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Abstract. The state of the art partial differential equation (PDE)-based
image compression techniques are surveyed in this research article. An
overview of the image coding approaches is described first. Next, the
most important PDE-based models used in the decompression stage are
presented here. Thus, image decompression schemes based on linear ho-
mogeneous diffusion of various orders, nonlinear anisotropic diffusion and
edge-enhancing diffusion (EED), and using encoding algorithms such as
B-tree triangular coding (BTTC), rectangular subdivision or edge-based
coding for image sparsification are discussed in this survey. Also, our
own contributions in this domain, representing effective compression and
decompression solutions using PDE-based edge detection and nonlinear
anisotropic diffusion-based inpainting, are described in this paper and
compared with the state of the art techniques.
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1 Introduction

Digital image compression represents an important sub-domain of both the image
processing and data compression fields. The purpose of a compression task is to
reduce the size of the image file without losing much information and maintaining
its visual quality, in order to facilitate the storage and transmission processes. The
image content is encoded using fewer bits than its original representation, in the
compression process that can be either lossless or lossy [14].

The lossless image compression methods remove or reduce the statistical redun-
dancy, and recover perfectly the image at decompression, no information being lost.
The following coding algorithms are used for lossless compression: the Huffman co-
ding, Aritmetic coding. Run Length Encoding (RLE), LZW encoding and Area coding
[7, 14, 24]. Several image formats, like BMP, GIF or PNG are based on the lossless
compression.
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The lossy coding algorithms produce much higher compression rates, but also lose
some of the image information. While the decompressed images are not identical to
the originals, they are similar enough. The lossy encoding methods include vector
quantization, transformation-based coding, fractal coding, Block Truncation Coding
and sub-band coding [7, 24]. Well-known image standards based on lossy compression
include JPEG, JPEG 2008 and other versions of it, which use transform-based (DCT
and DWT) image encoding [7, 14, 24], and the MPEG format with its variants [7, 24].

Image compression approaches using partial differential equation (PDE)-based
models represents a recently developed class of lossy compression schemes. In the
last 30 years, the PDEs have been widely applied in various static and video image
processing and analysis sub-domains, such as image filtering [2], inpainting [27], seg-
mentation [21], registration [29], compression [23] and video motion estimation [18].

We have performed a lot of research in the PDE-based image processing and
analysis fields, and elaborated numerous variational and PDE models for image de-
noising [6], interpolation [5], segmentation [3] and compression [4]. We approach here
the digital image compression domain, providing an overview of the state of the art
PDE-based compression techniques.

The PDE-based image compression could be considered an application area of
the PDE-based inpainting, since those compression methods make use of the PDE
image completion models for the decompression task. The differential models are
rarely used in the compression stage, usually being used in the pre-processing steps
that enhance the image for the compression task. Then, the image data compression
is performed by applying some image sparsification and coding procedures. Some
sparsification and encoding algorithms that are successfully used together with PDE
models are surveyed in the next section, where the general form of the PDE-based
decompression problem is also presented.

Then, the state of the art partial differential equation-based image compression
and decompression models, such as those based on nonlinear anisotropic diffusion
and edge-enhancing diffusion (EED), are described in the third section. While these
techniques use the PDEs in the decompression stage only, the nonlinear diffusion-
based image compression framework proposed by us is using PDE models for both
compression and decompression tasks. Our own contribution in this domain is briefly
described in the fourth section and compared to the state of the art compression
solution. Conclusions of this article are drawn in a final section and the paper ends
with a section of references.

2 Image coding solutions and PDE-based decom-
pression

In the image compression process stage one have to select a subset of the image pixels,
which are then coded and stored according to an algorithm. So, in the first step, a
sparsification is performed on the digital image.

The idea is to reduce the image data to a well-adapted set of significant sparse
points that can be then coded efficiently. Many image sparsification and coding solu-
tions that work properly with the PDE inpainting models used in the decompression
stage have been developed.
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The random sparsification approach selects randomly the scattered data points
from the image, which are then encoded. Unfortunately, this image sparsification
solution may produce decompressed images of poor quality and a high loss of infor-
mation.

A much better image encoding solution is B-Tree Triangular Coding (BTTC)
introduced by R. Distasi et al. in 1997 [11, 23]. It creates an useful sparse point
representation and an efficient coding of the sparsified image data. Their coding
scheme is based on the recursive decomposition of the image domain into right-angled
triangles arranged in a binary tree. The BTTC domain triangulation for Lenna image
at 1.20 bpp is described in Fig. 1.

BTTC represents a fast encoding technique, is characterized by a quite convenient
computational cost O (n log n) for a number of pixels n, and is quite easy to implement
and highly parallel. The compression technique described in [11] is based on a linear
interpolation of all these triangles in the image decoding stage. This binary tree-based
coding can be also used successfully together with the PDE-based inpainting models.
Thus, the scattered data obtained by BTTC could be properly interpolated using
PDE schemes in the decompression step, the respective techniques being described in
the following sections.

Figure 1: BTTC triangulation of Lenna image

Other tree-based sparsification and coding approaches have been also developed.
Let us mention here the image coding method using adaptive Delaunay triangulation,
elaborated by Demaret et al. in 2005 [10]. The tree-based rectangular subdivision
scheme, which partitions the original image into rectangular subimages, represents
another image sparsification solution that is used along some PDE-based interpolation
models that are described in the next section [23]. Another effective binary tree-based
sparsification is the stochastic tree-based image sparsification [23].

The edge-based image coding models has been also used successfully with the PDE
inpainting schemes. Such an encoding technique extracts the image boundaries, by
performing an edge detection operation, first. Then, only the pixels that are related to
the detected edges (positioned on them or in their vicinity) are considered as sparse
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points. Next, these selected pixels are coded by using various encoding schemes:
Huffman encoding, Run Length Encoding, Aritmetic coding and others. Some PDE-
based image compression algorithms using edge-based encoding are discussed in the
following section [7, 19].

Clustering-based quantization solutions for PDE-based image compression have
been also developed [15]. These quantization-based image encoding approaches reduce
the number of colors without altering the quality of image. Unsupervised clustering
algorithms like K-means could be used for this purpose. The key pixels corresponding
to those detected colors are then selected, coded and stored [15].

The scattered data obtained and coded using these sparsification and coding al-
gorithms is then decoded and interpolated in the decompression stage. Variational
and PDE-based inpainting techniques could be applied on the sparse pixels [2, 27].
The PDE compression models achieved high data compression performance measure
values: the compression rate (in bits per pixel), compression ratio, fidelity and quality.

Energy-based, or variational, structural inpainting techniques reconstruct the dam-
aged image by solving a minimization problem involving an energy functional com-
posed of a fidelity term and a regularizing term:

(2.1) min
u∈U

(
J(u) = R(u) +

1

2

∫
Ω

λD(u− u0)
2dΩ

)
,

where D is the inpainting domain λD = λ · 1Ω\D, λ > 0, the regularizing term R(u)
contains certain a-priori information from u and perform the filling, while the fidelity
term forces the minimizer u to remain close enough to the initial image outside of
the inpainting region [2, 27]. This variational scheme could be applied by using the
sparsified image as observed image u0, for the decompression task.

Some PDE inpainting models follow the variational principles, being derived from
such variational schemes, by applying the Euler Lagrange equations and then the
steepest gradient descent method [2]. Other PDE-based inpainting schemes are non-
variational, being directly provided as evolutionary equations.

Thus, the general form of a variational PDE-based interpolation model used for
image decompression is obtained as follows:

(2.2)
∂u

∂t
= (1− λD)L(u)− λD(u− u0),

where L(u) is a differential operator that may take various forms.

The interpolation result is obtained from (2.2) by solving numerically this partial
differential equation using an iterative numerical approximation algorithm. The state
of the evolving image u obtained at the final iteration represents the decompressed
image.

Thus, various PDE-based image compression techniques are obtained by consid-
ering variants of the differential operator L. Some of them, representing state of the
art compression frameworks, are described in the following sections.
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3 State of the art diffusion-based image compres-
sion models

Several PDE-based image compression techniques are described in this section. They
use linear and nonlinear diffusion-based models.

3.1 Linear homogeneous diffusion-based image compression

A well-known linear homogeneus diffusion-based image compression technique is based
on the Harmonic Inpainting, which represents a variational interpolation model. Its
differential operator has the following form:

(3.1) L(u) = −∇2u = −∆u.

Harmonic Inpainting interpolates succesfully the sparsifed image in the decom-
pression stage, the scattered data points being obtained by using the sparsification
methods described in the previous section. This type of compression provides effective
results for cartoon image compression and depth map compression [9, 19].

Such a linear homogeneus diffusion-based image compression method is that intro-
duced by M. Mainberger and J. Weickert in 2009 [19]. It uses an edge-based encoding
algorithm for image compression.

An edge detection process, based on the Marr-Hildreth operator [20], is performed
first. Then, the pixels from the neigborhood of the detected edges are encoded,
by applying some quantisation, subsampling and PAQ coding algorithms and stored
using the JBIG standard [19]. The image decompression is performed by applying
the linear homogeneous diffusion-based inpainting given by (2.2) and (3.1).

This edge-based compression framework provides very good results for cartoon
image decompression. It outperforms the JPEG and JPEG 2000 compression stan-
dards when applied on cartoon-like images and measured at the same compression
rate. One can see an image compression example using edge-based coding and har-
monic interpolation in the next figure [19].

Figure 2: Edge-based compression of a cartoon image
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Some extensions of this harmonic operator based image compression model use
differential operators of higher orders. Such a compression algorithm is based on the
biharmonic smoothing operator [16, 26] having the form:

(3.2) L(u) = −∇4u = −∆2u.

The biharmonic-based image compression technique provides satisfactory decom-
pression results, by applying the scattered data interpolation solution provided by
(2.2) and (3.2), when used together with an effective image coding scheme, such as
B-Tree Triangular Coding. It produces weaker results when used along random sparsi-
fication. An example of image decompression result produced by BTTC+Biharmonic
compression technique is described in Fig. 3.

Figure 3: BTTC+Biharmonic image compression

Another linear diffusion-based compression technique derived from harmonic op-
erator based approach is based on triharmonic smoothing operator [26]. That is, a
higher-order differential operator having the form:

(3.3) L(u) = ∆3u.

Triharmonic Inpainting given by (2.2) and (3.3) also provides good image decom-
pression results when applied on the sparse pixels encoded by using BTTC. These
linear PDE-based compression models of various orders are solved numerically by
constructing some finite difference-based numerical approximation schemes based on
the Laplacian discretization [17].

3.2 The absolute monotone Lipschitz extension (AMLE) model

A second-order PDE-based interpolation technique that has been sucessfuly used
for image compression is the absolute monotone Lipschitz extension (AMLE) model
[1, 26]. This partial differential equation-based inpainting algorithm is based on the
second order directional derivative in the gradient direction.

Thus, the AMLE-based compression model is characterized by the following dif-
ferential operator:

(3.4) L(u) = ∂ηηu,
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where

(3.5) η =
∇u
|∇u|

.

The AMLE inpainting approach given by equations (2.2), (3.4) and (3.5) achieves
very good decompression results when applied on a properly selected scattered data
point set, obtained for example with a B-tree based coding. It provides a weaker
decompression output when applied on a randomly selected set of sparse pixels, as
one can see in the Lenna image compression example described in Fig. 4.

Figure 4: AMLE-based image compression example

3.3 Nonlinear Anisotropic Diffusion-based Image Compression

The second-order nonlinear anisotropic diffusion models have been successfully ap-
plied in the image restoration and inpainting domains [28]. Therefore, they have been
also introduced in the digital image compression field, since they represent powerful
interpolation solutions for the scattered image data [13, 28]. Nonlinear second-order
anisotropic diffusion-based image compression is characterized by the next class of
smoothing operators to be used in (2.2):

(3.6) L(u) = div(g(∥∇u∥2∇u)),

where the diffusivity (edge-stopping) function g is positive, monotonically decreasing
and converges to zero.

Each anisotropic diffusion model that can be used in the decompression stage is
characterized by such a diffusivity function. Thus, the anisotropic diffusion model of
Perona and Malik is characterized by the next two edge-stopping functions [28]:

(3.7) g(s2) = e−
s2

k2 ; g(s2) =
1

1 +
(
s
k

)2 .
The Charbonnier diffusion scheme is characterized by the function [13, 28]:

(3.8) g(s2) =

(
1 +

s2

k2

)−1/2

.
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The robust anisotropic diffusion (RAD) model introduced by Black et al. [6, 28]
has the following diffusivity function:

(3.9) g(s2) =


(
1− s2

5k2

)2

, if
s2

5
≤ k2

0, if
s2

5
> k2

These nonlinear anisotropic diffusion-based interpolation methods provide effec-
tive decompression results. They are discretized by using finite difference method-
based numerical approximation schemes [17].

3.4 Edge-enhancing diffusion-based compression frameworks

A category of more performant nonlinear PDE-based image compression techniques is
based on edge-enhancing diffusion (EED) models. These models provide a powerful
nonlinear diffusion-based smoothing. The edge enhancing diffusion preserves and
enhances the image boundaries, since it reduces the diffusion across edges and permits
it along them.

So, such an effective edge-enhancing anisotropic diffusion-based image encoder was
proposed by Garlic, Weickert et. al in 2005 [13]. Their BTTC-EED framework ap-
plies an improved BTTC scheme for image compression and EED for decompression.
Thus, in the compression stage an adaptive B-tree triangular coding (BTTC)-based
sparsification is applied to the image to create the scattered interpolation pixels. The
image is decomposed into a number of isosceles triangular regions such that within
each region it can be properly recovered by interpolation from the vertices. This
triangle-based decomposition is then stored into a binary tree structure [12, 13].

The structure of the tree is stored by traversing it (pre-order or level-order) and
storing it one bit per node: a 1 for a node that has children, and a 0 for a leaf. A
vertex mask is obtained. To code the grey values in all vertices, one first zig-zag
traverses the sparse image created with the binary tree structure and store it in a
sequence that is encoded with Huffman algorithm. The coding is further enhanced
with a final quantization [13].

Image decompression process is performed in two main steps: the decoding and
interpolation [25]. First, the vertex mask is recovered from the described encoding and
the sparse image is thus achieved. Next, the scattered data interpolation is performed
by using the edge-enhancing diffusion scheme [12, 13].

So, this BTTC-EED approach replaces the linear interpolation of the BTTC-L
model [11] to a edge enhancing diffusion-based inpainting procedure that is applied
within each triangle from the sparsified image [13]. The EED-based image interpola-
tion is achieved by applying the following diffusion operator to the equation (2.2):

(3.10) L(u) := ∇ · (g(∇uσuTσ )∇u),

where uσ = u ∗ Gσ and Gσ represents a 2D Gaussian filter kernel characterized by
the standard deviation σ. The diffusivity function g is properly selected: positive,
monotonic descreasing and converging to 0.
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BTTC-EED model provides an effective sparse image interpolation, outperform-
ing the previously developed PDE-based inpainting techniques in the decompression
stage. It provides better values of the performance metrics, lower average absolute
error (AAE) and the mean squared error (MSE), than harmonic, biharmonic, tri-
harmonic, AMLE and Charbonnier diffusion, which mean better quality of the de-
compression result. BTTC-EED compression algorithm outperforms also the JPEG
compression standard, when compared at the same high compression rate, but it is
inferior to JPEG 2000 coding [12, 13].

Some BTTC-EED image compression results (adaptive sparsifications and decom-
pressed images) achieved at several compression rates are displayed in Fig. 5. Also,
the method comparison results (AAE and MSE values) illustrating the effectiveness
of this compresion technique are registered in Table 1.

Figure 5: BTTC-EED image compression at several compression rates

Table 1. Method comparison: AAE and MSE values

PDE-based compression technique AAE MSE

Harmonic smoothing 16.98 611.5
Biharmonic smoothing 15.79 615.5
Triharmonic smoothing 18.69 807.9

AMLE model 17.33 631.7
Charbonnier diffusion 21.80 987.0
BTTC-EED technique 14.58 591.7
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Some improved versions of this edge-enhancing diffusion-based compression ap-
proach have also been developed. Such an improved EED-based technique is the
Q64+BTTC(L)-EED image codec introduced by Galic et al. in 2008 [12].

An even more effective EED-based compression framework, which is the Rectan-
gular subdivision with edge-enhancing diffusion (R-EED) image codec, was proposed
by Schmaltz et al. in 2009 [25]. Their technique performs a rectangular subdivision
process on the image in the compression stage.

In this subdivision approach a line is saved by using 3 points. Each time one
checks the quality of the image reconstruction: if the MSE value is greater than
a certain threshold, then the image is split into two sub-images, by saving a line
between them. These sub-images are then saved in a recursive manner. The saved
pixels values are quantized and coded using a entropy coding algorithm, such as the
Huffman coder, Lempel-Ziv-Welch, aritmetic coding and PAQ [28]. The recangular
subdivision process applied to the Trui image is described in Fig. 6.

Figure 6: Rectangular subdivision process example

The R-EED decompression is performed by applying an edge-enhancing diffusion-
based inpainting technique. So, the differential operator of EED, L(u) =

div(g(∇uσuTσ )∇u), is applied with a Charbonnier diffusivity function, g(s2) =
√

1

1+ s2

λ2

.

An optimization is also performed on this diffusivity function, by selecting an optimal
λ parameter that is dependent on the image and the compression ratio [25].

R-EED based image compression clearly outperforms BTTC-EED scheme and
all other PDEbased compression methods, and also JPEG. It also provides better
decompression results than JPEG 2000 standard, when compared at comparable high
compression ratios. While R-EED provides better results for gray-level images, it is
outperformed by JPEG 2000 for color image compression. Some method comparison
results are described in Fig. 7 that displays the decompression results and MSE values
achieved by the EED-based and JPGEG codecs at various compression ratios.

An improved R-EED compression method for color images was introduced by
P. Pascal and J. Weickert in 2014 [22]. Their colour compression codec give more
attention to the encoding of luma channel of the YCbCr colorspace. This image
encoder outperforms JPEG 2000 standard for high compression rates.
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Figure 7: Compression results of various techniques and method comparison

4 Edge-based compression using nonlinear diffusion-
based models

Our own contributions in the partial differential equation-based image compression
domain are described briefly in this section. So, we have developed recently a nonlin-
ear PDE-based compression technique using edge information, which is disseminated
in [4]. Unlike other PDE-based approaches, it uses nonlinear anisotropic diffusion
schemes for performing both the image compression and decompression tasks.

Thus, an edge-based image compression technique is proposed in [4]. A second-
order nonlinear diffusion-based edge detection is performed first, using the PDE
model:

(4.1)


∂u

∂t
− δ(∥∇(Kx,y ∗ u)∥)∇ · (ψ(∥∇u∥)∇u) + α(u− u0) = 0

u(x, y, 0) = u0(x, y), ∀(x, y) ∈ Ω,
u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω

where α ∈ [0, 1), Ω ⊆ R2, u0 = Im ∗ Kx,y, Im is the original image, Kx,y is a 2D
filter kernel and

(4.2) ψ : [0,∞) → [0,∞), ψ(s) = ε

(
ξ(u)

|βs2 + ζ ln ξ(u)|

) 1
3

,

where β ∈ (2, 4], ε, ζ ∈ (0, 1) and ξ(u) = v|µ(∥∇u∥) +median(∥∇u∥), with ν ∈ [1, 3),
µ(·) returns the average and median( ) is median value of the argument. Also, the
function δ : [0,∞) → [0,∞), δ(s) = κ−r+1√υsr + ρ, with κ, r ∈ (0, 1), υ, ρ ∈ (1, 2).
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The following explicit finite difference-based numerical approximation algorithm is
constructed for it [4, 17]:

(4.3)
un+1
i,j = uni,j(1− α) + u0i,jα+ δi,j(ψi+ 1

2 ,j
(uni+1,j − uni,j)

−ψi−h
2 ,j

(uni,j − uni−1,j) + ψi,j+ 1
2
(uni,j+1 − uni,j)− ψi,j− 1

2
(uni,j − uni,j−1))

A binary image is obtained by computing the absolute difference between 2 states,
then a thresholding process [4]:

(4.4)
ubi,j =

 1, if |um+T
i,j − umi,j | ≥ w

ξ(um+T ) + ξ(um)

2
0, otherwise

,

∀i ∈ {1, ...., I}, ∀j ∈ {1, ..., J}, w ∈ (0, 3).

Morphological operations are then applied to the binary image: dilation, thinining,
gap filing, and small spots removal. The resulted image represents the edge detection
and the pixels located in the vicinity of these extracted edges are then coded (4 or
8-neighborhood), A lossless RLE-inspired coding algorithm is applied to these sparse
pixels. The sparse image is then transformed into a row vector R and at each step one
determines the sequence [R(i), ni, zi], where (R(i) = R(i + 1) = ... = R(i + ni − 1))
and zi is the number of consecutive zeroes after the last occurrence. The current
sequence is appended to a coding vector: C = [C,R(i), ni, zi] [4].

In the image decompression stage, a decoding process is performed on the encoded
pixels, first. Then, an interpolation is performed on the obtained sparsified image,
by applying the following nonlinear compound fourth-order PDE-based structural
inpainting model proposed by us in [7]:

(4.5)



∂u

∂t
+ λδ(∥∇u∥)∇2(φ(∥∆u∥)∇2u)− η div(ψ(∥∇u∥)∇u)

+(1− 1Γ)(u− u0) = 0
u(x, y, 0) = u0(x, y), ∀(s, y) ∈ Ω

∂u

∂n⃗
= 0

u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω

where λ ∈ [1.4, 2), η ∈ (0.5, 1] and φ : [0,∞) → [0,∞), φ(s) = γ k

√
ξ(u)

ζ|ξ(u)+s|k+1+τ
,

τ ∈ (2, 4], γ, ζ ∈ [0.5, 1), k ∈ {2, 5}. This PDE inpainting scheme is non-variational
and combines nonlinear second and fourth order diffusions to achieve an effective
interpolation. The next explicit iterative central difference-based numerical approxi-
mation algorithm is constructed for it [17]:

(4.6)

un+1
i,j = uni,j(1Γ − η(ψi+ 1

2 ,j
+ ψi− 1

2 ,j
+ ψi,j+ 1

2
+ ψi,j− 1

2
))

+η(uni+1,jψi+ 1
2 ,j

+ uni−1,jψi− 1
2 ,j

+ uni,j+1ψi,j+ 1
2
+ uni,jψi,j− 1

2
)

+u0i,j(1− 1Γ)− λδi,j(ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕi,j)

for n = 0, 1, ..., N, where N is large enough, depending on the number of sparse
points [4].
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The proposed PDE-based compression scheme has been tested successfully on hun-
dreds of images and achieves good performance measure values: compression rate,
compression ratio, fidelity and quality. It outperforms BTTC-L, the most PDE-based
methods, is slightly better than JPEG at high compression rates, but it is outper-
formed by the JPEG 2000 and R-EED codecs. The main steps of this compression
process are described in Fig. 8 [4].

Figure 8: Stages of a compression process, at ratio = 12:1

Method comparison results, representing PSNR and SSIM values achieved by state
of the art PDE comprresion models, are displayed in Table 2.

Table 2. Method comparison: PSNR and SSIM at compression rate 0.4 bpp

Compression technique PSNR SSIM

The proposed AD-based technique 27.8777 (dB) 0.8231
Linear homogeneous diffusion 20.8971 (dB) 0.6866
Biharmonic smoothing operator 21.4235 (dB) 0.7230
BTTC-L compression scheme 22.8565 (dB) 0.7487
BTTC-EED compression 25.6607 (dB) 0.7738

R-EED codec 28.9994 (dB) 0.8586
JPEG 27.7475 0.8143

JPEG 2000 28.4545 (dB) 0.8467

5 Conclusions

A survey of the state of the art PDE-based image compression techniques has been
presented in this work. These approaches use the partial differential equations mostly
for the decompression task and use other coding schemes for compression.
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The PDEs could also be useful in the pre-processing stages of the compression
that are related to image enhancement: image filtering, restoration, inpainting. Most
PDE-based image compression models have a variational character, being derived
from some energy cost functional minimization schemes.

The PDE-based image compression may represent a better alternative to transform-
based codecs, such as JPEG that is based on Discrete Cosinus Transform (DCT) and
JPEG 2000 that uses the Discrete Wavelet Transform. While the transform-based
JPEG compression is seriously affected by block artifacts, since discrete cosine trans-
form is computed within blocks of [8 × 8], the PDE-based codecs do not have this
shortcoming.

Our own contribution to the PDE-based compression domain has been also de-
scribed here. Unlike other techniques in this field, the proposed nonlinear diffusion-
based compression framework uses PDE models in both compression and decompres-
sion stages. Also, unlike the PDE-based schemes used by many other compression
approaches, our nonlinear anisotropic diffusion models are novel and non-variational.
Unfortunately, it cannot be successfully used for textured image compression, given
its structural interpolation model used in the decompression stage.
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