domain derivative to get the symmetry result.

Proposition 4.1. Let Q C D, and let ug and vq be the solutions of the Dirichlet
problems P(Q,1) and P(Q,uq). Suppose that

00) |Vog| = NLH|VUQ\3 on 99, and
Joq [Vuo|*22do = 0.
Then Q is an N-ball.

Before proving Proposition 4.1, we check that a ball By is a solution to problem
P(1,¢) which satisfies (OC).
Let ugr be the solution of P(Bg,1). Using polar coordinates, up verifies

N -1
—ulf — . up = 1 for re]0,R][,
UR(R) = 0.
By the first equation, (TN_lu’R)/ = —rV=1 Since ug(R) = 0, we get

R
N7l (1) = RN 7Ly (R) + / sV 1ds.

T
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Asr — 0, rN ", (r) — 0 (otherwise we get a distributional contribution to Aug at
the origin). Thus
I R
/ _ N-—1 _
—uR (R) = TNT /0 sV T ds = N

Now let vg) be the solution of P(Bg,ug)). On one hand, we have —u/,(R) =
Then a simple calculation shows that

2l

1

oN (R* —r?) for r€]0,R[.

ur(r) =

On the other hand, the radial function vy satisfies

—vp — #v}z =up forre]0,R],
’UR(R) =0
/ R _ 3
—vp (R) = = Jy 8" lun(s)ds = NIYH (%)

Therefore Bp is a solution of P(1,¢) and so

N (R\® N 5
Vorl = 55 () = g Vel and

Ouy ou,
Vu,[*=2do = ( > / —2do
\/6Q | ‘ 8V a0 81/

Proof. Let O be the set of all bounded open, connected domains of class C? in R¥.
Consider the following functional of a domain, introduced in [14]:

J(w) = Vg [Pdo — (N +2) /|Vuw|2dx
Ow
u,, being the solution of P(w,1). Asin [14], J(w) > 0 for any w € O. Now, by Green’s
formula
s [l = [ 1ol = [ ua= [ [VuaP
N 42 90 90 Q Q ’
then J(Q) =

The domain derivative of the functional J at w € O in the direction V is given by

|2 ou,

dJ(w,V) = / (12(N = 1)|Vuy[* = 2N(N = 1) Hy [V ')V = 3N |V, [ =) do
Ow

H,, is the mean curvature of dw and u/, is the domain derivative of w,. Since Q
minimizes the functional J, then for every vector field V € C?(RN,R¥) we have
dJ(Q,V) = 0. Now, according to (OC), we obtain

[Vug| = NH on 99.

This means that €2 is an N-ball, according to Lemma 2.7. O
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Remark 4.1. Proposition 4.1 corresponds to the following biharmonic problem

A2vg =1 inQ,vg=Avqg=0 (N +2)|Vvg|= N|Vug|® on 0Q,
Jo0 |VUQ‘283LVQ =0 on 99.

The work bellows is motivated by the following result obtained by Didenko and
Emamizadeh [16]

Theorem 4.2. The domain 2 is a ball if and only if there exists a constant ¢ that
the following integral equation is valid

/U’de :c/ ugdo,
Q o0

for every vector field V € C2(RN,RYN), where

Aug =0 in Q u'Q:—%LfV.V.
Let uq, va, and wq be respectively the solution of P(,1), P(Q,uq), P(,vq).
Proposition 4.3. Q is an N-ball if one of the following conditions is satisfied
(i) —%ﬁ’ = c2V.w on 90
(i) _%}6 = c|Vuq|V.v on 00
(it —% = ?|Vugq|?V.v on 99.

Proof. By Green’s formula

!
Q / /
/ 3 = Uq —Auqug,
0 v Q Q

au’Q ougq
—A ' — / Apuinill
/ uQUQ + /a uUQ » : ug »

= / |Vug|*V.v.
o0
Then, we get
(i) [Vuga| = c on 0%
(ii) |Vugq| = ¢ on 99
(ili) |[Vog| = 1[Vug| on 9.
Each of the above items tells us that €2 is an N-ball. (]

Remark 4.2. Proposition 4.3 corresponds to the following biharmonic problem

A?v, =0 inQ,
vh = [Voa|Vr, Ay = [Vug|Vor on 09,
—% = A on 09.

where A = ¢*Vv, A = c|Vug|V.v, or A = #|Vug|*V.v.
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Proposition 4.4. Q is an N-ball if one of the following conditions is satisfied:

(i) —8557 = cV.w on 09

(ii) _owg c|Vuq|V.w on 0

(iii) faalff’ = c|Vugq|?V.v on 09

(iv) _%LVQ = ¢|Vuq|V.w on 09.

Proof. By Green’s formula

dwg, / / / )
——= [ v, = —Auqu
/BQ v Q ¢ Q “
o’ Oougq
= —AvhHu —I—/u Q—/ Uy —
/Q R P on = Ov
= /uu&—k/ [Vug||Vug|V.r.
Q a0

- 2/ Vo Veo| V.
o0

Then, we get
(i

) |Vug||Vug| = £ on 99
(ii) [Vva| = § on 0Q
)

2
(iii) [Vwa| = §|Vuq| on 09

(iv) |Vuq| = § on 0.
Each of the above items tells us that €2 is an N-ball.

Remark 4.3. Proposition 4.4 corresponds to the following triharmonic problem

Adwh, =0 in Q,
wp = [Vwg |V, Awg = |Vog|Vy, A?wg = |[Vug|V.w on 99,
~ % — A on 9.

v

where A = cV.v, A = c|Vug|V.v, A = c|Vug|?*V.v or A = c|[Vug|V.v.

5 Concluding remarks

Remark 5.1. Let zo be the solution of P(€2, 2ud).

Proposition 5.1. Q is an N-ball if one of the following conditions is satisfied

(i) —aazél =cV.w on 00

(i) —%ﬁz = c|Vugq|V.v on 0
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(iii) —% = c|Vuq|*V.v on 0Q

(iv) —8552 = ¢|Vuq|V.w on 09Q.

Proof. By Green’s formula

0z!
/ - 89 = [ uquy = —Avqug,
o0 v Q Q

= /—Au’Qvg—i—/ v
Q a0

_ / Vg VooV
o0

Then, we get
(i) |Vugq]|Vva| = ¢ on 09
(ii) |Vvg| = con 99
(iii) |Vugq| = ¢|Vug| on 09
(iv) |Vuq| = c on 09
Each of the above items tells us that €2 is an N-ball.

Remark 5.2.

Proposition 5.2. Balls are stationary for the functional

5@ = 5
where
1. F(w) = || and Gw) = [,
2. F(w) = [, uy and G(w) = [, u2;
3. F(w) = |w| and G(w) = [, u2;
. Fw) = [, ugv, and G(w) = [, u2;
5. F(w) = [, vy and G(w) = [ u,.

Mohammed Barkatou

%_/ o 2%
(91/ 39931/

U, and v, being respectively the solution of P(w,1) and P(w,uy).

Proof. If  is of class C?, then for every vector field V € C?(RY,RY)

Q,V)G(Q) — F()dG(Q,V)

ao,y) = CE

Then dJ(2,V) = 0 implies
1. |Vuq| = ﬁ on 9%
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2. |Vug| = 2J%Q)|Vug| on 0
3. [Vug||Vug| = T%Q) on 09
4. |Vug| = 2J(Q)|Vuq| on 09;
5. |V’UQ| = J(Q)|VUQ| on Of).

Each of the overdetermined conditions obtained above says that 2 is an N-ball. O

Remark 5.3. One can have the same existence result for the functional used in
Section 4. if we replace O¢ by the following class of open sets: For € > 0

O. ={w C D, Vr € dw, OwN B(z,¢) has B, — PGN}
B! is the (N — 1)-ball with center z.

Remark 5.4. For the problem QS(f,g) (g is positive ant it attains its maximum on

0C'), one can have
/ fdx > / gdo
c ac

as a sufficient condition of existence.
Now, let a > 0 and put C' = [-1,1] x {0} C R2. Consider the problem

7AUQ = a5c in Q

QS(a,g) uq = 0 on 9N
—ag—yﬂ = g on Jf).

The problem Qs(a, g) has a solution if @ > 1 [, g(0)do. B being the unit ball in
R2.

Notice that in the special case where g = k = const.,the condition above becomes
a > 2k and it is a necessary and sufficient condition of existence for OS(a, k) [3].

Remark 5.5. Let €2 be a bounded and convex set which contains the interior of C'
the convex hull of the support of f. The existence of a domain C which minimizes
the ratio

Ju !

B
is obtained in the class of convex subset of €). One calls the minimum above the

f-Cheeger set of 2 and A(Q2) the f-Cheeger constant. Using the same arguments as
in Section 3., one can prove that

1. either there exists 2* 2 Q which is a solution to QS(f, A(2)),

R(w)

2. or Co = Q, i.e Qis f-Cheeger in itself.

Remark 5.6. Let 2 be an open subset of D. Consider the Cheeger constant

Using the domain derivative of h [28], we prove the following
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Proposition 5.3. If [ f(z)dx > /h(C)|0C|, then the problem (Qs(f,/9(2)))

admits a solution where
Q
9(2) £

~ 10Cq]

(N = 1)Hpc — h(2))xaanace, + h(£2),

Cq being the unique Cheeger set of €.
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